Dendrite Formation in Batteries: Dead Lithium and Thermodiffusion

Jin Zhang and Peter W. Voorhees*

Northwestern University

*California Institute of Technology

Alexander F. Chadwick

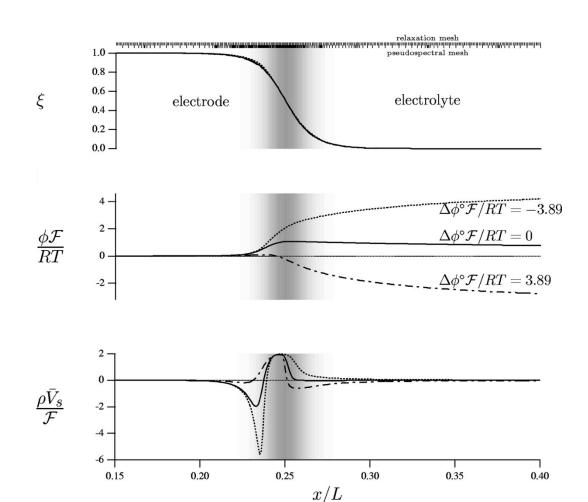
Naval Research Laboratory

Phase Field methods and length scales

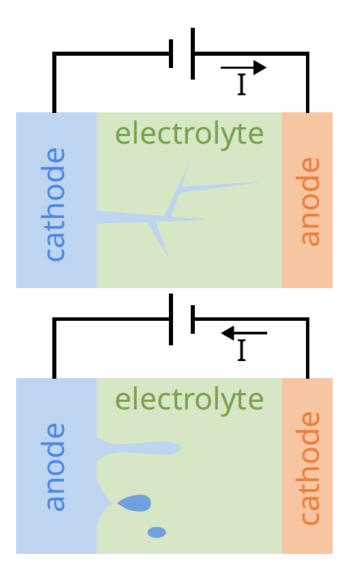
At the smallest length scale, explicit treatment of the electrolyte-electrode interface

Guyer, Jonathan E., William J. Boettinger, James A. Warren, and Geoffrey B. McFadden. "Phase field modeling of electrochemistry. I. Equilibrium." *Physical Review E* 69, no. 2 (2004): 021603.

- Explicit treatment of electrons, anions and electrolyte
- Reproduces Gouy-Chapman and Debye-Huckel theories
- The differential capacitance, surface charge agree with existing theories
- Similar approach for oxides: Sherman, Q. C., and P. W. Voorhees. "Phase-field model of oxidation: Equilibrium." *Physical Review E* 95, no. 3 (2017): 032801.



Li-metal batteries



Challenges of Li metal electrode

- Safety
- ► Short lifetime

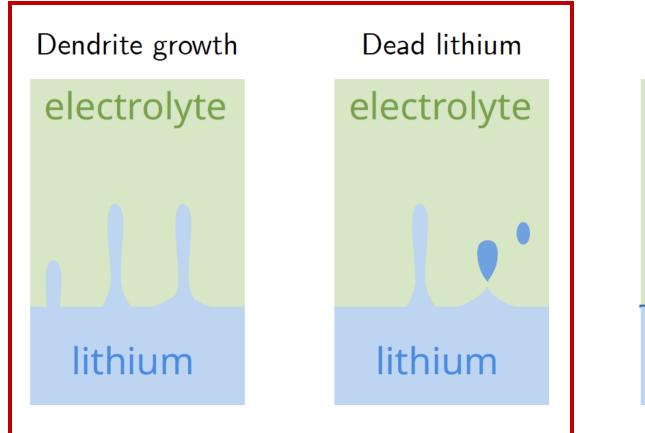
Main causes

- ▶ Dendrite formation
- Dead Li formation

Goal

- Model formation of dendrite and dead Li
- Understand degradation mechanism

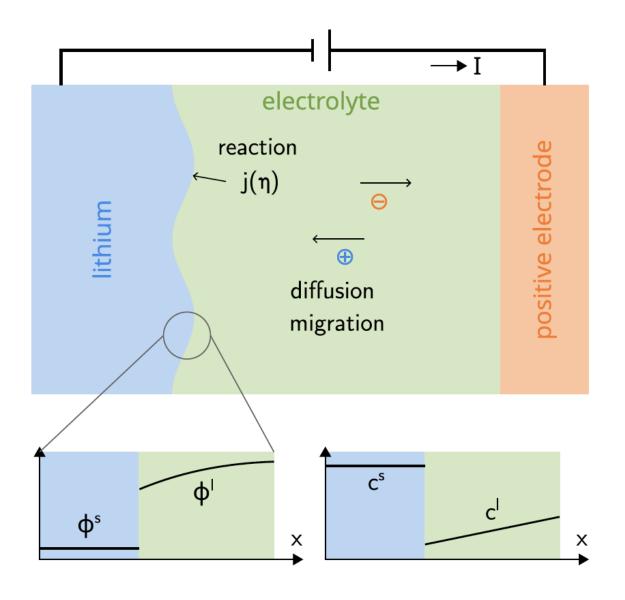
Degradation of Li-metal batteries



Side reactions electrolyte lithium

Evolving interface & topological changes ⇒ Phase field method

Battery system is complex



Physical Processes

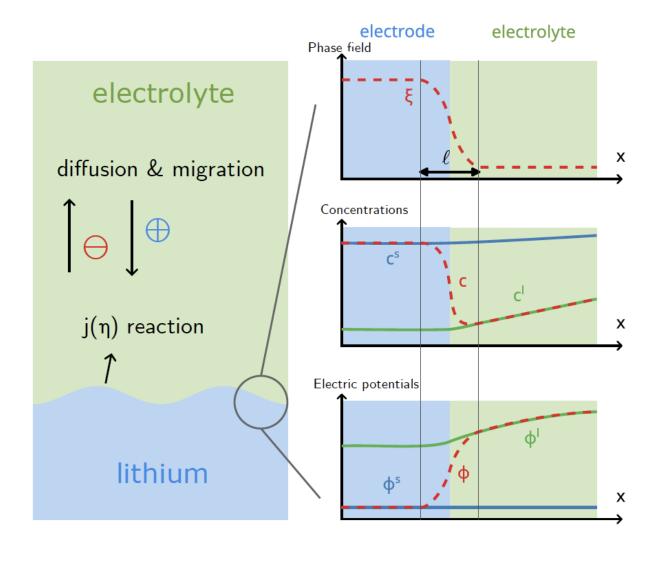
- ► Ion transport: diffusion & migration
- Interfacial reactions (nonlinear)
- Interface discontinuities

Goal

Develop a General Phase Field Model

- General applicability
- Multiphysics coupling
- General reaction kinetics
- General thermodynamics
- Quantitative predictions

Phase field model: State variables



Variables to describe the system state

- ξ phase field
- $ightharpoonup c_i$ concentration
- φ electric potential
- ightharpoonup other relevant physical fields: \vec{u}, T, \cdots

Helmholtz free energy

$$\mathcal{F}(\xi, c_i, \phi^s, \phi^l, \cdots)$$

Phase Field method

$$f^{\alpha} = \sum_{\substack{i \\ \text{chemical}}} \mu_{i} c_{i} + \rho \phi - \frac{1}{2} \vec{D} \cdot \vec{E} - \vec{j} \cdot \vec{A} + \frac{1}{2} \vec{H} \cdot \vec{B} + \frac{1}{2} \sigma : \varepsilon + \cdots$$

Total energy of the system (ξ is the phase field variable)

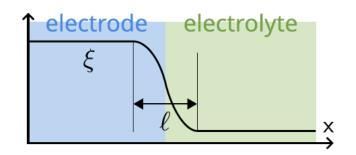
$$F = \int_{V} \frac{1}{2} \kappa |\vec{\nabla} \xi|^2 + mg(\xi) + \sum_{\substack{\alpha \text{ bulk energy}}} p_{\alpha}(\xi) f^{\alpha} \ dV$$

Second law of thermodynamics (isothermal)

$$\frac{dF}{dt} \leq 0$$
 this gives constitutive laws

RE García et al. Acta Mater (2004)

Phase field model: Derive evolution equations



Total energy of the system

$$\mathcal{F}(\xi,c_i,\varphi^s,\varphi^l) = \int \frac{1}{2} \kappa |\vec{\nabla}\xi|^2 + mg(\xi) \\ \frac{1}{2} \kappa$$

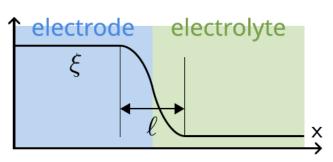
Second law of thermodynamics driving force, flux

$$\frac{\text{d}\mathcal{F}}{\text{d}t} = \int \frac{\delta\mathcal{F}}{\delta\xi} \frac{\partial\xi}{\partialt} + \sum_{i} \vec{\nabla} \frac{\delta\mathcal{F}}{\delta c_{i}} \cdot \vec{J}_{i} + \sum_{\alpha} \frac{\delta\mathcal{F}}{\delta\varphi^{\alpha}} \frac{\partial\varphi^{\alpha}}{\partialt} \text{d}V \leqslant 0$$

$$\frac{\delta \mathcal{F}}{\delta \xi} \frac{\partial \xi}{\partial t} \leq 0, \qquad \vec{\nabla} \frac{\delta \mathcal{F}}{\delta c_i} \cdot \vec{J}_i \leq 0, \qquad \frac{\delta \mathcal{F}}{\delta \varphi^{\alpha}} = 0$$

 \mathcal{F} : Helmholtz free energy of system, ξ : phase field parameter, \mathfrak{p} : interpolation function

J. Zhang, A.F. Chadwick, and P.W. Voorhees. Journal of The Electrochemical Society 170, no. 12 (2023): 120503.



Second law of thermodynamics

$$\frac{\delta \mathcal{F}}{\delta \xi} \frac{\partial \xi}{\partial t} \leqslant 0,$$

Define variational overpotential

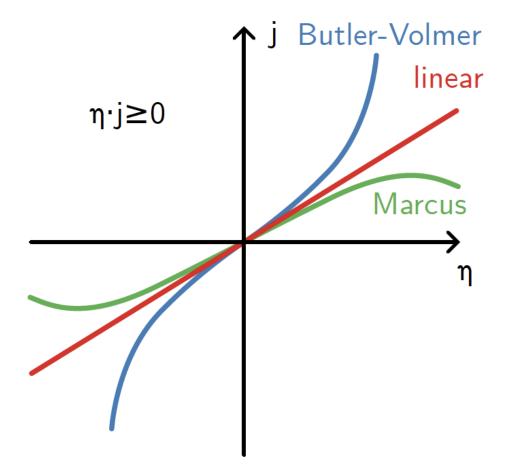
$$\eta = \frac{V_m}{F} \frac{\delta \mathcal{F}}{\delta \xi}$$

Evolution of the phase field

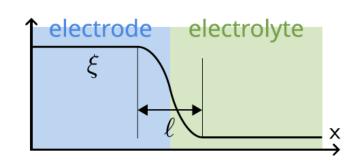
$$\frac{\partial \xi}{\partial t} = -\frac{V_{\rm m}}{6F\ell} j(\eta)$$

Second law requires

$$j(\eta) \eta \geqslant 0$$



Our model works for any general reaction kinetics



Define variational overpotential

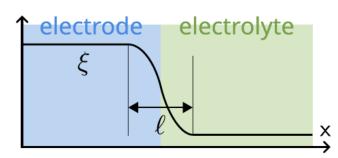
$$\eta = \frac{V_m}{F} \frac{\delta \mathcal{F}}{\delta \xi}$$

Evolution of the phase field

$$\frac{\partial \xi}{\partial t} = -\frac{V_{m}}{6F\ell} j(\eta)$$

Second law requires

$$j(\eta) \eta \geqslant 0$$



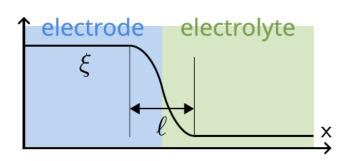
For ideal solution

$$\eta = \frac{V_m}{F} \frac{\delta \mathcal{F}}{\delta \xi} = \frac{V_m}{F} \left(mg'(\xi) - \kappa \vec{\nabla}^2 \xi \right) + p'(\xi) \left(E^{\bullet} + \varphi^s - \varphi^l + \frac{RT}{F} \ln \frac{c_+^s}{c_+} \right)$$
interfacial energy activation overpotential

Classical definition (sharp interface)

$$\eta = \frac{V_{m}}{F}\sigma\mathcal{H} + E^{\bullet} + \phi^{s} - \phi^{l} + \frac{RT}{F}\ln\frac{c_{+}^{s}}{c_{+}^{l}}$$

 \mathcal{F} : Helmholtz free energy of system, ξ : phase field parameter, \mathfrak{p} : interpolation function



For ideal solution

$$\eta = \frac{V_m}{F} \frac{\delta \mathcal{F}}{\delta \xi} = \frac{V_m}{F} \left(mg'(\xi) - \kappa \vec{\nabla}^2 \xi \right) + p'(\xi) \left(E^{\bullet} + \varphi^s - \varphi^l + \frac{RT}{F} \ln \frac{c_+^s}{c_+} \right)$$
interfacial energy activation overpotential

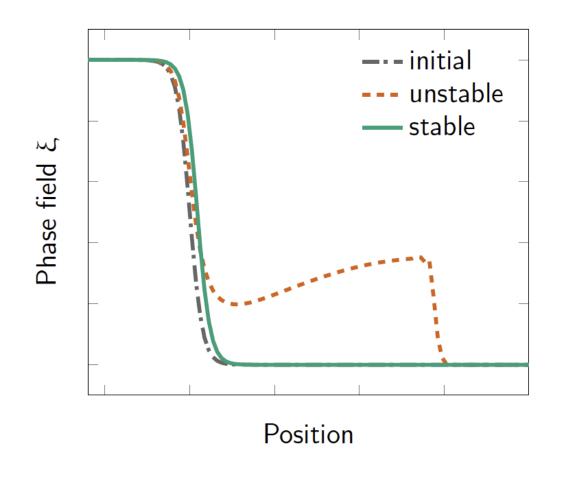
Classical d

We assumes a Helmholtz double layer

More complex double layer models: a multiscale approach

 \mathcal{F} : Helmholtz free energy of system, ξ : phase field parameter, \mathfrak{p} : interpolation function

Challenge for quantitative modeling



System with

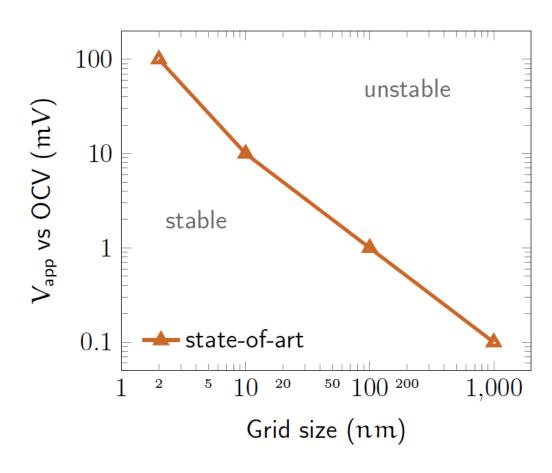
► Electrode: Li metal

► Electrolyte: 1M LiPF₆ in EC

System size: 100 µm

Interface is no longer stable

Challenge for quantitative modeling



System with

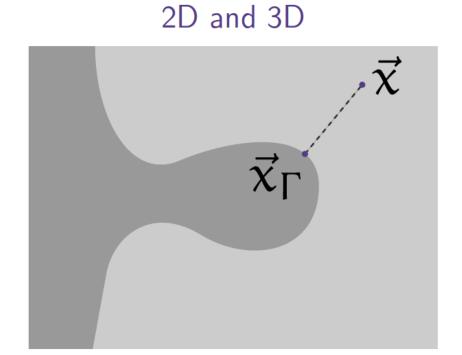
Electrode: Li metal

► Electrolyte: 1M LiPF₆ in EC

System size: 100 µm

Interface is no longer stable

Driving force extension



How to solve the problem?

 \blacktriangle A constant η_{α} has no stability issue

Extend the activation overpotential:

$$\mathcal{P}(\eta_{\alpha}(\vec{x},t)) = \eta_{\alpha}(\vec{x}_{\Gamma},t)$$

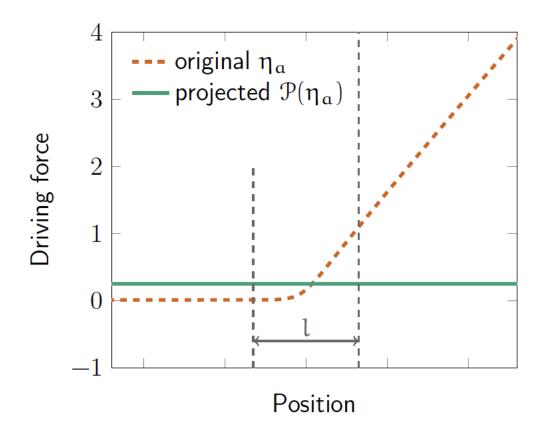
Introduce a simple modification:

$$\eta = -\frac{V_m}{F} \frac{6\sigma}{l} \left(l^2 \vec{\nabla}^2 \xi - \frac{g'(\xi)}{2} \right) + p'(\xi) \mathcal{P}(\eta_a)$$

Fast marching method

J. Zhang, A.F. Chadwick, D.L. Chopp, and P.W. Voorhees. npj Computational Materials 9, no. 1 (2023): 166.

Driving Force Extension



How to solve the problem?

 \blacktriangle A constant η_{α} has no stability issue

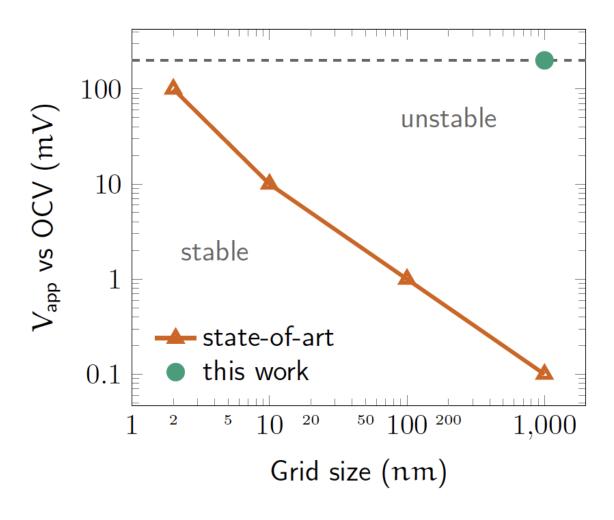
Extend the activation overpotential:

$$\mathcal{P}(\eta_{\alpha}(\vec{x},t)) = \eta_{\alpha}(\vec{x}_{\Gamma},t)$$

Introduce a simple modification:

$$\eta = -\frac{V_m}{F} \frac{6\sigma}{l} \left(l^2 \vec{\nabla}^2 \xi - \frac{g'(\xi)}{2} \right) + p'(\xi) \mathfrak{P}(\eta_\alpha)$$

Driving force extension



For a problem in d-dimension, Timestep

$$\Delta t = \frac{\Delta x^2}{2dD^1}$$

Computational cost

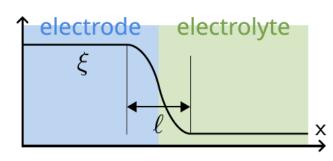
time
$$\propto \left(\frac{1}{\Delta x}\right)^{2+d}$$

Example:

increase Δx by a factor of 1000, reduce time by a factor of 10^{12} for 2D reduce time by a factor of 10^{15} for 3D

Phase field model: Summary

p = 1: electrode, p = 0: electrolyte



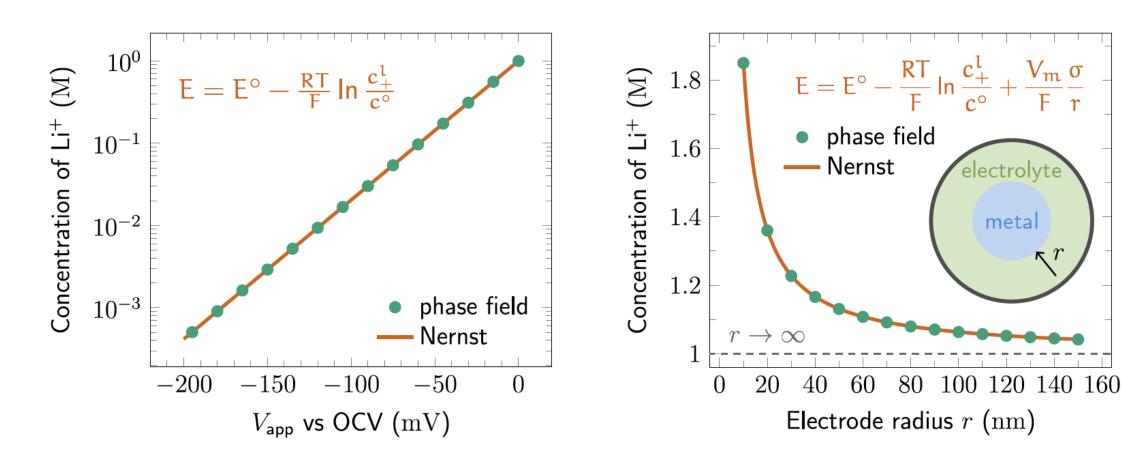
State variables: ξ , c, ϕ^1 , ϕ^s

$$\begin{cases} \frac{\partial \xi}{\partial t} = \frac{V_m}{6\ell F} j(\eta) \\ \frac{\partial c}{\partial t} = \vec{\nabla} \cdot (M \vec{\nabla} \tilde{\vec{\mu}}) \\ \vec{\nabla} \cdot \left((1 - p(\xi)) \vec{i}_{ion}^l \right) = p'(\xi) F c^s \frac{\partial \xi}{\partial t} \\ \vec{\nabla} \cdot \left(p(\xi) \vec{i}_e^s \right) = -p'(\xi) F c^s \frac{\partial \xi}{\partial t} \end{cases}$$

- Reaction kinetics
- 2 Mass conservation
- Onic charge conservation
- 4 Electrical charge conservation

 \mathcal{F} : Helmholtz free energy of system, ξ : phase field parameter, \mathfrak{p} : interpolation function

Model verification: Equilibrium

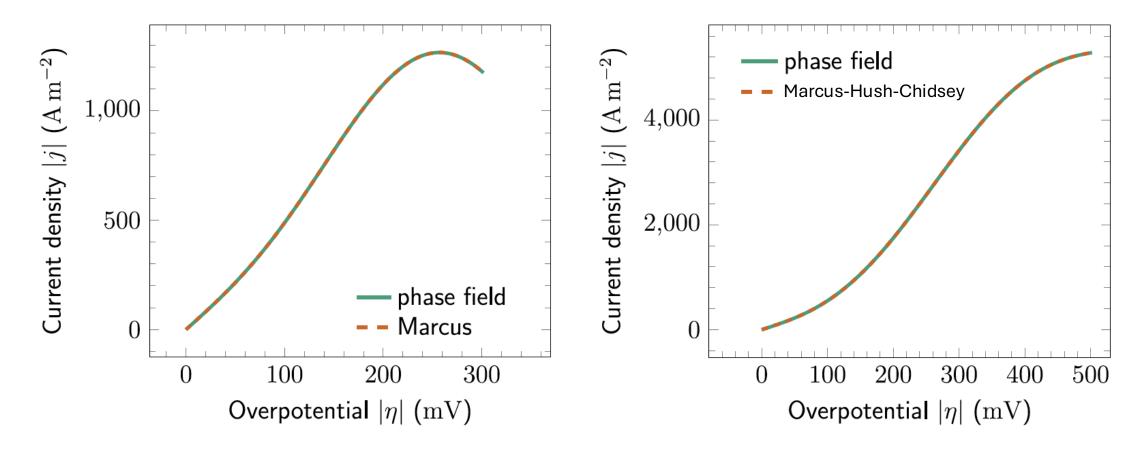


electrolyte

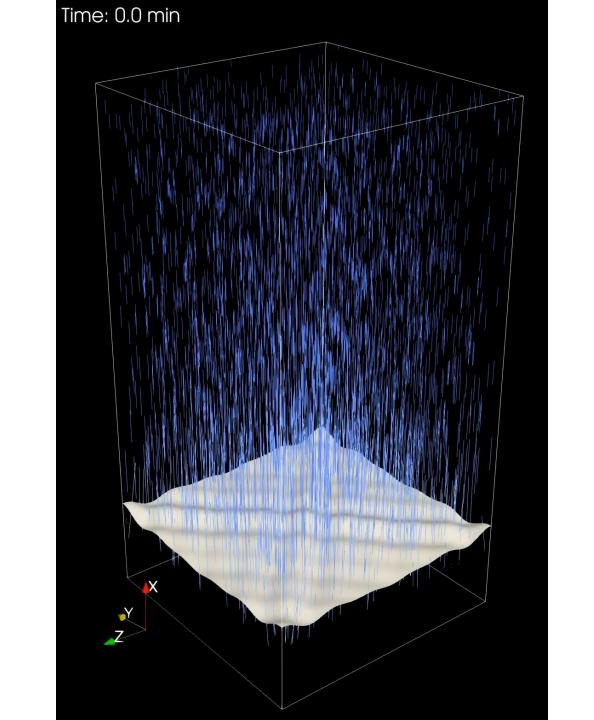
metal

Excellent agreement with classical electrochemical theory

Model verification: Reaction kinetics

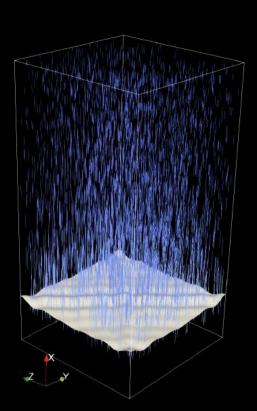


Excellent agreement with classical electrochemical theory



Lithium dendrite growth

Time: 0.0 min

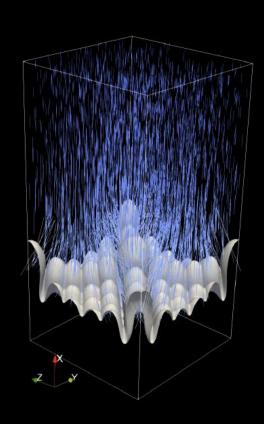


Applied voltage: $-100 \,\mathrm{mV}$ vs Li|Li+

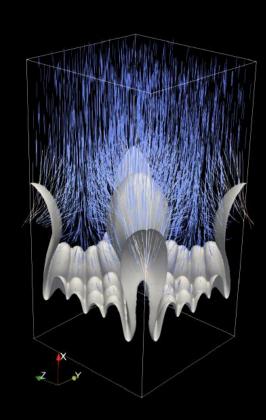
Concentration at start: 1M

Domain size: 64 μ m \times 64 μ m \times 128 μ m

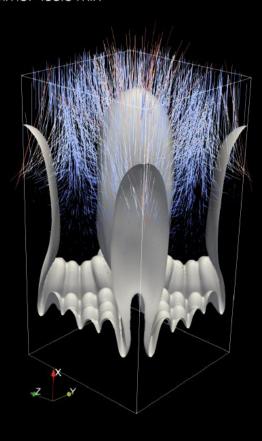
Time: 200.0 min



Time: 306.7 min



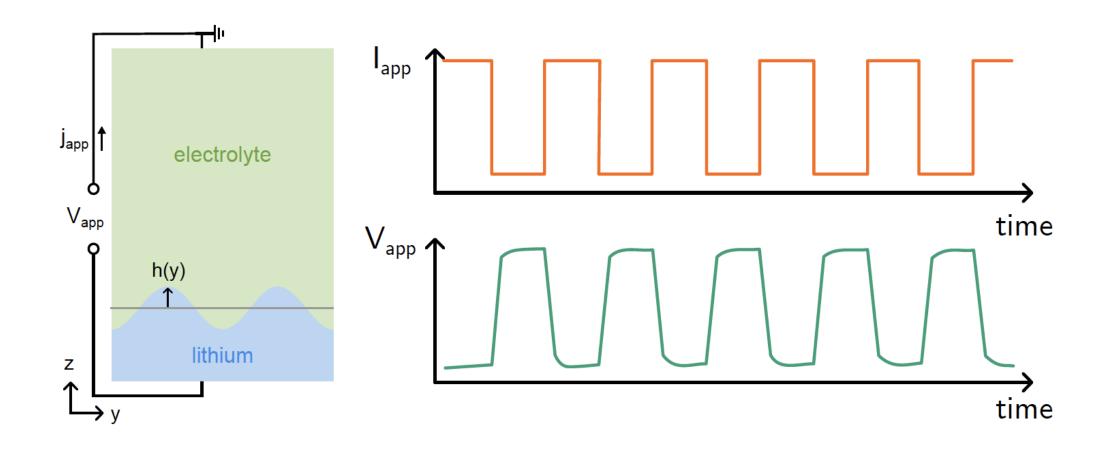
Time: 400.0 min

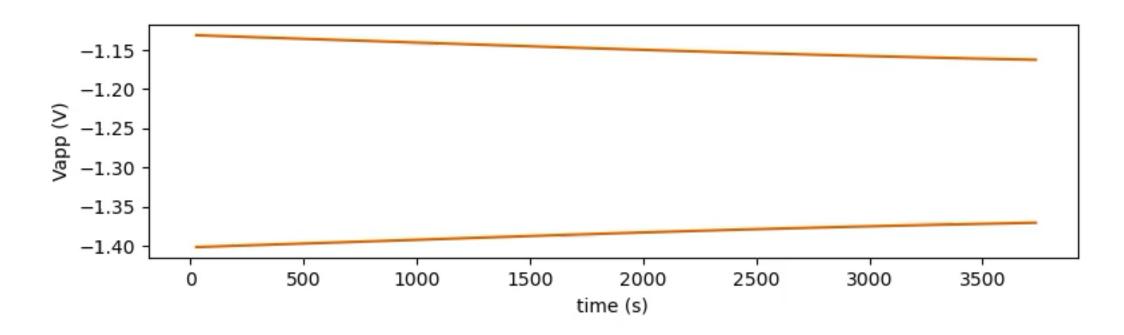


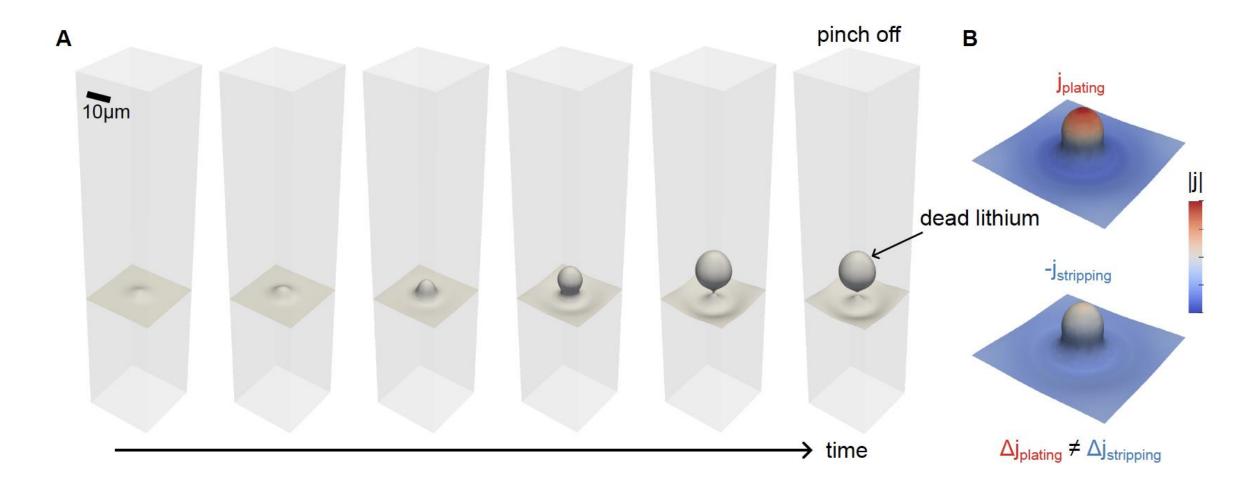
Anode: Li metal

Electrolyte: PEO

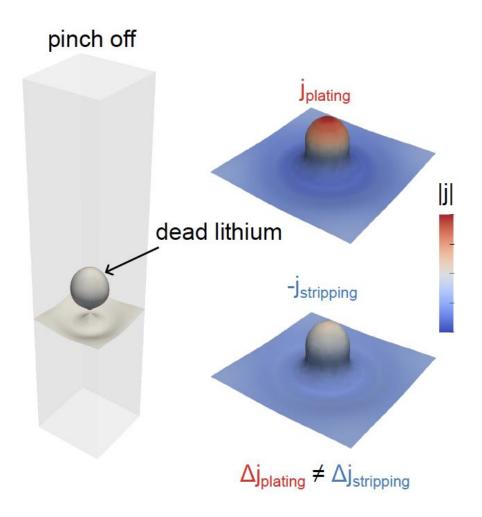
Computational time with 52 cores: 12 days







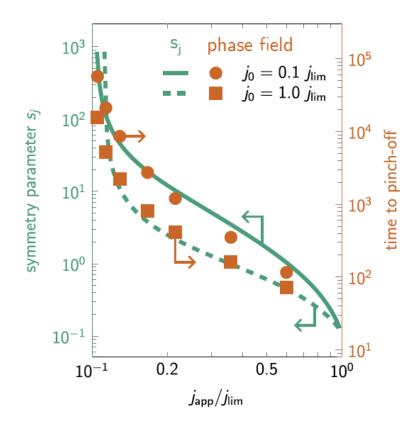
Dead Li forms because plating and stripping currents are not symmetric

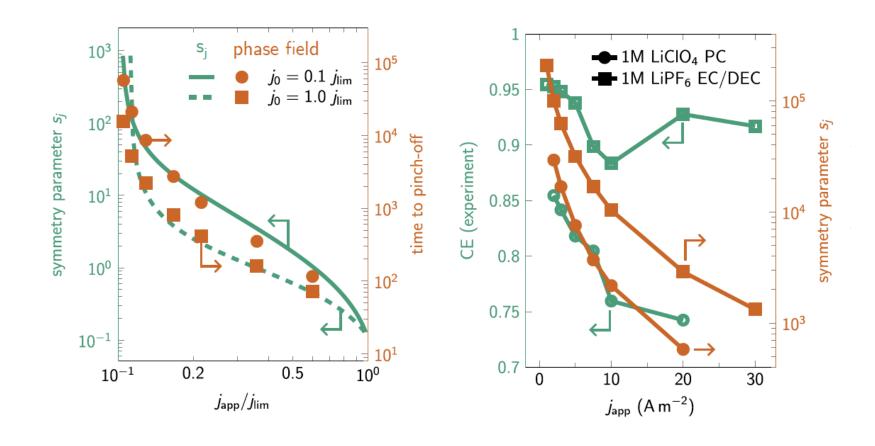


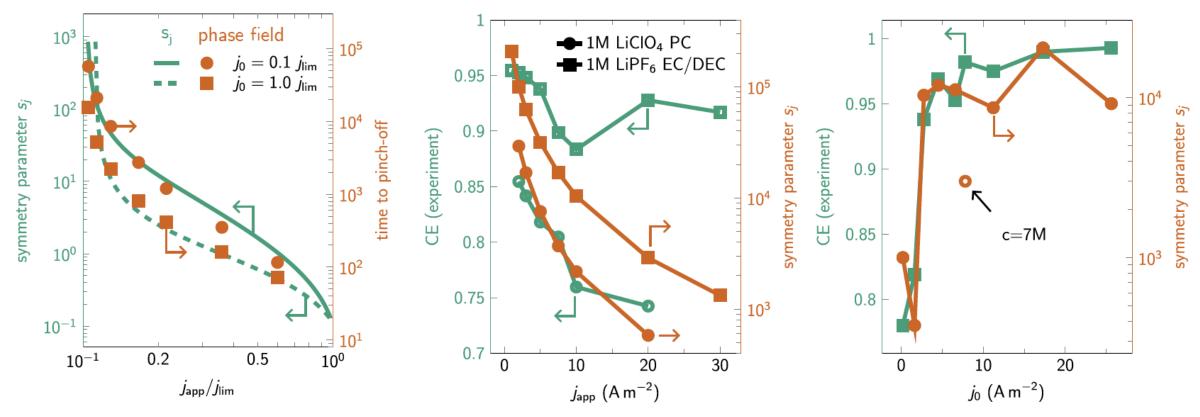
Define a symmetry parameter

$$s_{
m j} = rac{
m j_{app}}{\Delta
m j_{plating} + \Delta
m j_{stripping}}$$

- $ightharpoonup s_j = +\infty$: symmetric (no dead Li)
- $ightharpoonup s_j > 0$: formation of dead Li
- $ightharpoonup s_{
 m j} < 0$: no dead Li

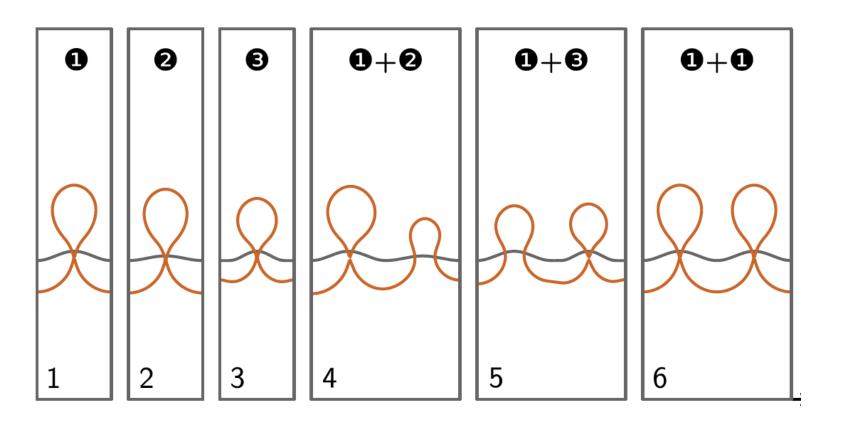


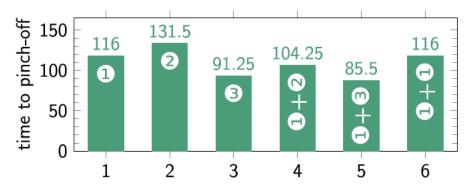




Good correlation between phase field, s_i , and experimentally measured CE!

Effect of nonlinear perturbations and initial shape of the interface



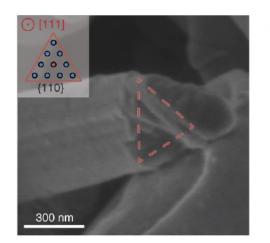


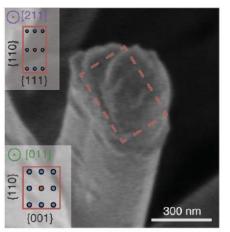
Dead Li formation: strategies

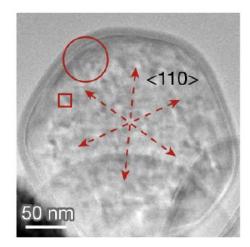
Reduce the non-symmetry between charging and discharging

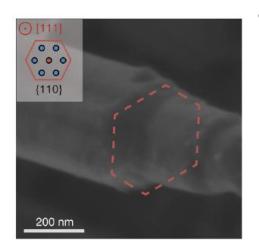
- Keep concentration far from depletion
- Slow charging and slow discharging
- High electrolyte concentration
- High electrolyte diffusivity/conductivity
- Asymmetric reaction kinetics

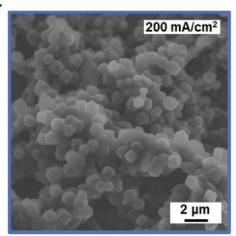
Dead Lithium Formation With Anisotropy

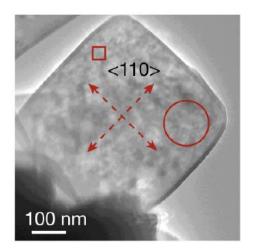












Li, Science 2017; Yuan, Nature 2023

Dead Lithium Formation With Anisotropy

Butler-Volmer

$$j(\eta) = j_0(\hat{\mathbf{n}}) \left(e^{-\alpha \frac{F\eta}{RT}} - e^{(1-\alpha) \frac{F\eta}{RT}} \right)$$

Overpotential

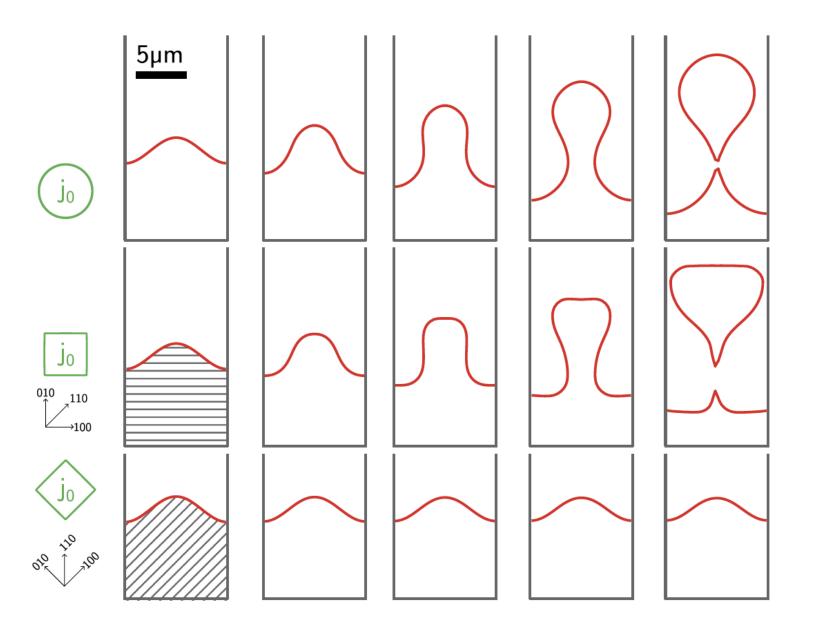
$$\eta = E^{\circ} + \varphi^{s} - \varphi^{l} + \frac{RT}{F} \ln \frac{c_{+}^{s}}{c_{+}^{l}} + \frac{V_{m}}{F} \sigma(\hat{\mathbf{n}}) \mathcal{H}$$

- ► Interfacial energy anisotropy: $\sigma(\hat{n})$
- ► Kinetic anisotropy: $j_0(\hat{n})$

Both anisotropy can affect the morphology!

 \hat{n} interface normal, σ interfacial energy, $\mathcal H$ curvature, j_0 exchange current density

Dead Lithium Formation With Anisotropy



Consider anisotropy

Examine the effect of lithium orientation on cycling behavior

(110) plane parallel to the electrode surface

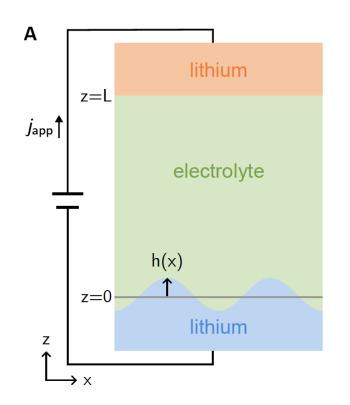
⇒ suppress dead Li

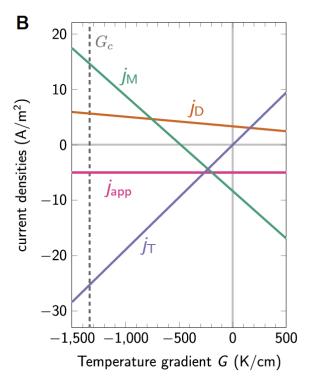
- Symmetric cells with fixed temperature differences, cell lifetime improves when the warmer electrode is charged first.
- Small changes in temperature across a cell, on the order of 1K, can promote or suppress dendrite formation (Carter, R.; Love, C. T. ACS Appl. Mater. Inter. 2018, 10, 26328–26334)
- How can such a small change in temperature matter?
 - A 1K difference across a 10 μ m thick separator can lead to a temperature gradient of 10⁵ K/m.

The effects of thermal gradients on the mass and charge transport in the electrolyte by Soret and Seebeck effects

$$\frac{\partial c}{\partial t} = \nabla \cdot (D_s \nabla c) + \nabla \cdot (D_s S_{\mathrm{T}} c \nabla T) - \frac{\nabla t_+ \cdot \vec{j}_{\mathrm{ion}}}{F}, \qquad \text{innf} \quad \text{z=L}$$

$$\vec{j}_{\text{ion}} = -\kappa \nabla \phi - \kappa S_{\text{ion}} \nabla T + \frac{FD_s(1 - 2t_+)}{2t_+(1 - t_+)} \nabla c.$$



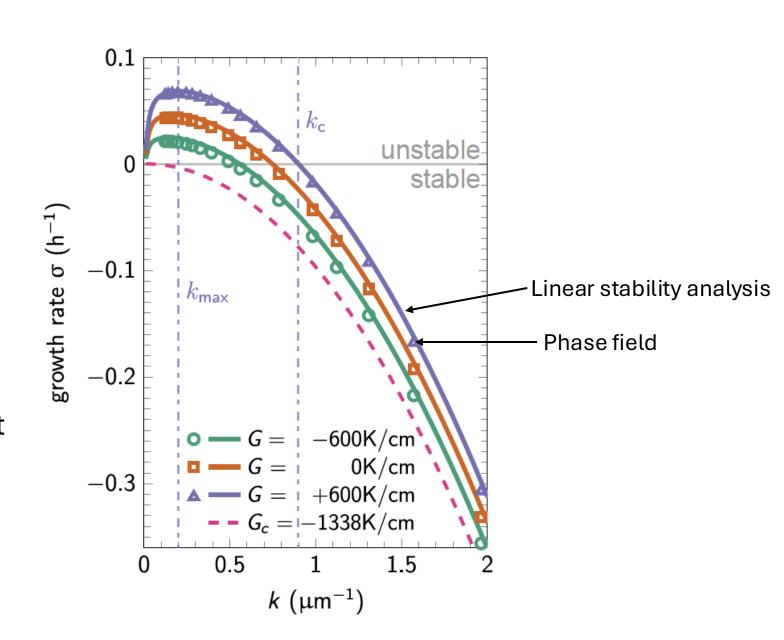


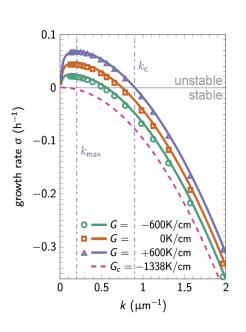
- Additional fluxes are in included in the phase field model with the driving force extension method
- Sharp interface model was used for a linear stability analysis
- Temperature- and concentration-dependent diffusivities were calculated with molecular dynamics

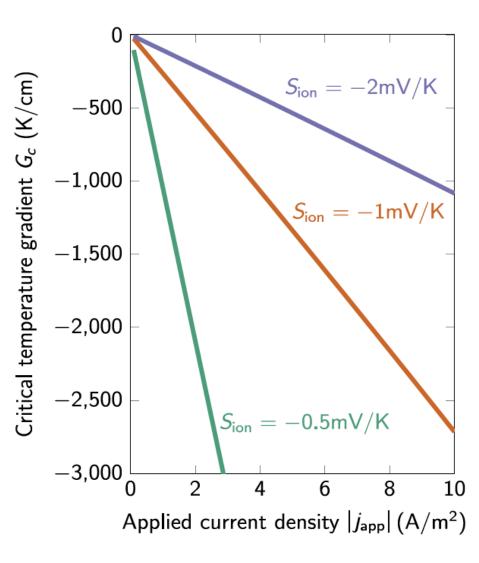
Linear stability analysis

$$h(x,t) = \varepsilon \hat{h}e^{ikx+\sigma t}$$

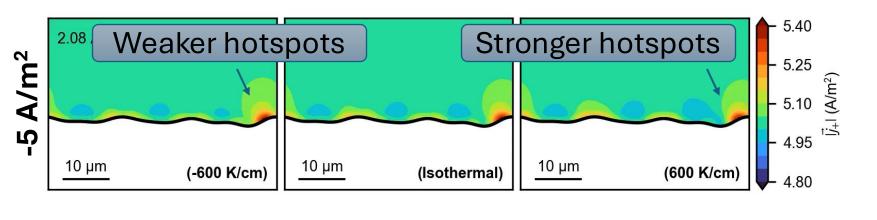
Both the phase-field model and linear stability theory predicts that thermodiffusion can suppress dendrite growth with an applied thermal gradient

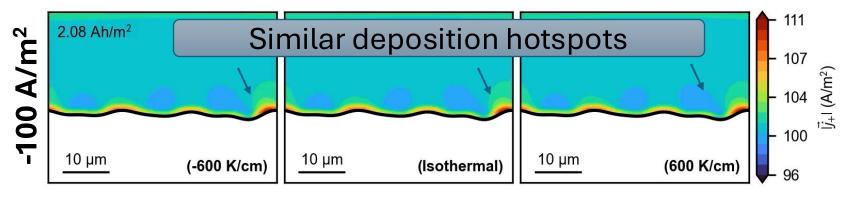






Dendrite suppression by thermal gradients is most effective during slow charging and least effective during fast charging, consistent with experiments





- For small currents, thermal gradient can significantly affect dendrite growth
 - Lifetime can be extended even without complete suppression
- Smaller impact for large currents

$$G_c \propto -j_{\rm app}$$

Note: simulations are in a moving reference frame

Chadwick et al., submitted.

Conclusions

- General phase field model for electrochemical processes
- A mapping method to use realistic materials parameters
- Asymmetry of the charge and discharge cycles are key in the dead lithium formation process
- Thermal gradients can carry a significant portion of current in a battery due to thermodiffusion
- There is a critical value of externally applied thermal gradient that suppresses dendrite formation
- The directional dependence between G and the applied current has practical implications in battery thermal design