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1. Spectral bounds for graphs

Let Xj be a family of (q + 1)-regular graphs with |Xj| → ∞ as
j →∞. Denote by λ+(Xj) the largest eigenvalue < q + 1,

and λ−(Xj) the smallest eigenvalue > −(q + 1).

Alon-Boppana:

lim inf
j→∞

λ+(Xj) ≥ 2
√

q.

Three proofs by Lubotzky-Phillips-Sarnak, Serre, Nilli, resp.

Li: Assume Xj’s satisfy

• the length of shortest odd cycle in Xj tends to ∞ as j →∞.

Then
lim sup
j→∞

λ−(Xj) ≤ −2
√

q.
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2. Ramanujan graphs

A connected (q + 1)-regular graph X is called Ramanujan if

|λ±(X)| ≤ 2
√

q.

So Ramanujan graphs are optimal expanders from spectral view-
point.

Explicit constructions of infinite families of Ramanujan graphs
for q = pa : Margulis (1988), Lubotzky-Phillips-Sarnak (1988),
Mestre-Oesterlé (1986), Pizer (1990), Morgenstern (1994)
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3. Another interpretation of R-graphs

The universal cover of (q+1)-regular graphs is the infinite (q+1)-
regular tree T . On it there is also the adjacency operator A. The
operator spectrum of A is [−2

√
q, 2

√
q].

Thus a graph is Ramanujan if and only if all of its nontrivial
eigenvalues fall in the spectrum of its universal cover.
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4. Connection with PGL2(F )

When q = pr is a prime power, the (q +1)-regular tree T can be
identified with the symmetric space PGL2(F )/PGL2(OF ), where
F is a local field with ring of integers OF , and the residue field
OF/πOF has cardinality q.

Eg. F = Qp with OF = Zp and π = p; or F = Fq((x)) with
OF = Fq[[x]] and π = x.

T = PGL2(F )/PGL2(OF ).

vertices ↔ PGL2(OF )-cosets
vertex adjacency operator A ↔ Hecke operator on

PGL2(OF )

(
1 0
0 π

)
PGL2(OF )
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5. The Bruhat-Tits building B on PGLn(F )

• G = PGLn(F ), K = PGLn(OF )

• The Bruhat-Tits building B = G/K is an (n − 1)-dim’l sim-
plicial complex with vertex set G/K. The chambers are the
(n− 1)-simplices; for 0 ≤ r ≤ n− 1, the r-dimensional facets
of the chambers are the r-simplices of the building B.
A chamber is also called an n-hyperedge.

• Each vertex gK has a type in Z/nZ given by

τ (gK) = ordπ det g mod n.

The 1-skeleton of B is an n-partite graph. The vertices in a
chamber have different types.
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• There are n− 1 Hecke operators Al, l = 1, ..., n− 1, on double

coset K




π
. . .

π



 l

1
. . .

1




K. Its action on L2(G/K) is

given by

Alf (x) =
∑

y adj. to x, τ (y)=τ (x)+l

f (y).
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• B is (q + 1)-regular, namely, for 1 ≤ l ≤ n− 1, each vertex x
of B has exactly

qn,l :=
(qn − 1) · · · (q − 1)

(ql − 1) · · · (q − 1)(qn−l − 1) · · · (q − 1)

neighbors of type τ (x) + l.

Each (n−2)-dimensional simplex is contained in q+1 chambers.

• Topologically B is simply connected, so it is the universal cover
of its finite quotients, which are (n − 1)-dim’l complexes or
n-hypergraphs.
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6. The spectrum of Al on B
σl(z1, ..., zn) = lth elementary symmetric polynomial in the

variables z1, ..., zn.

Ωn,l =

{
σl(z1, ..., zn) : zj ∈ C, |zj| = 1 for 1 ≤ j ≤ n,

z1 · · · zn = 1

}

Ωn,l is invariant under multiplication by nth roots of unity.

MacDonald: The spectrum of Al on B is ql(n−l)/2Ωn,l.
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7. Spectral theory of regular complexes

Let {Xj} be a family of finite quotients of B with |Xj| → ∞ as

j →∞. The trivial eigenvalues of Al on Xj are qn,le
2πir/n.

DeGeorge, Li: Assume each Xj contains a ball isomorphic to
a ball in B with radius going to ∞ as j → ∞. Then, for each
1 ≤ l ≤ n − 1, the closure of the collection of eigenvalues of
Al(Xj), j ≥ 1, contains ql(n−l)/2Ωn,l.

Kang: Denote by λ+
l (X) the largest nontrivial eigenvalue of Al

on X in absolute value. Then

lim inf
j→∞

λ+
l (Xj) ≥ ql(n−l)/2

(
n

l

)
.

Note that the lower bound is the radius of the smallest disc
containing the spectrum of Al on B.
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8. Ramanujan complexes and explicit constructions

A finite (q + 1)-regular quotient X of B is called a Ramanujan
complex if, for 1 ≤ l ≤ n− 1, all nontrivial eigenvalues of Al(X)

fall in the region ql(n−l)/2Ωn,l.

Theorem. For q equal to a prime power and n ≥ 2, there
exist explicitly constructed infinite families of (q + 1)-regular
(n− 1)-dimensional Ramanujan complexes.

The explicit constructions rely on the Ramanujan conjecture
over function fields. Choose F = Fq((x)) and a suitable divi-
sion algebra D of degree n over Fq(x). The infinite family comes
from quotients Γj\G/K by discrete subgroups Γj of G which are

suitable congruence subgroups of Fq(x)-points of D× mod center.
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Three explicit constructions:

(1) Li (2004): Used result of Laumon-Rapoport-Stuhler on Ra-
manujan conjecture for certain representations of D×, local Jacquet-
Langlands correspondence and trace formula.

Advantage: works for all n ≥ 2.
Restriction: D should ramify at least at four places.

(2) Lubotzky-Samuels-Vishne (2005): Used result of Lafforgue
on Ramanujan conjecture for representations of PGLn and global
Jacquet-Langlands correspondence.

(3) Sarveniazi (2007): Same theoretical ground and same result
as (2), different construction.
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Advantage: By taking D ramified only at two places, one obtains
(Ramanujan) complexes which are ”Cayley graphs” on subgroups
of PGLn(Fqd) containing PSLn(Fqd) with explicit generators,

similar to the Lubotzky-Phillips-Sarnak construction for the case
n = 2.

Restriction: works where JL correspondence over function fields
is established.
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9. B. Samuels’ published work

Beth Samuels published 4 papers, all joint work with Lubotzky
and Vishne, appeared in 2005-06.

• Explicit constructions of Ramanujan complexes of type Ãd,
European J. of Comb. (2005); discussed above.

• Ramanujan complexes of type Ãd, Israel J. (2005)

For n ≥ 3, one has to be careful in choosing the discrete
subgroup Γ of G in order that the finite quotient Γ\G/K is
Ramanujan. A necessary condition is that the corresponding
global representations of the group should not contain residual
spectrum.
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• Isospectral Cayley graphs of some finite simple groups, Duke
Math. J. (2006)

For each n ≥ 5 (n 6= 6) and q > 4n2 + 1 a prime power, by
properly selecting two different sets of generators, one obtains
isospectral, but non-isomorphic, Cayley graphs on PSLn(Fq).

• Division algebras and non-commensurable isospectral manifolds,
Duke Math. J. (2006)

Let F = R or C, G = PGLn(F ), and K its maximal compact
subgroup. For n ≥ 3, given any positive integer r, there are r
discrete cocompact torsion-free non-commensurable lattices Γl,
1 ≤ l ≤ r, in G such that the compact manifolds Γl\G/K are
isospectral. Their construction uses division algebras ramified
at the same places but with different invariants.
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10. Zeta functions of graphs

•X : connected undirected finite graph

• Count backtrackless and tailless cycles.

Figure 1: without tail Figure 2: with tail

• Primitive cycle: not repeating another cycle more than once.
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The Ihara vertex zeta function of X is defined as

Z(X ; u) =
∏

[C]

1

1− ul(C)
= exp

( ∑

n≥1

Nn

n
un

)
,

where [C] runs through all equiv. classes of primitive backtrackless
and tailless cycles C, l(C) is the length of C, and Nn is the number
of backtrackless and tailless cycles of length n.

Endow two orientations on each edge of a finite graph X . Define
the neighbors of u → v to be the edges v → w with w 6= u.
Associate the edge adjacency matrix Ae.

Hashimoto: Nn = TrAn
e so that

Z(X, u) =
1

det(I − Aeu)
.
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11. Properties of zeta functions for regular graphs

• Ihara (1968): Let X be a finite (q + 1)-regular graph. Then its
zeta function Z(X, u) is a rational function of the form

Z(X ; u) =
(1− u2)χ(X)

det(I − Au + qu2I)

(
=

1

det(I − Aeu)

)
,

where χ(X) = #V −#E is the Euler characteristic of X and
A is the (vertex) adjacency matrix of X .

•X is Ramanujan if and only if Z(X, u) satisfies RH, i.e. the

nontrivial poles of Z(X, u) all have absolute value q−1/2.
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When q = pr is a prime power,

T = PGL2(F )/PGL2(OF )

vertices ↔ PGL2(OF )-cosets
vertex adjacency operator A ↔ Hecke operator on

PGL2(OF )

(
1 0
0 π

)
PGL2(OF )

directed edges ↔ I-cosets (I = Iwahori subgroup)
edge adjacency operator Ae ↔ Iwahori-Hecke operator on

I
(

1 0
0 π

)
I

X = XΓ = Γ\PGL2(F )/PGL2(OF ) = Γ\T for a torsion free
discrete cocompact subgroup Γ of PGL2(F ).
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12. Our goal

Would like to define a suitable zeta function, which counts tailless
cycles up to homotopy in a finite complex arising as a quotient of
the building, which possesses the following two properties:

• It is a rational function with closed form expression;

• The complex is Ramanujan if and only if its zeta satisfies RH.

Shall present results for n = 3, a joint work with Ming-Hsuan
Kang.

This question was previously considered by Deitmar and Deitmar-
Hoffman. Partial results.

Fix notation: G = PGL3(F ), K = PGL3(OF ), and B = G/K
from now on.
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13. Parametrizations of the simplices in B

• σ =




1
1

π


 . Have a filtration of K:

K ⊃ E := K ∩ σKσ−1 ⊃ B := K ∩ σKσ−1 ∩ σ−1Kσ.

• vertices ↔ K-cosets

Each vertex gK has a type τ (gK) ∈ Z/3Z.

• The type of an edge gK → g′K is τ (g′K)− τ (gK) = 1 or 2.

• type one edges ↔ E-cosets

• chambers ↔ B-cosets such that gB, gσB and gσ2B
represent the same chamber.
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14. Operators on B
Hecke operators A1 and A2 are on K-double cosets.

The B-double cosets define Iwahori-Hecke operators acting on
L2(G/B). The B-double cosets of G are represented by the Weyl
group Wn < σ >, where W is generated by the three reflections

t1 =




1
1

1


 , t2 =




π−1

1
π


 , and t3 =




1
1

1


 .
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15. Finite quotients of B
Γ : a torsion free discrete subgroup of G with compact quotient.
XΓ = Γ\G/K = Γ\B
Two assumptions on Γ:

(I) ordπ det Γ ⊂ 3Z so that Γ identifies vertices of the same type.

(II) Γ is regular, that is, the centralizer in G of any nonidentity
element in Γ is a torus.

Division algebras of degree 3 yield many such Γ’s.
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16. Homotopy cycles and closed galleries in XΓ

• κγ(gK): the homotopy class of the backtrackless paths from
gK to γgK in B and its image in XΓ, where γ ∈ Γ.

• Suppose g−1γg ∈ K




1
πm

πm+n


 K. Then all geodesics

from gK to γgK use n type one edges and m type two edges
and they are homotopic in B. Say κγ(gK) has geometric length
n+m and algebraic length n+2m. When m = 0 or n = 0, we
say κγ(gK) has type one or two, accordingly. No homotopy in
this case.
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Figure 3: κγ(gK)
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• A cycle κγ(gK) is called tailless if κγ(hK) has the same geo-
metric length as κγ(gK) for all vertices hK lying on the cycle
κγ(gK). Define primitive and equivalence as before.

Figure 4: a tailless type one cycle
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Figure 5: a type one cycle with tail

A sequence of edge-adjacent chambers is called a gallery. The
least number of reflections needed to go from the chamber gB to
the chamber γgB is the length of the backtrackless gallery κγ(gB).
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Interested in tailless type one backtrackless closed galleries in
XΓ. Such a gallery has length n = 3m and is uniquely repre-
sented by κγ(gB), resulting from repeating m times the reflection
sequence t2t1t3.

Figure 6: three type one galleries from a chamber
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17. Type one chamber zeta function of XΓ

The chamber zeta function of XΓ is defined as

ZB(XΓ, u) =
∏

[G]

1

1− ul(G)
,

where [G] runs through the equiv. classes of backtrackless primi-
tive tailless type one closed galleries in XΓ.

Denote by LB the Iwahori-Hecke operator supported on Bt2σ
2B.

Theorem. ZB(XΓ, u) is a rational function, given by

ZB(XΓ, u) =
1

det(I − LBu)
.

30



18. Type one edge zeta function of XΓ

The type one edge zeta function is defined as

ZE(XΓ, u) =
∏

[C]

1

1− ulA(C)
,

where [C] runs through the equiv. classes of backtrackless primitive
tailless type one cycles in XΓ.

Theorem. ZE(XΓ, u) is a rational function, given by

ZE(XΓ, u) =
1

det(I − LEu)
.

Here LE is an operator on L2(G/E) given by the E-double coset
E(t2σ

2)2E.
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LE has a combinatorial interpretation: It is the “edge adjacency
matrix” on the set of type one edges Γ\G/E of XΓ such that the
neighbors of a type one edge v → v′ are the q2 type one edges
v′→ v′′ with v′′ not adjacent to v.

Note that the type one vertex cycles traveled in reverse direction
are the type two cycles, while the algebraic length is doubled.
Define the zeta function of XΓ to be

Z(XΓ, u) = ZE(XΓ, u)ZE(XΓ, u2) =
∏

[C]

1

1− ulA(C)
,

where [C] runs through the equiv. classes of backtrackless primitive
tailless type one and type two cycles in XΓ.
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19. The Main results for 2-dim’l complexes

Main Theorem (Kang-L.)

(1) Z(XΓ, u) is a rational function given by

Z(XΓ, u) =
(1− u3)χ(X)

det(I − A1u + qA2u2 − q3u3I) det(I + LBu)
,

where χ(X) = #V − #E + #C is the Euler characteristic of
XΓ.

(2) XΓ is a Ramanujan complex if and only if Z(XΓ, u) sat-
isfies RH.
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Remarks. (1) Ramanujan complexes are defined in terms of
the eigenvalues of A1 and A2, which are equivalent to the nontrivial
zeros of det(I−A1u+qA2u

2−q3u3I) having absolute value q−1.
In this case, Kang-Li-Wang showed that the nontrivial zeros of
det(I + LBu) have absolute value q−1/2.

(2) The zeta identity can be reformulated in terms of operators:

(1− u3)χ(X)

det(I − A1u + qA2u2 − q3u3I)
=

det(I + LBu)

det(I − LEu) det(I − LEu2)
,

compared with the identity for graphs:

(1− u2)χ(X)

det(I − Au + qu2I)
=

1

det(I − Aeu)
.

34


