Moore's Bound and Ramanujan Complexes

Roy Meshulam
Technion – Israel Institute of Technology

Joint work with A. Lubotzky

In Memory of Beth Samuels
"Ramanujan Complexes and their Applications"
IPAM, February 2008

Moore's Bound for Graphs

G=(V,E) a graph, |V|=n.

Minimal degree $\delta(G) = k \geq 3$.

 $g(G) = Girth ext{ of } G = minimal length of a cycle in } G.$

Moore's Bound:

$$(k-1)^r < |B(r)| \le n \text{ for } r = \lfloor g(G)/2 \rfloor$$

$$\Rightarrow g(G) \leq 2\log_{k-1}n + 1$$

The Lubotzky-Phillips-Sarnak Construction:

For a fixed prime p there exists a sequence of (p+1)-regular (Ramanujan) graphs $G_i=(V_i,E_i)$ with $|V_i|\to\infty$ such that $g(G_i)\geq \frac{4}{3}\log_p|V_i|-O(1)$.

Problem: What is the higher dimensional extension?

A Reformulation

 $r_{\nu}(G) = \text{maximal } r \text{ such that the ball } B_{\nu}(r) = \{u : d(u, v) \le r\} \text{ is acyclic.}$

Acyclicity Radius:

$$r(G) = \min_{\nu} r_{\nu}(G) = \lfloor \frac{g(G)}{2} \rfloor - 1.$$

Moore's Bound: $\delta(G) = k \ge 3 \Rightarrow r(G) \le \lfloor \log_{k-1} |V| \rfloor$.

LPS Construction: For a fixed prime p there exists a sequence of (p+1)-regular (Ramanujan) graphs $G_i=(V_i,E_i)$ with $|V_i|\to\infty$ such that $r(G_i)\geq \frac{2}{3}\log_p|V_i|-O(1)$.

Acyclicity Radius of a Complex

X a d-dimensional complex on the vertex set V. $X(i) = \{\sigma \in X : \dim \sigma = i\}$, $f_i(X) = |X(i)|$. Degree of $\sigma \in X(d-1) = \deg(\sigma) = |\{\tau \in X(d) : \sigma \subset \tau\}|$. $\delta(X) = \min\{\deg(\sigma) : \sigma \in X(d-1)\}$.

 $B_{\nu}(r)$ the ball of radius r around ν .

Acyclicity Radius:

$$r(X) = \min_{v \in V} \max\{r : H_d(B_v(r)) = 0\}.$$

Higher Dimensional Extensions [LM]

A d-dimensional Moore bound

X a d-dimensional complex with $\delta(X) = k \ge d + 2$.

Then:

$$r(X) \leq \lfloor \log_{k-d} f_{d-1}(X) \rfloor$$
.

Ramanujan Complexes with high acyclicity

For $d \geq 1$ and q a prime power, there exists a sequence of d-dimensional (q+1)-regular complexes X_i on vertex sets V_i with $|V_i| \to \infty$, such that

$$r(X_i) \ge c(d) \cdot \log_a |V_i| - O(1)$$
.

The Upper Bound

Face Numbers and Homology

Fix $v \in V$ and let $B(t) = B_v(t)$.

If t < m = r(X) then $H_d(B(t)) = 0$.

Therefore:

$$\beta(t) = f_d(B(t)) \le f_{d-1}(B(t)) = \alpha(t) .$$

A Double Count

$$\gamma(t) = \text{number of pairs}$$

$$(\sigma,\tau)\in B(t)(d-1)\times X(d)$$

such that $\sigma \subset \tau$

The Upper Bound (Cont.)

Lower Bound on $\gamma(t)$:

$$\gamma(t) = \sum \{ \deg(\sigma) : \sigma \in B(t) \cap X(d-1) \} \ge k\alpha(t)$$
.

Upper Bound on $\gamma(t)$:

$$\gamma(t) \le (d+1)\beta(t) + (\beta(t+1) - \beta(t)) =$$

$$d\beta(t) + \beta(t+1) \le d\alpha(t) + \alpha(t+1).$$

Hence:

$$(k-d)\alpha(t) \le \alpha(t+1)$$
$$(k-d)^m \le \alpha(m) \le f_{d-1}(X) .$$

Affine Buildings of Type \tilde{A}_{d-1}

Lattices

```
\mathbb{K} local field with valuation \nu
\pi \in \mathbb{K} uniformiser: \nu(\pi) = 1
\mathcal{O} the valuation ring, \mathcal{O}/\pi\mathcal{O} = \mathbb{F}_q the residue field
A Lattice is \mathcal{O}-module L \subset \mathbb{K}^d of rank d.
L_1 \sim L_2 if L_1 = \lambda L_2 for some \lambda \in \mathbb{K}^*.
[L] = equivalence class of L.
The Building \mathcal{B} = \tilde{A}_{d-1}(\mathbb{K})
Vertices: \mathcal{B}^0 = \{[L] : L \text{ lattice in } \mathbb{K}^d\}
Simplices: \{[L_0], \ldots, [L_p]\} such that
```

$$\pi L_p \subset L_0 \subset L_1 \subset \cdots \subset L_p$$

Properties of $\mathcal{B} = \tilde{A}_{d-1}(\mathbb{K})$

Topology of \mathcal{B}

 \mathcal{B} is a contractible (d-1)-dimensional flag complex $\operatorname{link}([L])\cong A_{d-1}(\mathbb{F}_q)=$ order complex of subspaces of \mathbb{F}_q^d .

Type Function on \mathcal{B}^0

$$\tau([g\mathcal{O}^d]) = \nu(\det g)(\operatorname{mod}\ d).$$

Color Classes: $V_i = \{[L] : \tau([L]) = i\}.$

 \mathcal{B} is *d*-partite on V_0, \ldots, V_{d-1} .

Metric on \mathcal{B}

 $dist(\cdot, \cdot) = graph distance on the 1-skeleton of <math>\mathcal{B}$.

E.g. for a basis e_1, \ldots, e_d of \mathbb{K}^d

$$\mathsf{dist}([\oplus_{i=1}^d \mathcal{O} e_i], [\oplus_{i=1}^d \pi^{a_i} \mathcal{O} e_i]) = \max_i a_i - \min_i a_i \;.$$

The Cartwright-Steger Group Γ

Local Field: $\mathbb{K} = \mathbb{F}_q((x))$, Valuation Ring: $\mathcal{O} = \mathbb{F}_q[[x]]$.

The Group Γ

 $\Gamma < PGL_d(\mathbb{K})$ is generated by elements $\{g_u : u \in \mathbb{F}_{q^d}^*\}$.

- ightharpoonup Γ acts simply-transitively on \mathcal{B}^0 .
- ▶ For all $g \in \Gamma$

$$\operatorname{dist}([\mathcal{O}^d], g[\mathcal{O}^d]) \geq \frac{1}{d-1} \min\{t : g = g_{u_1} \cdots g_{u_t}\}$$
.

Properties of the Generators

Each g_u is the image of an $f_u \in GL_d(\mathbb{F}_q[x])$ such that:

- ▶ The entries of each f_u are polynomials of degree $\leq d$.
- ▶ $det(f_u) = D(x)$ does not depend on u.

Finite Quotients of $A_{d-1}(\mathbb{K})$

```
Constructions of Cartwright, Solé and Zuk
and Lubotzky, Samuels and Vishne:
Let p(x) \in \mathbb{F}_q[x] be irreducible, (p(x), D(x)) = 1.
I = (p), R = \mathbb{F}_q[x]/I.
h_{\mu} = \text{image of } f_{\mu} \in GL_d(\mathbb{F}_q[x]) \text{ in } PGL_d(R).
The map f_u \to h_u extends to a homomorphism \Gamma \to PGL_d(R).
\Gamma(I) = \ker[\Gamma \to PGL_d(R)].
The Quotient Complex \mathcal{B}_{I} = \Gamma(I) \setminus \mathcal{B}:
Vertices: \mathcal{B}_{r}^{0} = \{\Gamma(I)[L] : [L] \in \mathcal{B}^{0}\}.
Simplices: \{\Gamma(I)[L_0], \ldots, \Gamma(I)[L_k]\}
such that \{g_0[L_0], \ldots, g_k[L_k]\} \in \mathcal{B}
for some g_0, \ldots, g_k \in \Gamma(I).
```

Injectivity Radius of $\mathcal{B} o \mathcal{B}_{\mathrm{I}}$

Claim:

$$\ell_{\mathrm{I}} = \min\{ \mathrm{dist}([\mathcal{O}^d], g[\mathcal{O}^d]) : 1
eq g \in \Gamma(\mathrm{I}) \} \ge$$
 $c'(d) \log_q |\mathcal{B}_{\mathrm{I}}^0| - O(1)$.

Proof:

Let t be minimal such that $g = g_{u_1} \cdots g_{u_t}$.

$$C = (c_{ij}) = f_{u_1} \cdots f_{u_t} \Rightarrow \deg(c_{ij}) \leq td.$$

$$g \in \Gamma(I) \Rightarrow C = r(x)I_{d \times d} + p(x)B \Rightarrow td \ge \deg(p).$$

Therefore

$$\operatorname{dist}([\mathcal{O}^d], g[\mathcal{O}^d]) \geq \frac{t}{d-1} \geq$$

$$\frac{\deg(p)}{d(d-1)} \ge c'(d)\log_q|\mathcal{B}_{\mathrm{I}}^0| - O(1) .$$

Complexes with Large Acyclicity Radius

Construction of X_i

Choose irreducible polynomials $p_i(x) \in \mathbb{F}_q[x]$ such that $(p_i, D(x)) = 1$ and deg $p_i \to \infty$. Let $I_i = (p_i)$ and let $X_i = \mathcal{B}_{I_i}$.

Acyclicity Radius of X_i

$$\dim X_i = d - 1, \ \delta(X_i) = \delta(\mathcal{B}) = q + 1.$$

 $\mathcal{B} \to X_i$ an isomorphism on balls of radius at most $\frac{\ell_{\mathrm{I}_i}}{2} - 1$ in \mathcal{B} . Since \mathcal{B} is contractible, it follows that

$$r_{\nu}(X_i) \geq \frac{\ell_{\mathrm{I}_i}}{2} - 1 \geq c(d) \log_q |X_i^0| - O(1)$$
.