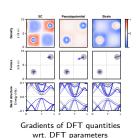
Algorithmic differentiation in plane-wave DFT

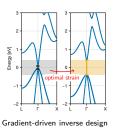
Michael F. Herbst

Mathematics for Materials Modelling (matmat.org), EPFL

09 October 2025

https://michael-herbst.com/talks/2025.10.09_IPAM_DFT_Gradients.pdf





Acknowledgements

MXt Mat group

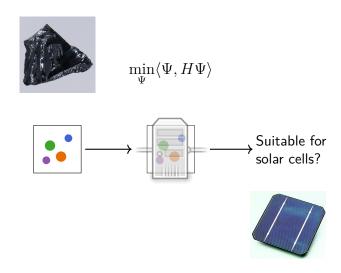
Niklas Schmitz

Bruno Ploumhans

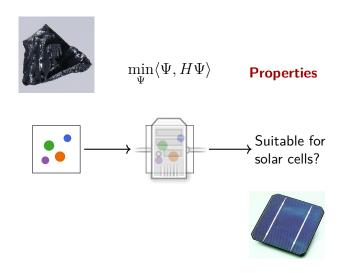
Response algorithms

- Eric Cancès (École des Ponts)
- Gaspard Kemlin (Université de Picardie)
- Antoine Levitt (Université Paris-Saclay)
- Benjamin Stamm (Stuttgart)
- Bonan Sun (EPFL & MPI Magdeburg)

Ab initio materials modelling



Ab initio materials modelling



Density-functional theory: The textbook picture

• DFT approximation: Effective single-particle model

$$\begin{cases} \forall i \in 1 \dots N: \ \left(-\frac{1}{2}\Delta + V\left(\rho_{\Phi}\right)\right) \textcolor{red}{\psi_{i}} = \varepsilon_{i} \textcolor{red}{\psi_{i}}, \\ V(\rho) = V_{\mathsf{ext}} + V_{\mathsf{Hxc}}(\rho), \quad \text{where } V_{\mathsf{Hxc}}(\rho) = v_{C}\rho + V_{\mathsf{XC}}(\rho) \\ \rho_{\Phi} = \sum_{i=1}^{N} f\left(\frac{\varepsilon_{i} - \varepsilon_{F}}{T}\right) |\textcolor{red}{\psi_{i}}|^{2}, \end{cases}$$

Self-consistent field procedure: Fixed-point problem

$$F(V_{\text{ext}} + V_{\text{Hxc}}(\rho_{\text{SCF}})) = \rho_{\text{SCF}}$$

ullet F(V) is the potential-to-density map (i.e. diagonalisation)

$$F(V) = \sum_{i=1}^{\infty} f\left(\frac{\varepsilon_i - \varepsilon_F}{T}\right) \left|\psi_i\right|^2 \quad \text{where} \quad \left(-\frac{1}{2}\Delta + V\right) \psi_i = \varepsilon_i \psi_i$$

- ullet $arepsilon_F$ chosen such that $\int F(V) = N$ (number of electrons)
- nuclear attraction V_{nuc} , exchange-correlation V_{XC} , Hartree potential $-\Delta \left(v_C \rho\right) = 4\pi \rho$, ψ_i orthogonal, f: Occupation function between 0 and 2

Materials properties: Simulation \leftrightarrow experiment

- DFT properties: Response of system to external changes:
 - Connection Theory ⇔ Experiment
 - Modelling: Potential $V(\theta, \rho)$ depends on parameters θ (e.g. atomic positions, el. field)
- SCF procedure yields fixed-point density ρ_{SCF}

$$0 = F(V(\theta, \rho_{\mathsf{SCF}})) - \rho_{\mathsf{SCF}}$$

- \Rightarrow Defines implicit function $\rho_{SCF}(\theta)$
 - Properties are derivatives:
 - Forces (energy wrt. position), dipole moment (energy wrt. el. field), elasticity (energy cross-response to lattice deformation), phonons, electronic spectra, . . .
 - But what about the following derivatives? (details in this talk)
 - θ is parameter of DFT model: ... uncertainty quantification
 - θ is design parameter (e.g. strain): ... inverse materials design
 - $m{\bullet}$ is parameter of discretisation: ... a posteriori error estimates

What about inverse design?

- θ: Design parameters (e.g. strain, dopant concentration)
- SCF procedure yields fixed-point density ρ_{SCF}

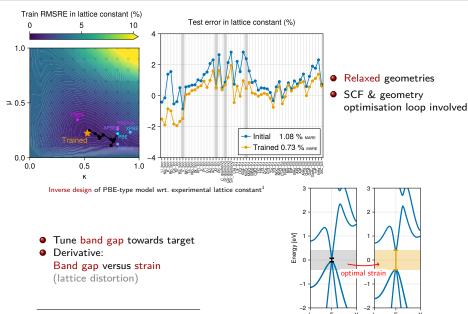
$$0 = \rho \Big(V(\theta, \rho_{\mathsf{SCF}}) \Big) - \rho_{\mathsf{SCF}}$$

- ullet From these compute quantities of interest: $Q(\rho)$
- **Question:** How to chose θ to reach target quantity ?
- Answer: Follow gradient

$$\frac{dQ}{d\theta} = \frac{\partial Q}{\partial \theta} + \frac{\partial Q}{\partial \rho} \frac{\partial \rho}{\partial \theta}$$

 \Rightarrow Need derivative of implicit function $\rho(\theta)$

Inverse design showcases using AD-DFPT¹



¹N. F. Schmitz, B. Ploumhans, MFH. Algorithmic differentiation for plane-wave DFT. arXiv:2509.07785

What about DFT uncertainty propagation?

- θ : DFT model parameters (e.g. XC, pseudopotential)
- ullet SCF procedure yields fixed-point density $ho_{
 m SCF}$

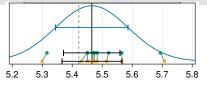
$$0 = \rho \Big(V(\theta, \rho_{\mathsf{SCF}}) \Big) - \rho_{\mathsf{SCF}}$$

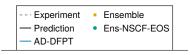
- ullet From these compute quantities of interest: Q(
 ho)
- Question: Knowing a distribution of θ , how to get distribution of Q ?
- Approx. answer: Linear propagation, e.g. if $\theta \sim N(0, \Sigma)$:

$$Q \sim N\left[Q(\rho_{\text{SCF}}), J\Sigma J^T\right] \quad \text{with} \quad J = \frac{dQ}{d\theta} = \frac{\partial Q}{\partial \theta} + \frac{\partial Q}{\partial \rho} \frac{\partial \rho}{\partial \theta}$$

 \Rightarrow Need again derivative of implicit function $\rho(\theta)$

What about DFT uncertainty propagation?





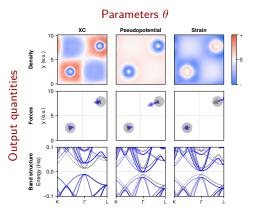
Error propagation DFT model (BEEF) \rightarrow geometry¹

- ullet BEEF model provides (posterior) distribution for heta
- Propagation to optimal lattice constant:

$$a^*(\theta) = \underset{a}{\operatorname{arg\,min}} \left(\underset{\rho}{\min} \ \mathcal{E}(\theta, a, \rho) \right)$$

- Comparison of approaches:
 - Blue: DFPT-AD and linearisation¹
 - Orange: MC / Ensemble: 10 times expensive optimisation
 - Green: Equation of state fit (approach specific to this property)
- \Rightarrow Ideally arbitrary Q should be possible, UQ should be fast
- ⇒ Consistent UQ across DFT quantities

Combinatorial explosion problem



Sensitivity of key DFT output quantities computed using AD in \P DFTK¹

- ullet We should support all pairs Q vs. heta
- Core problem is computing $\rho'(\theta)$

¹N. F. Schmitz, B. Ploumhans, MFH. Algorithmic differentiation for plane-wave DFT. arXiv:2509.07785

Ingredient 1: Density-functional perturbation theory

$$F(V_{\rm ext} + V_{\rm Hxc}(\rho_{\rm SCF})) = \rho_{\rm SCF}$$

ullet δV : Perturbation to $V_{\rm ext}$, by chain rule

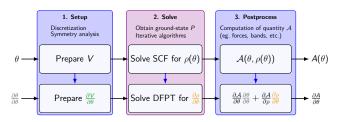
$$\begin{split} \delta \rho &= F'(V_{\rm ext} + V_{\rm Hxc}(\rho_{\rm SCF})) \cdot (\delta V + K_* \delta \rho) \\ \Leftrightarrow & \delta \rho = (1 - \chi_0 K)^{-1} \, \chi_0 \delta V \end{split}$$

where
$$K_* = V'_{\text{Hxc}}(\rho_{\text{SCF}})$$
, $\chi_0 = F'(V_{\text{ext}} + V_{\text{Hxc}}(\rho_{\text{SCF}}))$

- Dyson equation: Solved by iterative methods
- ⇒ Density-functional perturbation theory (implicit differ.)

$$\frac{\partial \rho_{\mathsf{SCF}}}{\partial \theta} = [1 - \chi_0 K]^{-1} \chi_0 \frac{\partial V}{\partial \theta}$$

Ingredient 2: Algorithmic differentiation (AD)

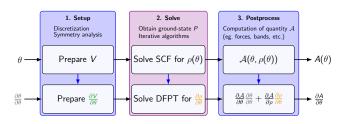


- Algorithmic differentiation (AD)¹
 - Generic framework for derivatives: Request gradient, AD delivers
 - Chain rule: Automatically compose gradients out of primitives
 - Primitives: Floating-point operations, diagonalisation, SCF
 - Custom rule: For SCF problem gradient is DFPT

$$\frac{\partial \rho_{\text{SCF}}}{\partial \theta} = \left[1 - \chi_0 K\right]^{-1} \chi_0 \frac{\partial V}{\partial \theta}$$

¹Remark: I only discuss **forward-mode** AD here, but I have bonus slides explaining **adjoint-mode** AD, which scales better for scalar outputs, ask if interested.

Tackling combinatorial explosion: AD+DFPT



- ⇒ Appropriate DFPT problem automatically set up and solved
 - Each solver improvement available to all tasks!
 - Separation of concern:
 - Mathematicians can work on smart algorithms for DFPT
 - Custom DFT gradients by simulation practitioners (DFT non-experts)
 - ⇒ Key ingredient to composable DFT codes
 - **Hypothesis:** People compose where software composes

Algorithmic differentiation in DFT

- Multiple recent efforts to bring AD to practical DFT
 - DeepKS¹, DQC², pyscf³, GradDFT⁴, . . .
 - Gaussian basis sets
 - Largely forks or disconnected code bases (Not all appear still maintained)
- Our approach: Density-functional toolkit (DFTK, https://dftk.org)
 - Plane-wave DFT (up to meta-GGA, UPF pseudos)⁵
 - 10 000 lines, GPU-enabled, differentiable DFT code
 - Differentiability not planned from the start

 $^{^1\}mathrm{Y}.$ Chen, L. Zhang, H. Wang, W. E. J. Chem. Theo. Comp. 17, 170 (2021)

²M. Kasim, S. Lehtola, S. Vinko. J. Chem. Phys. **156**, 084801 (2022).

³X. Zhang, G. Chan. J. Chem. Phys. **157**, 204801 (2022).

⁴M. Casares, J. Baker, M. Medvidović, et. al. J. Chem. Phys. 160, 062501 (2024).

⁵https://docs.dftk.org/features/

DEMO

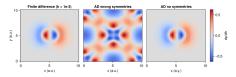
How AD works, AD-DFPT in action

 $\rightarrow \quad \texttt{https://michael-herbst.com/talks/2025.10.09_IPAM_DFT_Gradients_1_ad.html}$

 $\rightarrow \quad \texttt{https://michael-herbst.com/talks/2025.10.09_IPAM_DFT_Gradients_2_design.html}$

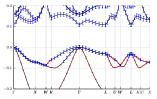
DFT gradients for everyone ... but where's the catch ?

- **AD** through **DFT** is harder than AD through a neural net:
 - Requires robust and efficient DFPT solver for arbitrary RHS (not always so easy . . . next slides)
 - The gradient you ask for is **not** always the gradient you want.

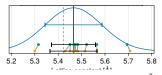


- Taking gradients makes functions less smooth ⇒ Numerical pathologies augment
- First-principle simulations: Non-differentiable intermediates
 - E.g. band structure crossings, Fermi level algos for insulators
 - But: Physical observables can still be differentiable
 - Even if not: Gradients can be useful (one sub/super-differential representative returned)

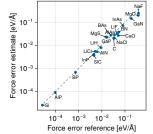
Larger thrust: Quantifying DFT simulation error



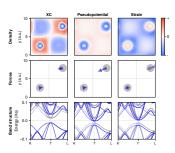
 ${\sf Band\ structure\ with\ guaranteed\ error\ bars}^1$



DFT lattice constant error distribution²



Plane-wave basis error estimates at 20Ha^{2,3}



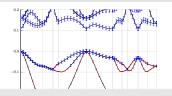
DFT quantity vs. parameter sensitivities²

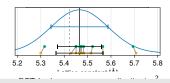
¹MFH, A. Levitt, E. Cancès. Faraday Discus. 223, 227 (2020).

²N. F. Schmitz, B. Ploumhans, MFH. *Algorithmic differentiation for plane-wave DFT*. arXiv:2509.07785

³E. Cancès, G. Dusson, G. Kemlin *et. al.* SIAM J. Sci. Comp., **44**, B1312 (2022).

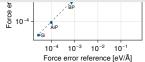
Larger thrust: Quantifying DFT simulation error

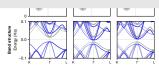




Towards inexact computation without harm:

- Error remains controllable
- Challenge: Turning mathematical analysis into practical tool
 - Needs performance tuning, heuristics, best practices, ...
- AD techniques are a crucial component





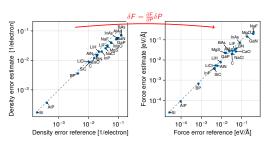
DFT quantity vs. parameter sensitivities²

¹MFH, A. Levitt, E. Cancès. Faraday Discus. 223, 227 (2020).

²N. F. Schmitz, B. Ploumhans, MFH. Algorithmic differentiation for plane-wave DFT. arXiv:2509.07785

³E. Cancès, G. Dusson, G. Kemlin et. al. SIAM J. Sci. Comp., 44, B1312 (2022).

Illustration: Estimating the plane-wave basis error¹



- Perturbation approach: Estimation of δP (Plane-wave error in density)²
 - ullet Approximate first-order change of density P as Ecut increased
 - Cost of estimate scales only with size of current computational basis
- \bullet Propagation to Qols: e.g. linear approximation $\delta F = \frac{\partial F}{\partial P} \delta P$
- \Rightarrow **OFTK** is major research tool^{3,4}

¹N. F. Schmitz, B. Ploumhans, MFH. Algorithmic differentiation for plane-wave DFT, arXiv:2509.07785

²E. Cancès, G. Dusson, G. Kemlin et. al. SIAM J. Sci. Comp., 44, B1312 (2022).

³MFH, A. Levitt, E. Cancès. Faraday Discus. 223, 227 (2020).

⁴E. Cancès, G. Kemlin, A. Levitt. J. Sci. Comput., 98, 25 (2024)

Density-functional toolkit¹ — https://dftk.org

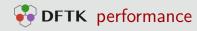
- julia code for cross-disciplinary research:
 - Allows restriction to relevant model problems,
 - and scale-up to application regime (1000 electrons)
 - Sizeable feature set in 10 000 lines of code¹
 - Close the gap: Maths ↔ high-throughput:
 AiiDA plugin
- Fully composable due to julia abstractions:
 - Algorithmic differentiation (AD)
 - HPC tools: MPI, Nvidia & AMD GPUs
- High-productivity framework & established community:
 - 50 contributors in 6 years (Maths, physics, CS, ...)
 - Instrumental in a dozen of research works
- Unique features¹:
 - Self-adapting algorithms
 - Algorithmic differentiation
 - Numerical error estimates (e.g. basis set error in forces)

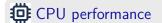
¹ https://docs.dftk.org/features

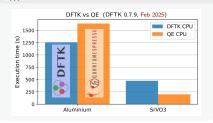
DEMO

Custom models in DFTK

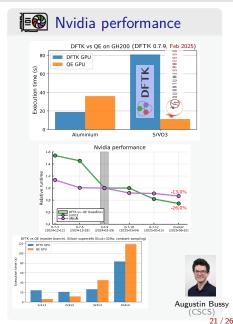
→ https://michael-herbst.com/talks/2025.10.09_IPAM_DFT_Gradients_3_dftk.html



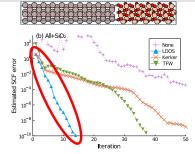




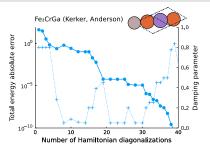
- Ported to Nvidia & AMD GPUs
 - Performance without bloat: Net added just $\simeq 400$ lines
 - julia HPC ecosystem
- Topic properties of the properties
 - Speed within factor 2 throughout
 - Incremental perf improvements
- Only 10 000 lines of code
 - Accessible to math. research



Self-adapting black-box algorithms



- Preconditioning inhomogeneous systems (surfaces, clusters, ...)
- LDOS preconditioner¹:
 Parameter-free and self-adapting
- ca. 50% less iterations

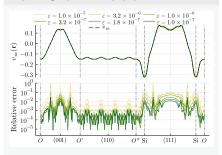


- Damping α adapted in each step (using tailored quadratic model)
- Avoids trial and error (but may have a small overhead)
- Safeguard with theoretical guarantees²
- ⇒ Maths / physics collaboration: Exchange of ideas between simplified & practical settings crucial

¹MFH, A. Levitt. J. Phys. Condens. Matter **33**, 085503 (2021).

²MFH, A. Levitt. J. Comput. Phys. **459**, 111127 (2022).

Other things you can do with **DFTK**



- Find exact v_{xc} from exact ρ
- Based on Moreau-Yosida regularised formulation of DFT
- Goal: error bounds & mathematical guarantees1

Close gap: Math ↔ high-throuhput

- Post plugin for AiDA workflow manager
- Above: Verification of DFTK versus QE
- Goal: Simplify automated testing of novel algorithms

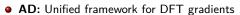
¹MFH, V. Bakkestuen, A. Laestadius. Phys. Rev. B 111, 205143 (2025).

Advertisement break: CECAM workshop

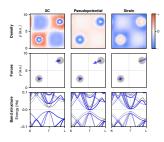
Topic: Uncertainty quantification in atomistic modelling

- 25 till 28 Nov 2025
- DFT, ML surrogates & MD quantities of interest
- Quantification & propagation of errors across the scales
- See https://www.cecam.org/workshop-details/1380

Summary: AD in plane-wave DFT & TTK



- Inverse model & material design¹
- DFT error estimation & propagation¹



- The code of the plane of the pl
 - Side effect of julia: Not a design choice
 - 10 000 lines, hackable & easy to extend
 - HPC support: MPI, Nvidia & AMD GPUs
 - Designed for cross-disciplinary research

¹N. F. Schmitz, B. Ploumhans, MFH. Algorithmic differentiation for plane-wave DFT. arXiv:2509.07785

Questions?

- Mat https://matmat.org
 - mfherbst
 - @ @herbst @social.epfl.ch
 - michael.herbst@epfl.ch
 - https://michael-herbst.com/talks/2025.10.09_IPAM_DFT_Gradients.pdf
 - N. F. Schmitz, B. Ploumhans, MFH. *Algorithmic differentiation for plane-wave DFT*. arXiv:2509.07785
- 😽 DFTK https://dftk.org

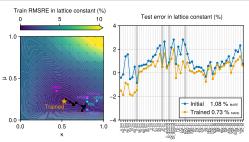
Contents

1 Details on inverse design examples

2 AD accuracy

Algorithmic differentiation

Details: XC optimisation



- Testing on Sol58LC dataset, Training on C = Si, Al, V, NaCl
- Optimise PBE exchange (2 free parameters θ) to experimental lattice constants

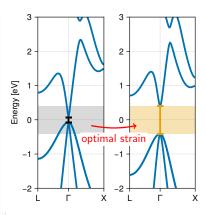
$$L_{\mathsf{xc}}(\theta) = \frac{1}{4} \sum_{C} \left(\frac{a^*(C, \theta) - a_i^{\mathsf{expt}}}{a_i^{\mathsf{expt}}} \right)^2, \quad a^*(C, \theta) = \operatorname*{arg\,min}_{a} \left(\min_{P} \ \mathcal{E}(C, \theta, a, P) \right)$$

- Practical challenges for computation of $\frac{\partial L_{xc}}{\partial \theta}$:
 - Nested iterative methods (eigensolver, SCF, lattice optimisation)
 - Unusual second-order derivatives, e.g.

$$\frac{\partial a^*}{\partial \theta} = -\left(\frac{\partial^2 E}{\partial a^2}\right)^{-1} \left(\frac{\partial^2 E}{\partial \theta \partial a}\right)$$

Details: Band gap tuning

```
using DFTK, PseudoPotentialData, AtomsIO
using ForwardDiff, DifferentiationInterface, Optim
system = load system("mp-2534-GaAs.cif")
pseudopotentials = PseudoFamilv("doio.nc.sr.pbe.v0 4 1.standard.upf")
model0 = model DFT(system: functionals=PBE(), pseudopotentials.
                   smearing=Smearing.Gaussian(), temperature=1e-3)
function strain bandgap(n)
   model = Model(model0; lattice=(1 + n) * model0.lattice)
    basis = PlaneWaveBasis(model: Ecut=42, kgrid=(8, 8, 8))
    scfres = self consistent field(basis: tol=1e-6)
    eigenvalues \Gamma = scfres.eigenvalues[1]
    ε vbm = maximum(eigenvalues [[eigenvalues [ .s scfres.εF])
    ε cbm = minimum(eigenvalues [[eigenvalues [ .> scfres.εF])
    ε cbm - ε vbm
\eta\theta = [\theta.\theta]
bandgap_target = 0.03 # Target band gap in [Ha]
bandgap loss(n) = (bandgap target - strain bandgap(n[1]))^2
res = Optim.optimize(bandgap loss, n0, BFGS(),
                     Optim.Options(: iterations=5, x abstol=1e-3):
                     autodiff=AutoForwardDiff())
println("Optimized design strain \eta = ", res.minimizer)
```



- This is the full implementation code
- Derivative computation implicitly requested by Optim.optimize

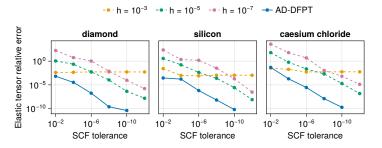
Contents

Details on inverse design examples

2 AD accuracy

Algorithmic differentiation

A word about accuracy: Elastic constants



- Accuracy superior to finite differences
- Implementation is literally 1 (Strain η)
 - Stress $\sigma(\eta) = \frac{1}{V(\eta)} \frac{\partial \mathcal{E}}{\partial \eta}$
 - Elastic constant $C(\eta) = \left. \frac{\partial \sigma}{\partial \eta} \right|_{\eta^*}$
- AD-DFPT provides ideal compromise between achieved accuracy and invested human time

¹N. F. Schmitz, B. Ploumhans, MFH. Algorithmic differentiation for plane-wave DFT. arXiv:2509.07785

Contents

1 Details on inverse design examples

2 AD accuracy

Algorithmic differentiation

How does algorithmic differentiation (AD) work?

```
function F(x)
    y1 = x[1] + x[2] # F1 = sum
    y2 = 2 * p # F2 = double
    return y2
end
```

- Goal: Compute derivative of this code
- Function $F: \mathbb{R}^2 \to \mathbb{R}$ with $F(x) = \mathsf{double}(\mathsf{sum}(x_1, x_2))$
- ullet Derivative at $ilde{x}$ is characterised by its Jacobian matrix

$$[J_F(\tilde{x})]_{ij} = \left(\frac{\partial F}{\partial x}\Big|_{x=\tilde{x}}\right)_{ij} = \left.\frac{\partial F_i}{\partial x_j}\right|_{x=\tilde{x}}$$

• Finite differences: Simple, one column at a time:

$$[J_F(\tilde{x})]_{:,j} = \frac{F(\tilde{x} + \alpha e_j) - F(\tilde{x})}{\alpha}$$

(with e_i unit vectors)

 \Rightarrow Inaccurate and slow $(\mathcal{O}(N))$ times primal cost

Chain rule to the rescue!

```
function F(x)
    y1 = x[1] + x[2] # F1 = sum
    y2 = 2 * p # F2 = double
    return y2
end
```

- $F(x) = \mathsf{double}(\mathsf{sum}(x_1, x_2))$
- "double" and "sum" are simple and frequent primitives
- → Key idea of AD:
 - ullet Compose the derivative of F from the Jacobians of primitives
 - Assumed to be known and already implemented
 - Use chain rule as glue, e.g. for a Jacobian element at \tilde{x} :

$$\frac{\partial F_i}{\partial x_j} = \frac{\partial \mathsf{double}(a)}{\partial a} \left(\frac{\partial \mathsf{sum}(c,d)}{\partial c} \frac{\partial x_1}{\partial x_j} + \frac{\partial \mathsf{sum}(c,d)}{\partial d} \frac{\partial x_2}{\partial x_j} \right)$$

- More compact: $e_i^T J_F e_j = e_i^T J_{\text{double}} J_{\text{sum}} e_j$
- Note: J_{double} is needed at $\text{sum}(\tilde{x}_1, \tilde{x}_2)$

Forward-mode algorithmic differentiation

```
function F(x)
    y1 = x[1] + x[2] # F1 = sum
    y2 = 2 * p # F2 = double
    return y2
end
```

$$F(x) = \mathsf{double}(\mathsf{sum}(x_1, x_2))$$

$$e_i^T J_F e_j = e_i^T J_{\mathsf{double}} J_{\mathsf{sum}} e_j$$

- Forward-diff: Evaluate in order with *primal F*:
 - **1** Set $y_0 = (x_1, x_2)$, $\dot{y}_0 = e_j$
 - 2 Compute $y_1 = \operatorname{sum}(y_0)$ and $\dot{y}_1 = J_{\operatorname{sum}}(y_0)\dot{y}_0$
 - **3** Compute $y_2 = \mathsf{double}(y_1)$ and $\dot{y}_2 = J_{\mathsf{double}}(y_1)\dot{y}_1$
- \Rightarrow Again one column of J_F at a time
 - Implementation: Numbers → dual numbers
 - Vectorisation & other tricks: Usually faster than finite diff.
 - ullet But: Still $\mathcal{O}(N)$ times primal cost

Optimal cost for differentiation (1)

```
function F(x)
    y1 = x[1] + x[2] # F1 = sum
    y2 = 2 * p # F2 = double
    return y2
end
```

$$F(x) = \mathsf{double}(\mathsf{sum}(x_1, x_2))$$

$$e_i^T J_F e_j = e_i^T J_{\mathsf{double}} J_{\mathsf{sum}} e_j$$

Proposition

If $f:\mathbb{R}^N\to\mathbb{R}$ is a differentiable function, computing $\nabla f=J_f$ is asymptotically not more expensive than f itself.

- ⇒ This is violated for finite diff and forward diff.
 - Let's try to be more clever:
 - ullet We could write $F(x)=b^TAx$ for appropriate (sparse) $A,\ b$
 - Equivalent formulation: $F(x) = (A^T b)^T x$
 - Differentiate that: $\nabla F = A^T b \Rightarrow$ costs the same as F.
 - To generalise this idea note that (for scalar functions)

$$F(x) = b^T I_{Dx} \perp \mathcal{O}(x^2)$$
 36/26

Optimal cost for differentiation (2)

```
function F(x)
    y1 = x[1] + x[2]  # F1 = sum
    y2 = 2 * p  # F2 = double
    return y2
end
```

$$F(x) = \mathsf{double}(\mathsf{sum}(x_1, x_2))$$

$$e_i^T J_F e_j = e_i^T J_{\mathsf{double}} J_{\mathsf{sum}} e_j$$

- Let's try to be more clever:
 - We could write $F(x) = b^T A x$ for appropriate (sparse) A, b
 - Equivalent formulation: $F(x) = (A^T b)^T x$
 - Differentiate that: $\nabla F = A^T b \implies$ costs the same as F.
- To generalise this idea note that (for scalar functions)

$$F(x) = b^T J_F x + \mathcal{O}(x^2) \qquad \text{with } b = e_1 = 1$$

⇒ Focus on computing adjoint of Jacobian:

$$e_i^T J_F e_j = \left(J_F^T e_i\right)^T e_j = \left(J_{\mathsf{sum}}^T J_{\mathsf{double}}^T e_i\right)^T e_j$$

Adjoint-mode algorithmic differentiation

$$\begin{split} F(x) &= \mathsf{double}(\mathsf{sum}(x_1, x_2)) \\ e_i^T J_F e_j &= \left(J_{\mathsf{sum}}^T J_{\mathsf{double}}^T e_i\right)^T e_j \end{split}$$

- Adjoint-mode AD: Derivative in reverse instruction order.
- Forward pass:
 - **9** Set $y_0 = (x_1, x_2)$
 - ② Compute $y_1 = sum(y_0)$ and store it
 - **3** Compute $y_2 = double(y_1)$ and store it
- Reverse pass:

 - 2 Compute $\bar{y}_1 = [J_{\text{double}}(y_1)]^T \bar{y}_2 \longleftarrow$
- Obtain $[J_F]_{i,:}$ as $\bar{y}_0^T \Longrightarrow$ One row at a time

Adjoint-mode algorithmic differentiation (2)

- Given $f: \mathbb{R}^N \to \mathbb{R}$ there is only one $e_i = 1$
- \Rightarrow Only one reverse pass computes full gradient ∇f
- $\Rightarrow \mathcal{O}(1)$ times primal cost
 - Many names:
 - Adjoint trick, back propagation, reverse-mode AD
 - Some difficulties / challenges:
 - Reverse control flow required!
 - (Hurts your heads sometimes)
 - Storage / memory costs
 - All mutation is bad . . .
 - One has to be a bit more clever for iterative algorithms . . .