PROPERTY τ

\mathbf{AND}

HYPERBOLIC 3-MANIFOLDS

Alan W. Reid

Property τ

Let Γ be a group, S a finite symmetric set of generators of Γ .

Let $\mathcal{L} = \{N_i\}$ be a family of finite index (normal) subgroups of Γ .

Say Γ has **Property** τ with respect to \mathcal{L} if the quotient Cayley graphs $X(\Gamma/N_i, S)$ form a family of expanders.

Say Γ has **Property** τ if \mathcal{L} is the family of all normal subgroups.

"Towers with τ "

1. If Γ has Property T then Γ has Property τ .

e.g. $SL(n, \mathbf{Z}), n \ge 3$.

2. Congruence arithmetic manifolds

Theorem:(Clozel) Suppose Γ is an arithmetic subgroup of a semisimple Lie group and \mathcal{L} is the family of congruence subgroups of Γ , then Γ has Property τ with respect to \mathcal{L} .

e.g. The classical setting:

The congruence subgroups $\Gamma(n) < \text{PSL}(2, \mathbb{Z})$ have $\lambda_1(\mathbb{H}^2/\Gamma(n)) \geq \frac{3}{16}$ (Selberg).

Hyperbolic Manifolds

Let \mathbf{H}^n denote hyperbolic n-space.

The full group of isometries (resp. orientation-preserving isometries) is $O_0(n, 1)$ (resp. $SO_0(n, 1)$).

In low dimensions (n = 2, 3):

 $SO_0(n, 1) \cong PSL(2, \mathbf{R}), PSL(2, \mathbf{C})$ respectively.

Conjecture (Lubotzky-Sarnak): Let $\Gamma < O_0(n, 1)$ be a lattice. Then Γ does not have Property τ .

Remark: If Γ is torsion-free, using the dictionary between the discrete side (ie the Cayley graphs of quotients) and hyperbolic geometry of the covers, we need to find a tower of regular covers $\{M_i\}$ with $h(M_i) \to 0$. How do you find such a tower.

Observation: If Γ contains a finite index subgroup Γ_0 such that $\Gamma_0 \to \mathbf{Z}$ (surjecting) then Γ does not have Property τ .

For hyperbolic manifolds in dimensions different from 3 and 7 we have using work Li-Millson, Lubotzky. **Theorem:** If $n \neq 3, 7$ and Γ is an "arithmetic" subgroup of $O_0(n, 1)$ then Γ does not have Property τ .

Remark: Although we have seen they do have towers with τ from congruence subgroups.

Property τ

and the topology of hyperbolic 3-manifolds

One of the basic tools in 3-manifold topology is to study maps

$$f: S \to M$$

where S is a closed orientable surface and M a compact 3-manifold.

Classical example: Heegaard splitting.

Let M be a closed orientable 3-manifold, then $M = U \cup_S V$ where

The minimal genus of such a splitting surface is called the **Heegaard genus of M**.

At the other extreme from a Heegaard surface is an **incompressible surface**.

In this case, S a closed orientable surface of genus at least 1, and $f_*: \pi_1(S) \to \pi_1(M)$ is injective.

Remark: The map f need not be an embedding.

A closed orientable hyperbolic 3-manifold M is called **Haken** if there is an embedded incompressible surface (hyperbolicity forces the surface to have genus ≥ 2). Post Perelman, the fundamental conjectures about the topology of (hyperbolic) 3-manifolds are: Let M be a closed orientable hyperbolic 3-manifold. Then:

1. M is virtually Haken.

2. M has a finite a finite sheeted cover N for which b₁(N) > 0 (i.e. N has positive first Betti number).
Strong version of 2. M has a finite sheeted cover

N that fibers over the circle.

Improved versions of **2**:

3. sup{ $b_1(X) : X \to M$ a finite sheeted cover} = ∞ .

4. *M* has a finite a finite sheeted N for which $\pi_1(N)$ surjects a non-abelian free group (say $\pi_1(M)$ is large).

Comments on these conjectures and not τ

1. Note that a positive solution to 2, 3 or 4 would imply that the fundamental groups of hyperbolic 3manifolds do not have Property τ

i.e. the Lubotzky-Sarnak Conjecture holds!

Remark: If M is not hyperbolic and $\pi_1(M)$ is infinite then (assuming geometrization), $\pi_1(M)$ does not have Property τ .

2. In the converse direction we have **Theorem:**(Lackenby-Long-Reid)Suppose that for every compact orientable 3-manifold M with infinite fundamental group, $\pi_1(M)$ fails to have Property τ . Then any arithmetic hyperbolic 3-manifold has large fundamental group. **3.** LERF and Property τ .

Suppose M is virtually Haken, then $\pi_1(M)$ contains a surface subgroup.

4. Does $\pi_1(M)$ contain a surface subgroup? If it does, you get a surface and to prove virtually Haken you need to embed a surface in finite cover.

How do you do that?

Definiton: G a f.g. group. Say G is LERF if the following holds for every f.g. subgroup H of G. Given any $g \in G \setminus H$, there is a finite index subgroup N of G such that H < N but $g \notin N$.

i.e. H is closed in the profinite topology on G.

LERF + surface group implies a positive answer to Lubotzky-Sarnak conjecture (in fact implies large).

Question: Does LERF imply not τ ?

Heegaard splittings and Property τ

Let $M = \mathbf{H}^3/\Gamma$ and $\mathcal{L} = \{M_i = \mathbf{H}^3/\Gamma_i\}$ a family of finite sheeted covers of M $(d_i = [\Gamma : \Gamma_i])$.

If M has Heegaard genus g then a minimal genus splitting of M lifts to determine a splitting of M_i of genus $(d_i(g-1) + 1$ by Riemann-Hurwitz).

This is almost never a minimal genus splitting!

The study of how Heegaard splittings behave in towers of finite sheeted covers has connections to:

The virtual Haken question raised earlier (Casson-Gordon).

The question of "rank of $\pi_1(M)$ versus Heegaard genus of M".

Work of Lackenby connects Property τ to the behavior of Heegaard genus in towers. Define the **Infimal Heegaard Gradient** of M with respect to \mathcal{L} is:

$$\inf_{i} \frac{\chi_{-}^{h}(M_{i})}{[\pi_{1}(M):\pi_{1}(M_{i})]},$$

where

 $\chi^h_-(M_i)$ denotes the minimal value for the negative of the Euler characteristic of a Heegaard surface in M_i .

The previous remark says that $\chi^h_-(M_i) \leq d_i \chi^h_-(M)$. In fact, some 3-manifold topology implies that Infimal Heegaard Gradient of M with respect to \mathcal{L} is strictly less than $\chi^h_-(M)$. **Example:** If M is fibered then the infimal Heegaard gradient of M with respect to the tower of finite cyclic covers dual to the fiber is zero.

Theorem (Lackenby): Let $M = \mathbf{H}^3/\Gamma$ be a closed orientable hyperbolic 3-manifold and

$$\mathcal{L} = \{ M_i = \mathbf{H}^3 / \Gamma_i \}$$

a family such that Γ has Property τ with respect to \mathcal{L} .

Then the infimal Heegaard gradient of M with respect to \mathcal{L} is positive.

Corollary: If M is arithmetic then M has positive infimal Heegaard gradient with respect to its family of congruence covers.

From Additive Combinatorics to Heegaard Splittings

Want to extend the previous corollary to general hyperbolic 3-manifolds.

Theorem 1 (Long-Lubotzky-Reid): Let Γ be a f.g. non-elementary Kleinian group. Then Γ has a co-final family of finite index normal subgroups $\mathcal{L} = \{N_i\}$ with respect to which Γ has Property τ .

Corollary: Let M be a closed hyperbolic 3-manifold. Then M has a co-final family of finite sheeted covers for which the infimal Heegaard gradient is positive. Theorem 1 follows from:

Theorem 2: Let k be a number field and let Γ be a f.g. subgroup of SL(2, k) which is not virtually soluble.

Then Γ has a co-final family of finite index normal subgroups $\mathcal{L} = \{N_i\}$ with respect to which Γ has Property τ .

Remark: This can be viewed as providing a first step towards a generalization of Clozel's result ("Property τ for congruence arithmetic lattices in all semisimple Lie groups") to non-arithmetic lattices. Proof of Theorem 2 uses the following results:

Proposition A: Let Γ be a group, and $\mathcal{L} = \{N_i\}$ a family of finite index normal subgroups of Γ . Suppose that $H < \Gamma$ (not necessarily of finite index), and assume that H surjects onto the finite quotients Γ/N_i for all but a finite number of i. Then if H has Property τ with respect to the family

 $\{H \cap N_i\}, \Gamma$ has Property τ with respect to \mathcal{L} .

Theorem(Bourgain-Gamburd): Suppose that for each p, S_p is some symmetric generating set for SL(2, p)of fixed size independent of p, such that the girth of the Cayley graph $X(SL(2, p), S_p)$ at least $C\log(p)$ (where C is independent of p). Then $X(SL(2, p), S_p)$ form a family of expanders.

Girth: The girth of a finite graph X is the length of the shortest non-trivial closed path in X.

Lemma(Extended Margulis): There is a constant C = C(a, b) so that the girth of the Cayley graph of SL(2, p) with respect to the generating set

$$\{\pi_{\mathcal{P}}(a^{\pm 1}), \pi_{\mathcal{P}}(b^{\pm 1})\}$$

is at least $C \log(p)$.

From Co-final to Nested

Say that $\{\Gamma_i\}$ is a nested sequence of normal subgroups of Γ if $\{\Gamma_i\}$ is co-final and:

 $\Gamma > \Gamma_1 > \Gamma_2 > \ldots \cap \Gamma_n > \ldots$

The sequences constructed in the proof of Theorem 2 (using Bourgain-Gamburd) are not nested. Recent work of Bourgain-Gamburd-Sarnak extends some of Bourgain-Gamburd to products of primes, but this is still not enough for us.

Why care? Ideas of Abert-Nikolov have provided impetus for constructing **nested families with Property** τ in relation to the rank vs Heegaard genus problem.

Final Comments

It seems reasonable to expect the following conjecture to hold.

Conjecture: Let Γ be a f.g. subgroup of $GL(n, \mathbb{C})$ whose Zariski Closure is semi-simple. Then Γ has a co-final (nested) family $\mathcal{L} = \{N_i\}$ for which Γ has Property τ with respect to \mathcal{L} . This Conjecture would provide a far reaching generalization of Clozel's work mentioned earlier.