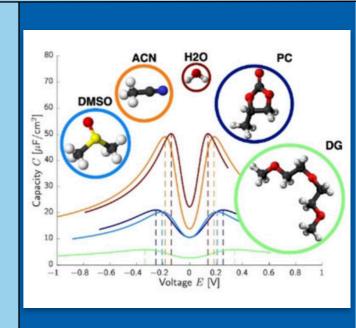
Continuum Thermodynamic Models for Electrochemical Interfaces

M. Landstorfer

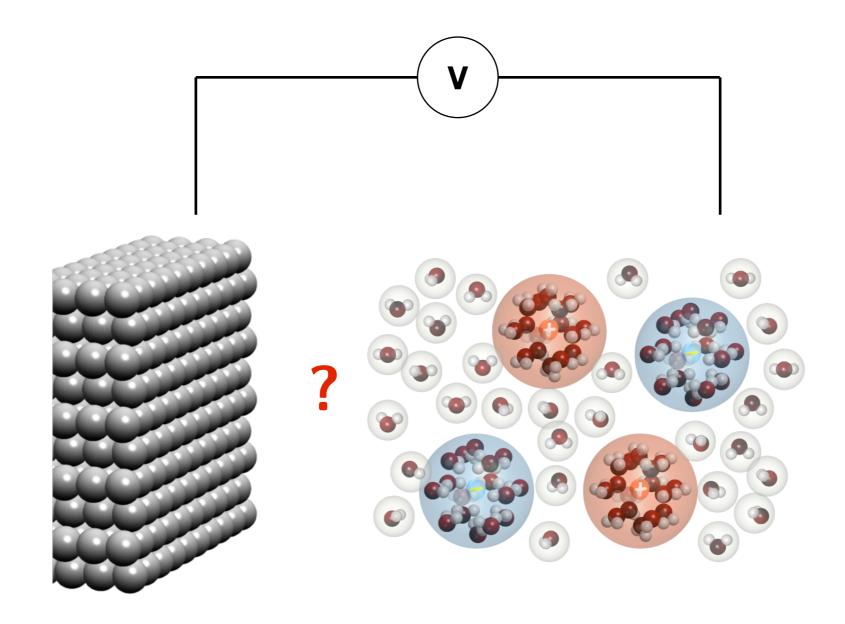
Weierstrass Institute for Applied Analysis and Stochastic (WIAS), Berlin, Germany

IPAM

Workshop II: Bridging Scales from Atomistic to Continuum in Electrochemical Systems 08.10.2025

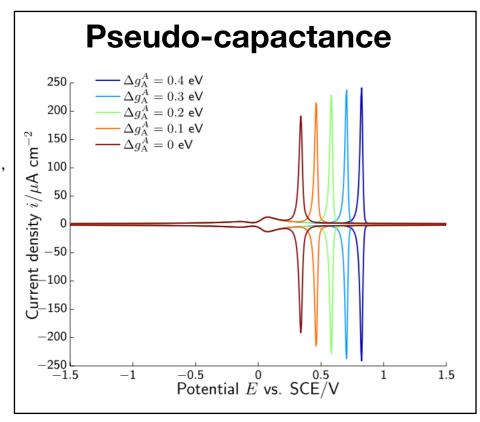


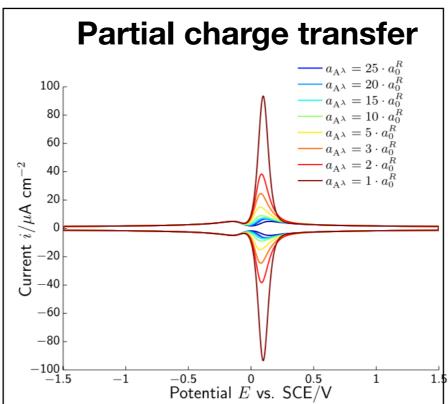
Electrode-Electrolyte Interfaces

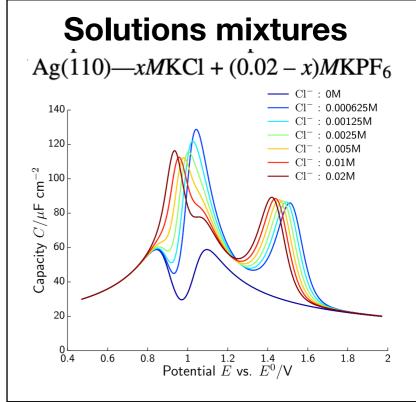


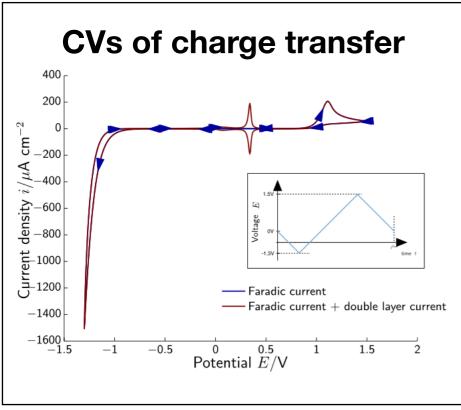
Goal — Develop a rigorous, thermodynamically consistent modeling framework for liquid electrolytes and charged interfaces.

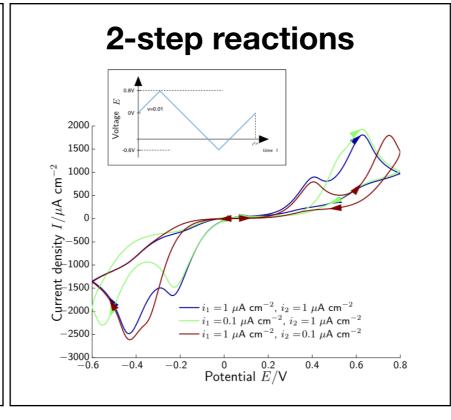
What we can do ... predict CVs

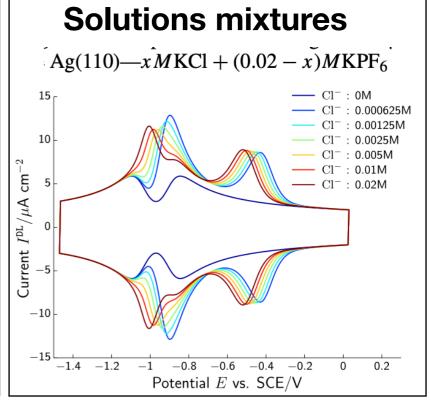




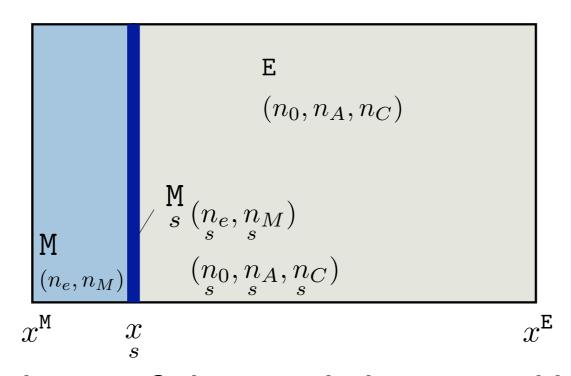








The metal/electrolyte interface - general modeling

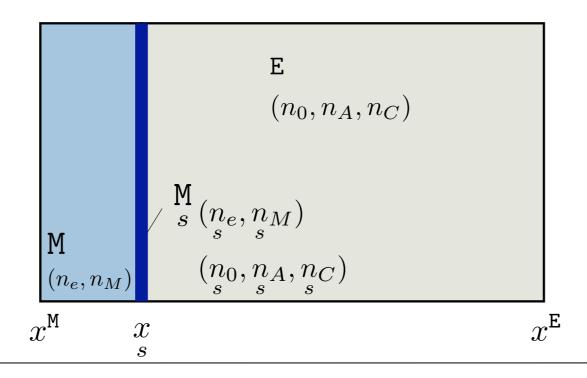


General field theory of the coupled non-equilibrium thermoelectrodynamics for volumes and surfaces

Literature selection

- J. Meixner, Annalen der Physik, 1943, 435, 244-270.
- S. de Groot and P. Mazur, Non-Eq. Thermodynamics, Dover 1984.
- I. Müller, Thermodynamics, Pitman, 1985.
- M. Landstorfer, Dissertation, Universität Ulm, 2013
- C. Guhlke, Dissertation, TU Berlin, 2015
- D. Bothe and W. Dreyer, Acta Mechanica, 2014, 1–49
- R. Müller and M. Landstorfer, Entropy, 2023, 416

The metal/electrolyte interface - general modeling



Volume and Surface species densities

Volume Ω_V considered as mixture of species densities $n_{\alpha}(\mathbf{x},t), \ \alpha \in I_V \ \left[\ \mathsf{mol/m}^3 \ \right]$

Surface S considered as mixture of surface species densities $n_{\alpha}(\mathbf{x},t), \ \alpha \in I_{S} \ \left[\ \mathsf{mol/m}^{2} \ \right]$

Volume and Surface species densities

Volume Ω_V considered as mixture of species densities $n_{\alpha}(\mathbf{x},t), \ \alpha \in I_V \ \left[\ \mathsf{mol/m}^3 \ \right]$

Surface S considered as mixture of surface species densities $n_{\mathbf{s}}(\mathbf{x},t), \ \alpha \in I_S \ \left[\ \mathsf{mol/m}^2 \ \right]$

Free energy densities and chemical potentials

Free energy density of the volume Ω_V

$$ho\psi(n_0,\ldots,n_{N_V})$$
 $\left[\,\mathsf{J/m}^3\,
ight]$

Chemical potential of constituent A_{α}

$$\mu_{\alpha} = \frac{\partial \rho \psi}{\partial n_{\alpha}} \, \left[\, \mathsf{J} \, \right]$$

Free energy density of the surface S

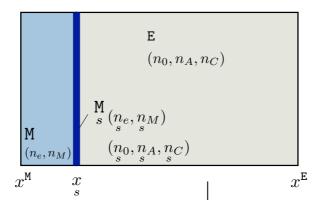
$$\psi(\underset{\mathsf{s}}{n_0},\ldots,\underset{\mathsf{s}}{n_{N_S}}) \ \left[\ \mathsf{J/m}^2 \ \right]$$

Surface chemical potential of ${\rm A}_{\rm s} \alpha$

$$\mu_{\alpha} = \frac{\partial \psi}{\partial n_{\alpha}} \quad [\mathsf{J}]$$

The metal/electrolyte interface - General modeling

Volume Ω^{\pm}



Surface S

Material Modeling - Electrolyte

Task: Chemical potentials μ_{α} of all species derived from a free energy density

$$\rho\psi = \rho\psi^{\mathsf{Mix}} + \rho\psi^{\mathsf{Ref}} + \rho\psi^{\mathsf{Mech}} + \dots$$

- Entropy of mixing
- Mechanical contributions
- Reference contributions
- Debye Hückel
- ... (e.g. Polarization)

$$\mu_{\alpha} = \frac{\partial \rho \psi}{\partial n_{\alpha}} \, \left[\, \mathsf{J} \, \right]$$

Material Modeling - Electrolyte - Entropy of mixing

$$\mu_{\alpha} = \frac{\partial \rho \psi}{\partial n_{\alpha}} \, \left[\, \mathsf{J} \, \right]$$

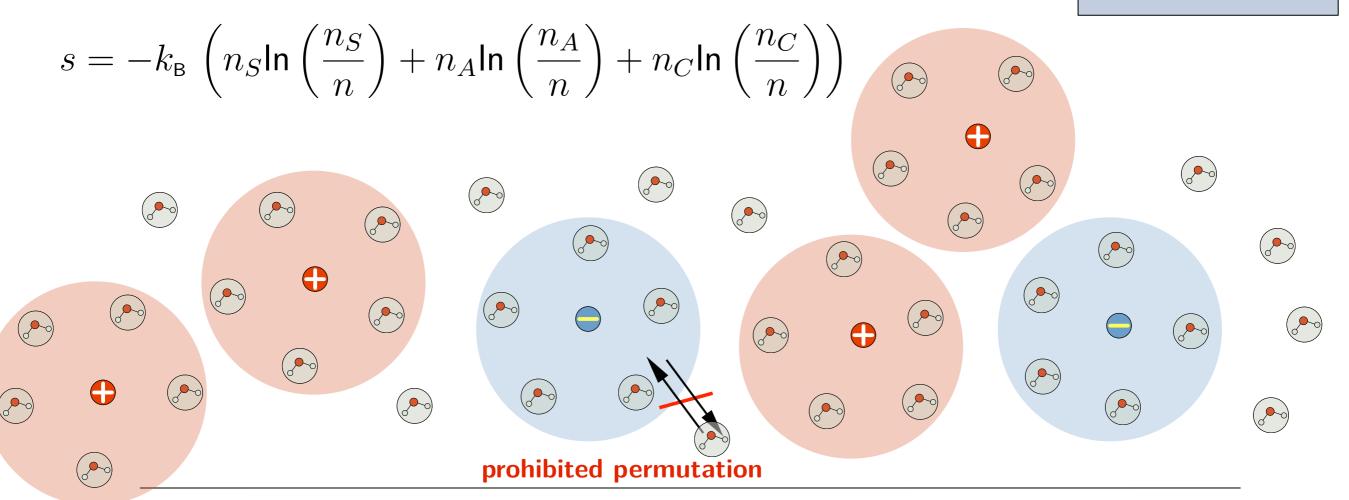
$$s^{\text{ideal}} = -k_{\text{B}} \left(n_{S} \ln \left(\frac{n_{S}}{n^{\text{T}}} \right) + n_{A} \ln \left(\frac{n_{A}}{n^{\text{T}}} \right) + n_{C} \ln \left(\frac{n_{C}}{n^{\text{T}}} \right) \right)$$

Basic idea: Count the number of permutations in the mixture

... common basis for ideal mixtures etc.

Material Modeling - Electrolyte - Entropy of mixing

$$\mu_{\alpha} = \frac{\partial \rho \psi}{\partial n_{\alpha}} \, \left[\, \mathsf{J} \, \right]$$



Basic idea: Count the number of permutations in the mixture Each ion bounds κ_{α} solvent molecules

Note: solvation impacts (implicitly) the mole fraction in solution!

$$y_{lpha}=rac{n_{lpha}}{n}$$
 with $n=n_S+n_A+n_C$ $n_S=n_S^{
m R}-(\kappa_A)\cdot n_A-(\kappa_C)\cdot n_C$

dependent on the solvation number

Material Modeling - Electrolyte - Mechanical contribution

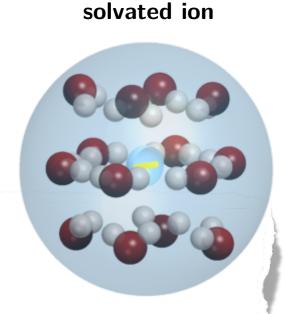
Volume occupied by the mixture at the reference pressure p^R

 $V_{p^R} = \sum_{\alpha=0}^{\mathsf{n}} v_\alpha^R N_\alpha$

Note: Other mechanical models possible

solvent

 $v_0^R \neq v_{lpha}^R$



Tait equation of state

$$p = p^R + K\left(\left(\frac{V_{p^R}}{V}\right)^m - 1\right)$$

with m=7 and K = 0.32 GPa

leads to the mechanical free energy contribution

$$\rho\psi^M = (K - p^R)\left(1 - \left(\sum_{\alpha=0}^{\mathsf{n}} v_\alpha^R n_\alpha\right)\right) - K\frac{1}{1-m}\left(\left(\sum_{\alpha=0}^{\mathsf{n}} v_\alpha^R n_\alpha\right)^m - \sum_{\alpha=0}^{\mathsf{n}} v_\alpha^R n_\alpha\right)^m - \sum_{\alpha=0}^{\mathsf{n}} v_\alpha^R n_\alpha\right)^m = (K - p^R)\left(1 - \left(\sum_{\alpha=0}^{\mathsf{n}} v_\alpha^R n_\alpha\right)^m\right)^m + \sum_{\alpha=0}^{\mathsf{n}} v_\alpha^R n_\alpha\right)^m$$

Goal: Incompressible limit $K \to \infty$

Material Modeling - Electrolyte

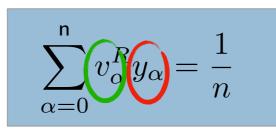
Chemical potentials

Incompressible limit $K \to \infty$: (entails pressure p as variable)

$$\mu_{\alpha} = \psi_{\alpha}^{R} + k_{\mathrm{B}}T\ln(y_{\mathrm{d}}) + v_{\alpha}^{R}p$$

$$\alpha=0,1,\ldots,\mathsf{n}$$

and

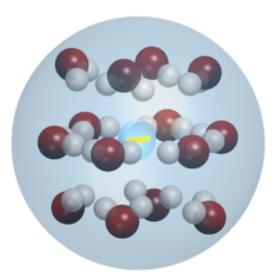


Incompressibility constraint

solvent

$$v_0^R \neq v_\alpha^R$$

solvated ion



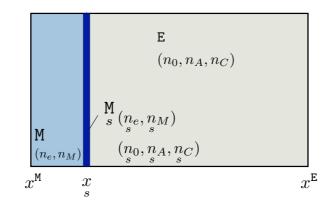
Impact of solvation

- Entropically: (implicitly) via the mole fraction
- Mechanically: via the pressure and the partial molar volume

$$y_{lpha}=rac{n_{lpha}}{n}$$
 with $n=n_S+n_A+n_C$ $n_S=n_S^{
m R}-(\kappa_A)\cdot n_A-(\kappa_C)\cdot n_C$

W. Dreyer, C. Guhlke and M. Landstorfer, Electrochemistry Communications, 2014, 43, 75 – 78.

The metal/electrolyte interface - Modeling



lacksquare Diffusional equilibrium in Ω^\pm

$$\nabla \mu_{\alpha} + e_0 z_{\alpha} \nabla \varphi = \mathbf{0} \qquad \alpha = 1, \dots, N$$

which can be integrated as

$$\mu_{\alpha}(\mathbf{x}) + e_0 z_{\alpha} \varphi(\mathbf{x}) = \mu_{\alpha}^{\pm} + e_0 z_{\alpha} \varphi^{\pm}$$

 \blacksquare Electrical equilibrium in Ω^{\pm}

$$-\varepsilon_0 \mathrm{div} \left(\nabla \varphi \right) = q \qquad \text{ with } \qquad q = \sum_{\alpha = 0}^N z_\alpha e_0 n_\alpha$$

lacksquare Mechanical equilibrium in Ω^{\pm}

$$\nabla p = -q \nabla \varphi$$

$$\frac{\partial \rho \mathbf{v}}{\partial t} + \mathsf{Div} \left(\rho \mathbf{v} \otimes \mathbf{v} \right) = \eta \Delta \mathbf{v} + \nabla p + q \nabla \varphi$$

thermodynamic closure relations

$$\sum_{\alpha=0}^{\mathsf{n}} v_{\alpha}^R y_{\alpha} = \frac{1}{n}$$

 $\mu_{\alpha} = \psi_{\alpha}^{R} + k_{\mathrm{B}}T \ln(y_{\alpha}) + v_{\alpha}^{R} p$

Incompressibility constraint

Balance equations for $\rho_{\alpha}, \ \alpha = 1, \dots, N$

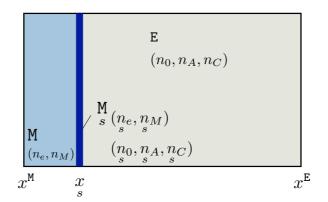
$$\frac{\partial \, \rho_{\alpha}}{\partial \, t} = -\mathsf{div} \, \left(\rho_{\alpha} \mathbf{v} + \mathbf{J}_{\alpha} \right) + r_{\alpha}$$

with

$$\mathbf{J}_{lpha} \propto
abla (\mu_{lpha} - \mu_{\mathrm{N}}) + e_0 (rac{z_{lpha}}{m_{lpha}} - rac{z_{\mathrm{N}}}{m_{\mathrm{N}}})
abla arphi$$

 $\alpha = 0, 1, \dots, n$

The metal/electrolyte interface - Modeling



 \blacksquare Diffusional equilibrium in Ω^\pm

$$\nabla \mu_{\alpha} + e_0 z_{\alpha} \nabla \varphi = \mathbf{0} \qquad \alpha = 1, \dots, N$$

which can be integrated as

$$\mu_{\alpha}(\mathbf{x}) + e_0 z_{\alpha} \varphi(\mathbf{x}) = \mu_{\alpha}^{\pm} + e_0 z_{\alpha} \varphi^{\pm}$$

 \blacksquare Electrical equilibrium in Ω^{\pm}

$$-\varepsilon_0 \mathrm{div} \, (\nabla \varphi) = q \qquad \text{ with } \qquad q = \sum_{\alpha=0}^N z_\alpha e_0 n_\alpha$$

lacksquare Mechanical equilibrium in Ω^\pm

$$\nabla p = -q\nabla \varphi$$

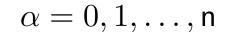
thermodynamic closure relations

$$\mu_{\alpha} = \psi_{\alpha}^{R} + k_{\mathrm{B}}T\ln\left(y_{\alpha}\right) + v_{\alpha}^{R}\,p$$

$$\sum_{\alpha=0}^{\mathsf{n}} v_{\alpha}^R y_{\alpha} = \frac{1}{n}$$

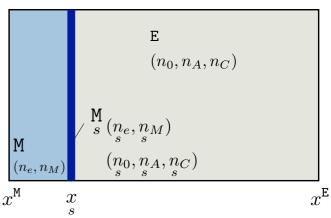
Incompressibility constraint

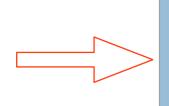
General modeling framework for various salts, solvents, surfaces



Electrolyte - Charge density in equilibrium

$$\nabla \mu_{\alpha} - e_0 z_{\alpha} \nabla \varphi = \mathbf{0}$$
 $\alpha = 1, \dots, n$





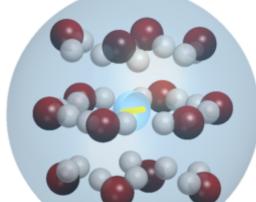
$$q^{F} = e_{0} \frac{\sum_{\alpha=1}^{n} z_{\alpha} \cdot y_{\alpha}(\varphi, p)}{\sum_{\alpha=0}^{n} v_{\alpha}^{R} \cdot y_{\alpha}(\varphi, p)} = q^{F}(\varphi, p)$$

solvent

$$v_0^R \neq v_\alpha^R$$

Charge density is pressure **and** potential dependent Pressure term covers the actual **size** of the species

solvated ion



Consequence: Poisson equation and momentum balance do not decouple

$$\varepsilon_0(1+\chi)\mathrm{div}\,\nabla\varphi=-q^{\mathsf{F}}(\varphi,p)$$

$$\nabla p=-q^{\mathsf{F}}(\varphi,p)\nabla\varphi$$

W. Dreyer, C. Guhlke, R. Müller, PCCP, 2013, 15, 7075-7086

W. Dreyer, C. Guhlke and M. Landstorfer, Electrochem. Comm., 2014, 43, 75 – 78.

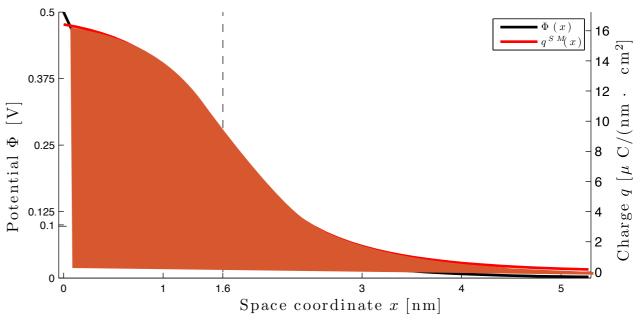
Validation: Charge and Capacity of the double layer

Measured current:
$$I = \frac{dQ}{dt}$$

Interface charge:
$$Q = Q_{\rm E} \, + q_{\rm E} \,$$

with
$$Q_{\rm E} = \int_0^{x_{\rm E}} q \, dx$$

Interface capacity:
$$C = \frac{dQ}{dU}$$



Based on our constitutive chemical potentials and the equilibrium conditions we derived expressions for the capacity

Charge density representation in equilibrium

• Poisson–Boltzmann approximation $(p = p^B)$:

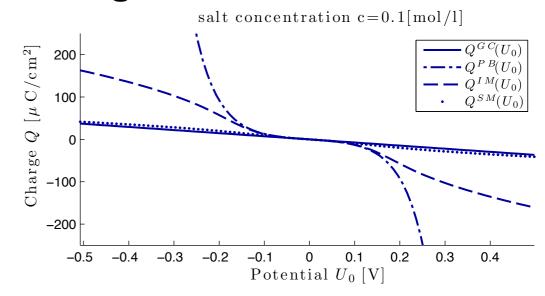
$$q^{\mathsf{PB}} = \sum_{\alpha=1}^{\mathsf{n}} z_{\alpha} n_{\alpha}^{B} \cdot \mathsf{e}^{-z_{\alpha} \frac{e_{0}}{k_{\mathsf{B}}T} \Phi} = q^{\mathsf{PB}}(\Phi)$$

• Gouy–Chapman approximation ($e^x \approx 1 + x$):

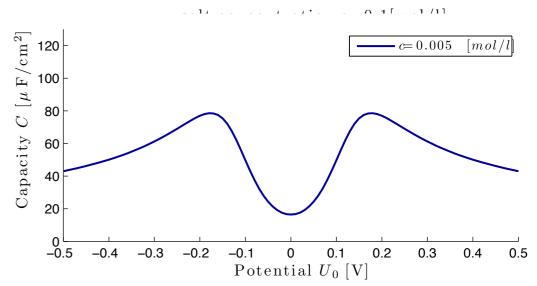
$$q^{\mathrm{GC}} = -\left(\frac{e_0}{k_{\mathrm{B}}T} \sum_{\alpha=1}^{\mathrm{n}} z_{\alpha}^2 n_{\alpha}^B\right) \cdot \Phi = q^{\mathrm{GC}}(\Phi)$$

$Q \approx \pm \, 100 \mu \text{C/cm}^2$ $C \approx 80 \mu \text{F/cm}^2$

Charge



Capacity



Validation: Ag(abc)|KPF₆ – non-adsorbing salt - Capacity

Experimental data

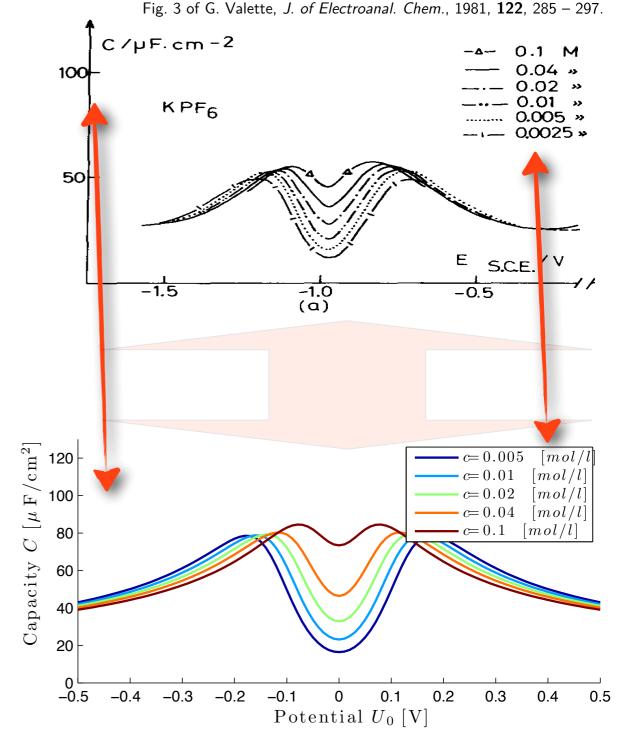
- Capacity of single crystal Ag(111)|KPF₆(H₂O)
- Variation of the salt concentration
- Capacity depends non-linear on the applied voltage

Mathematical model

- Qualitative agreement
 - 1V potential range
- Quantitative agreement
 - of a single capacity curve (-0.5V 0.5V)
 - regarding the salt variation

No parameter adjustment

self consistent prediction of capacity data



M. Landstorfer, C. Guhlke and W. Dreyer, Electrochim. Acta., 2016, 201, 187 – 219.

Remarks: Charge and Capacity of the double layer

$$C = \frac{dQ}{dU}$$

Interface capacity:
$$C = \frac{dQ}{dU}$$
 with $C_{\rm M} = \frac{dQ_{\rm M}}{dU}$

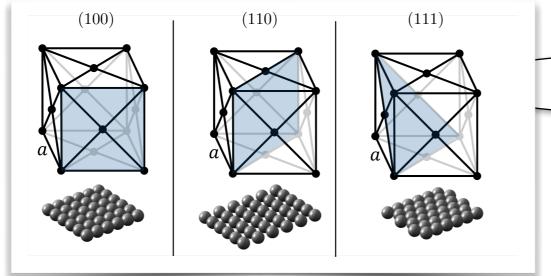
Note: No single equation, but an algebraic equation system

$$C_{\mathrm{M}} = \frac{\varepsilon_0(1+\chi)}{\sqrt{2(p-p^{\mathrm{E}})}} \cdot q_{\mathrm{E}}(U^{\mathrm{M,E}}, p-p^{\mathrm{E}}) \quad \text{and} \quad g(U^{\mathrm{M,E}}, p-p^{\mathrm{E}}) = 0$$

... originates from the Poisson-momentum coupling due to solvation effect

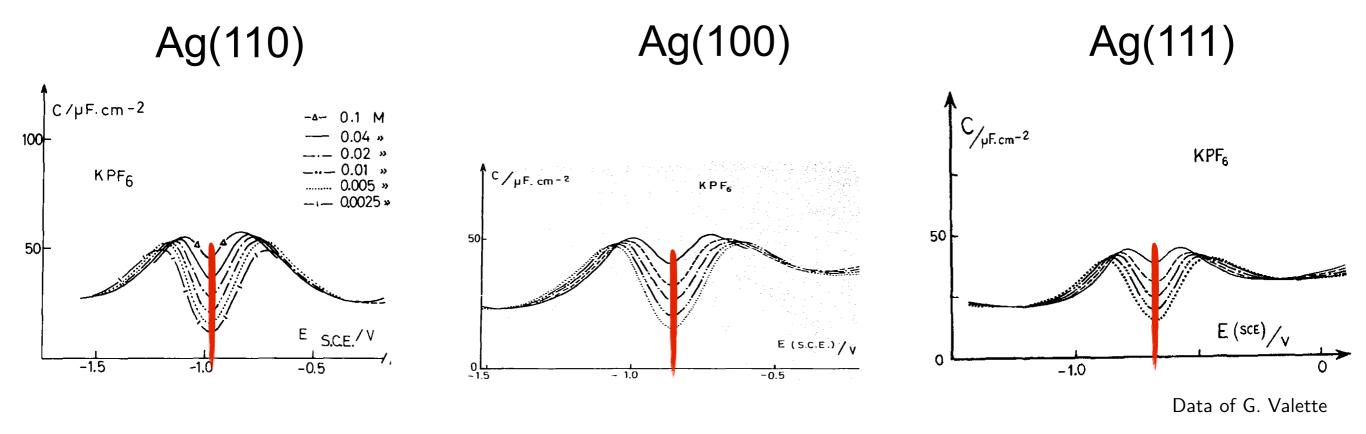
Note: Relation between metal-surface/bulk-electrolyte potential drop $U^{M,E}$ to the applied/measured voltage U

$$U^{\mathrm{M,E}} = U - U^{\mathrm{R}}$$
 with $U^{\mathrm{R}} = \mathrm{const.}$ and dependent on μ_e^{M}



surface chemical potential of electrons

Validation: Ag(abc)|KPF₆ – non-adsorbing salt - work function



Capacity minimum (Potential of zero charge for a non-adsorbing salt E^0) dependent on the

- metal surface orientation
- work function

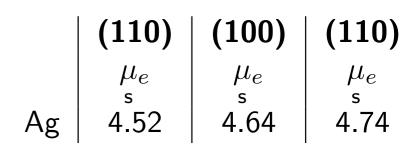
 A. Frumkin, A. Gorodetzkaya,

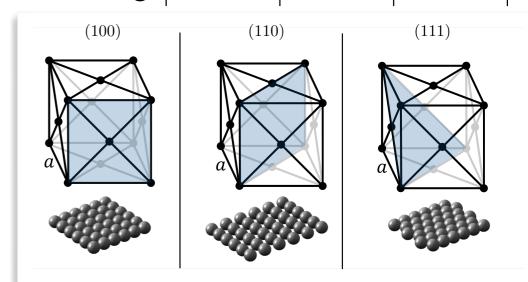
 Z. Phys. Chem., 136 (1928) 215.

Our model predicts:

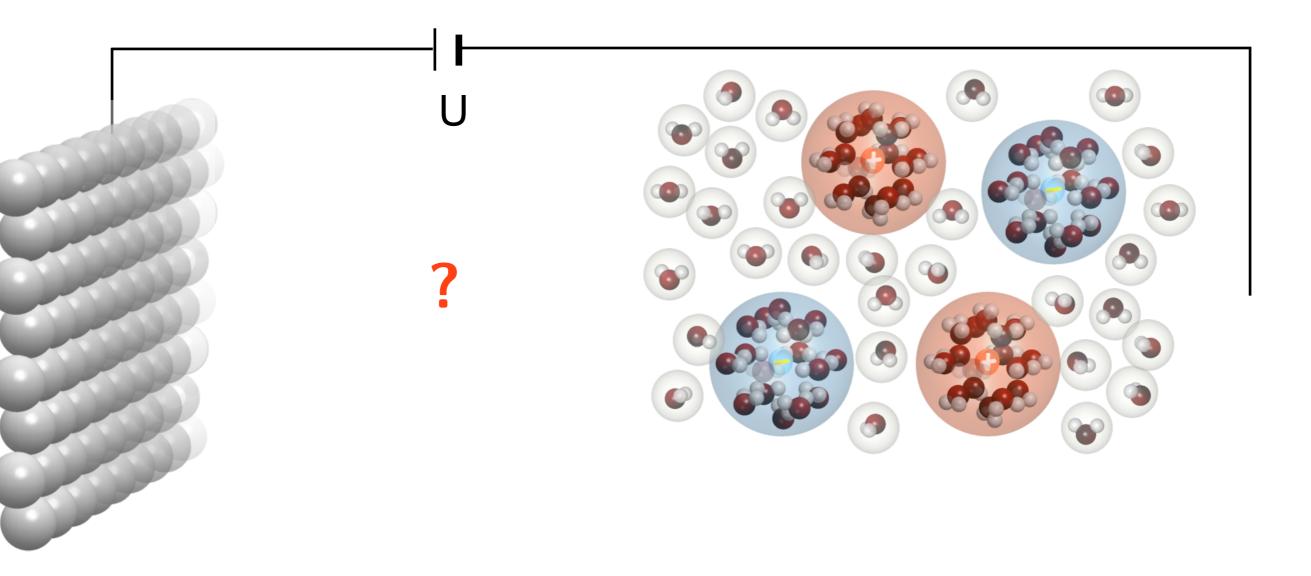
$$E^0 \propto -\mu_e^{ exttt{M}}$$

self consistent incorporation of the PZC in the model

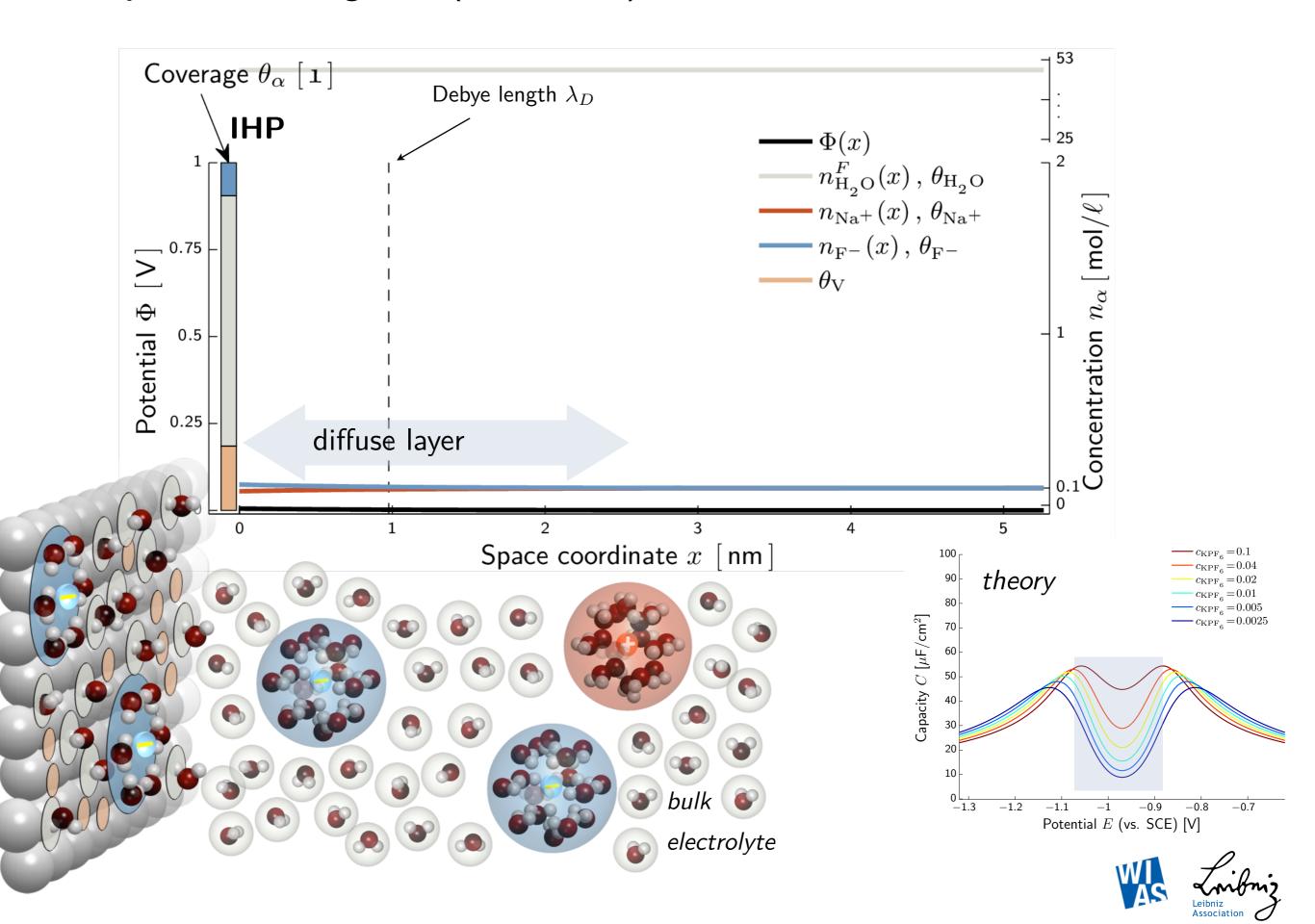




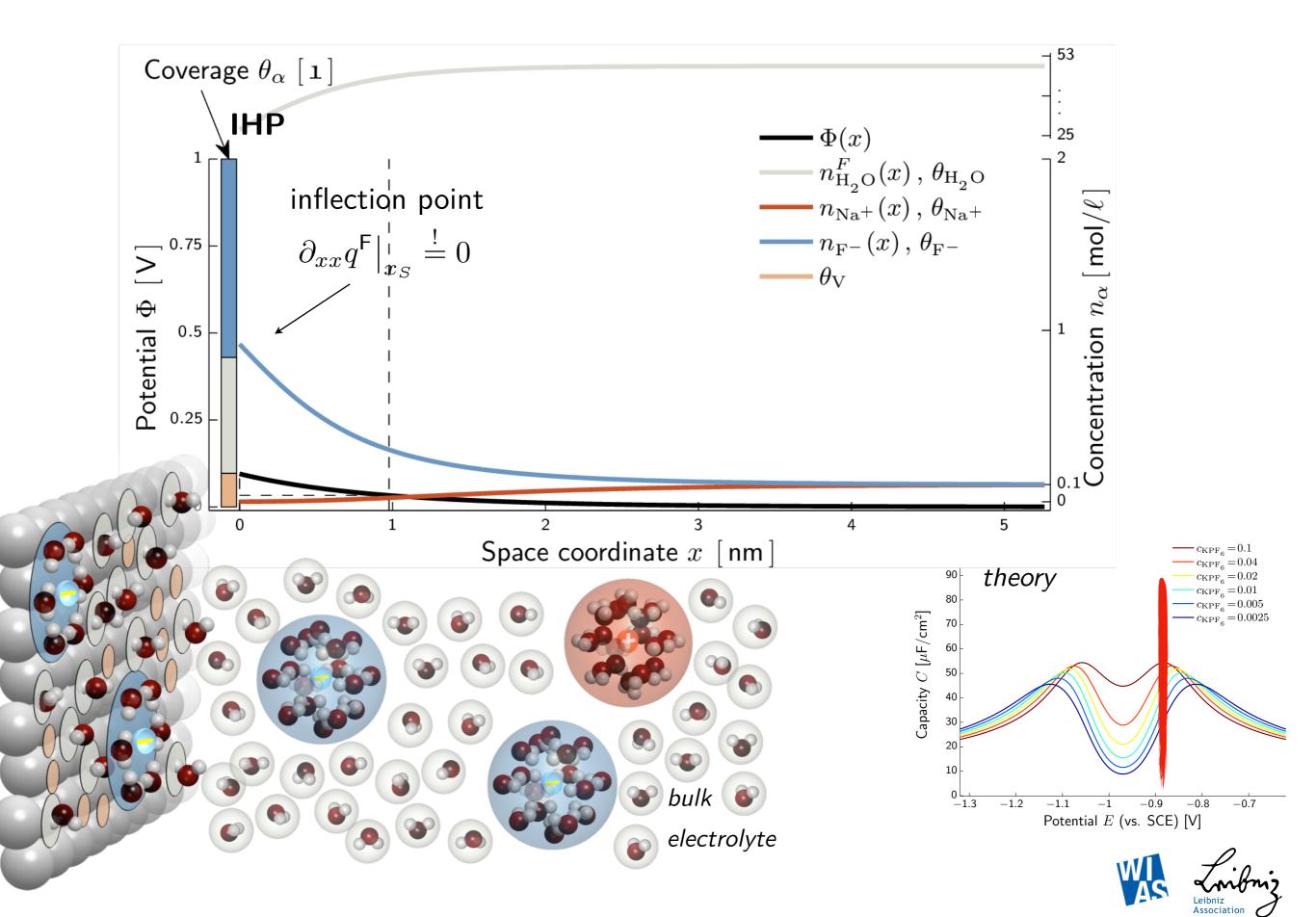
Structure of the double layer



Low potential regime (±~60mV)



Stern layer potential ⊕_S~60mV



Definition of the Stern layer

IUPAC Definition

Stern layer

Counter and co-ions in immediate contact with a surface are said to be located in the Stern layer, and form with the fixed charge a molecular capacitor.

Our new definition

Stern layer

the domain $[0, x^S]$, where x^S is the inflection point of the free charge density q^{F} , i.e. $\partial_{xx}q^{\mathsf{F}}\big|_{x=x^S}=0$. If no inflection point is present, no Stern layer is formed.

Definition of the Stern layer

IUPAC Definition

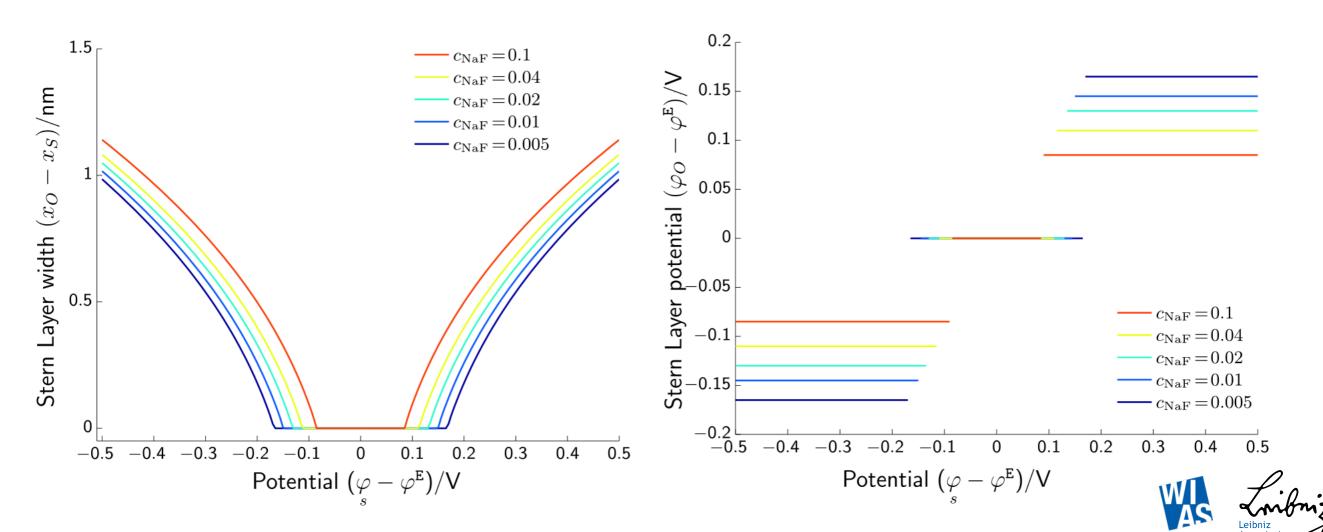
Stern layer

Counter and co-ions in immediate contact with a surface are said to be located in the Stern layer, and form with the fixed charge a molecular capacitor.

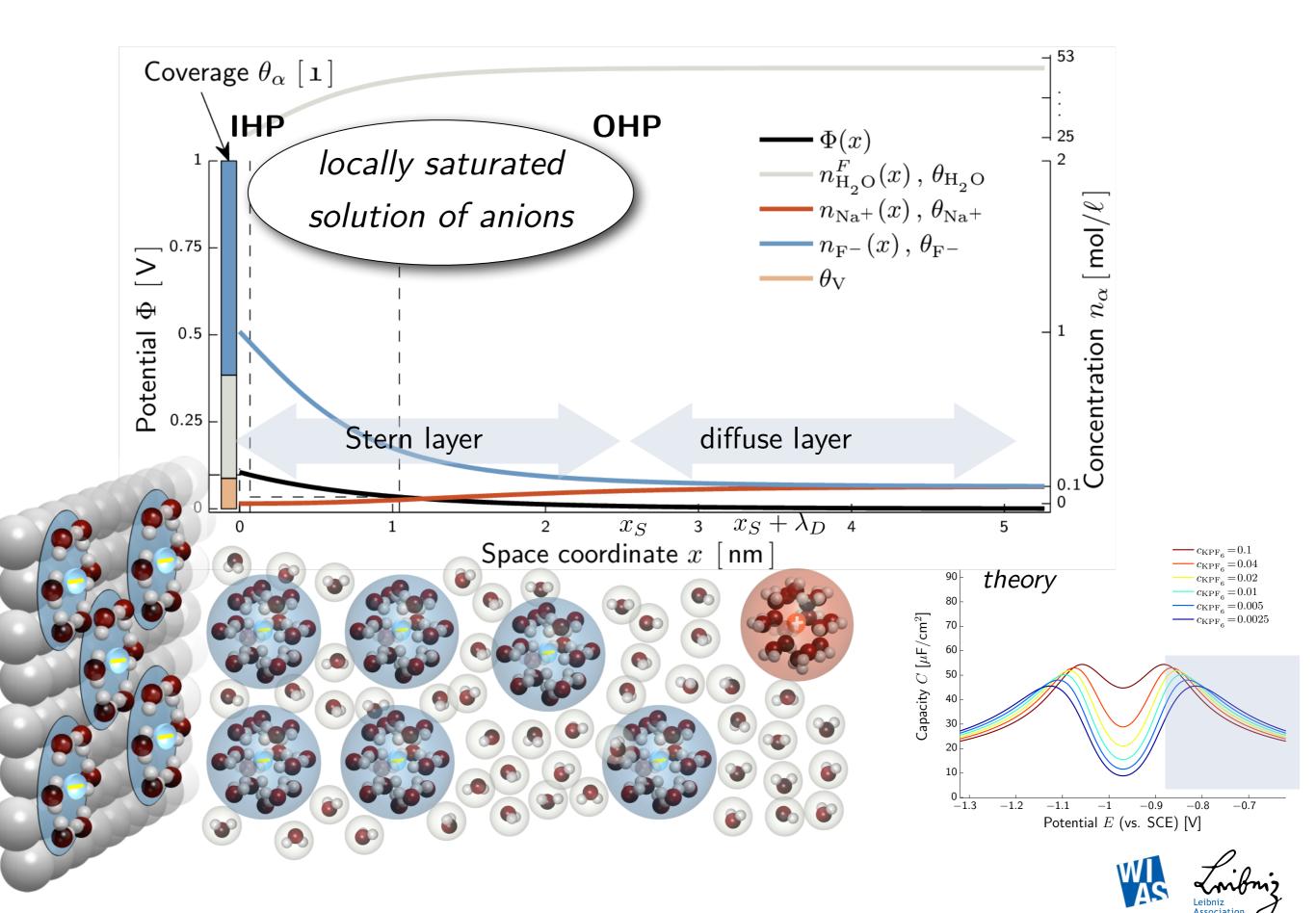
Our new definition

Stern layer

the domain $[0,x^S]$, where x^S is the inflection point of the free charge density q^{F} , i.e. $\partial_{xx}q^{\mathsf{F}}\big|_{x=x^S}=0$. If no inflection point is present, no Stern layer is formed.



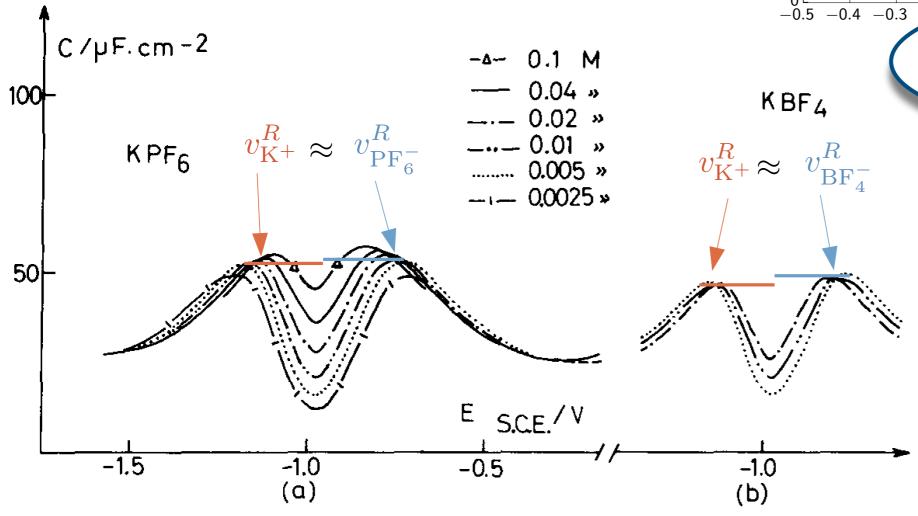
High potential regime (>60mV)

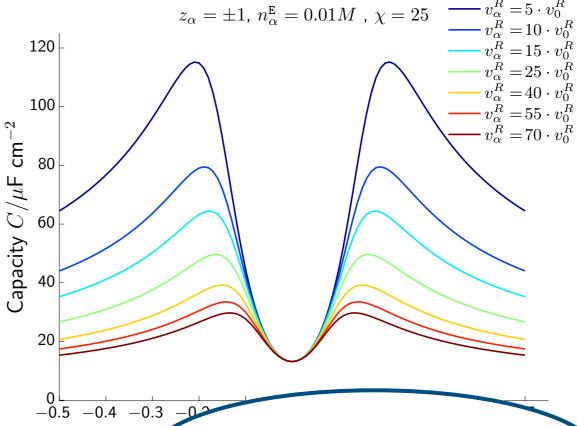


Some consequences

Capacity maximum is proportional to ionic partial molar volume

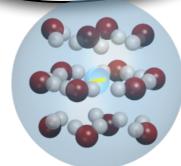
$$C^{\rm max} \propto v_{A,C}^{\rm R}$$





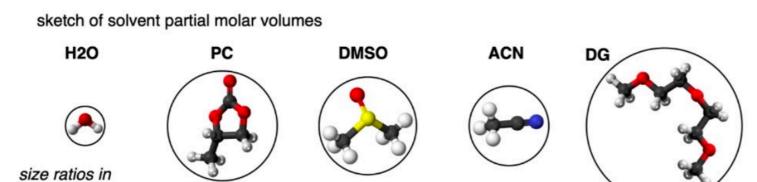
Does this apply to different solvents as well?

monovalent cations and anions have equal partial molar volumes



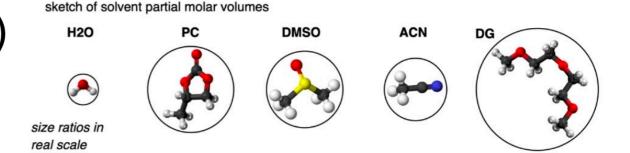
Various solvents, equal ions (KPF₆)

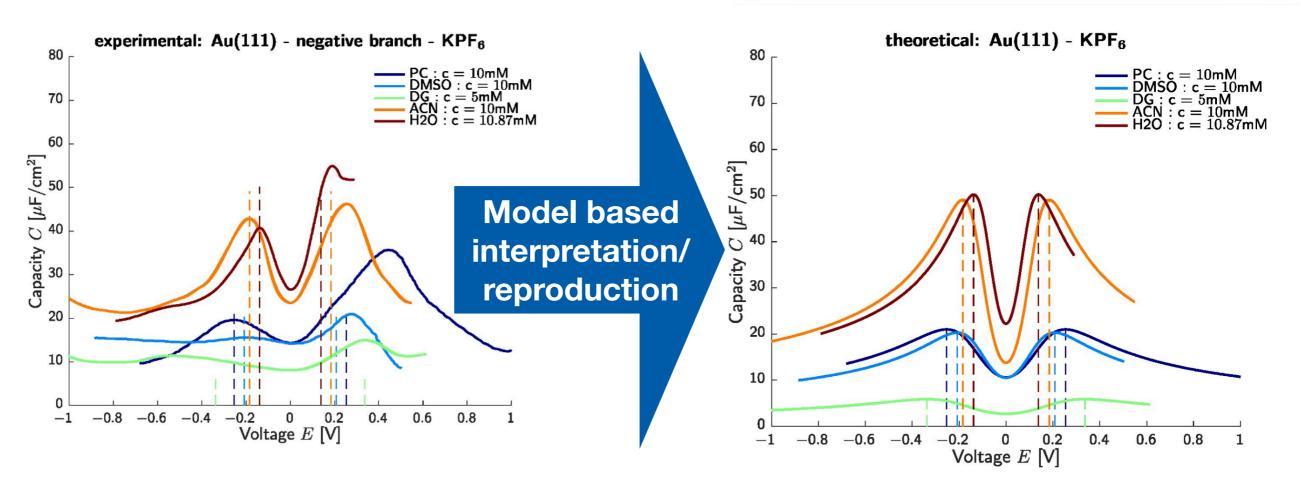
real scale



Solvent	ε ^[74,75]	<i>v</i> ₀ [L ⁻¹ mol]
DMSO	46.7	0.071
PC	69	0.085
DG	7.23	0.143
ACN	37.4	0.052
$H_2O^{[14]}$	80.2	0.018

Various solvents, equal ions (KPF₆)



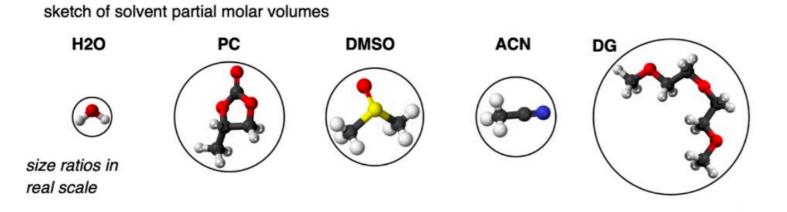


solvated ions →

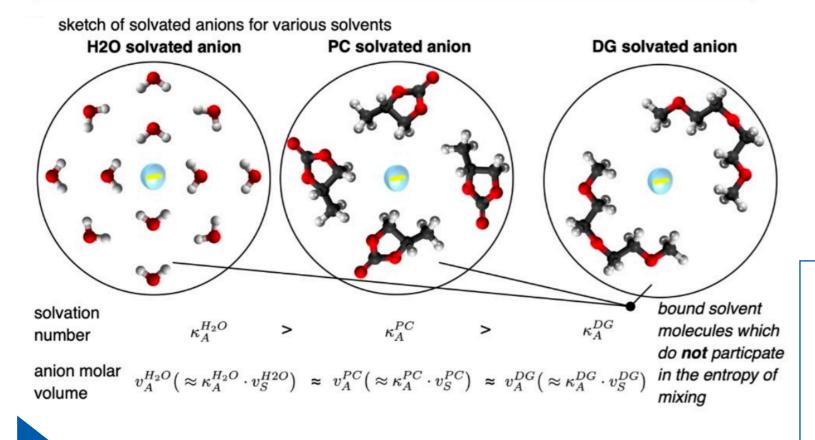
Estimated properties for some organic solvents at 25 °C (KPF ₆).							
	PC	DMSO	DG	ACN	H ₂ O		
$\widehat{r}_{A/C}$	20 1.7/L mol ⁻¹ 8.76 Å 0.51/ V 1.02	25 1.8/L mol ⁻¹ 8.93 Å 0.41/V 0.68	10 1.4/L mol ⁻¹ 8.22 Å 0.64/V 1.56	10 0.52/L mol ⁻¹ 5.91 Å 0.37/V 0.15	70 1.3/mol L ⁻¹ 8 Å 0.28/V 0.03		

$$V_{A/C} = \frac{4\pi}{3} \widehat{r}_{A/C}^3$$

Various solvents, equal ions (KPF₆)



Solvent	ε ^[74,75]	<i>v_o</i> [L ⁻¹ mol]	$\frac{v_{A/C}}{v_S}$	$V_{A/C}$ [L ⁻¹ mol
DMSO	46.7	0.071	25	1.7
PC	69	0.085	20	1.8
DG	7.23	0.143	10	1.4
ACN	37.4	0.052	10	0.52
$H_2O^{[14]}$	80.2	0.018	50-70	1.3

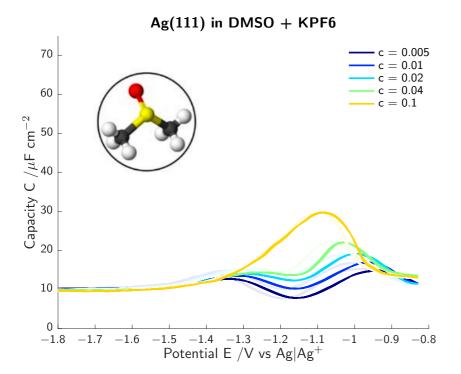


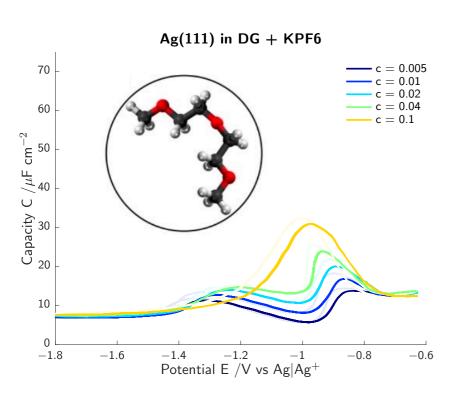
Well, Au(111) ...

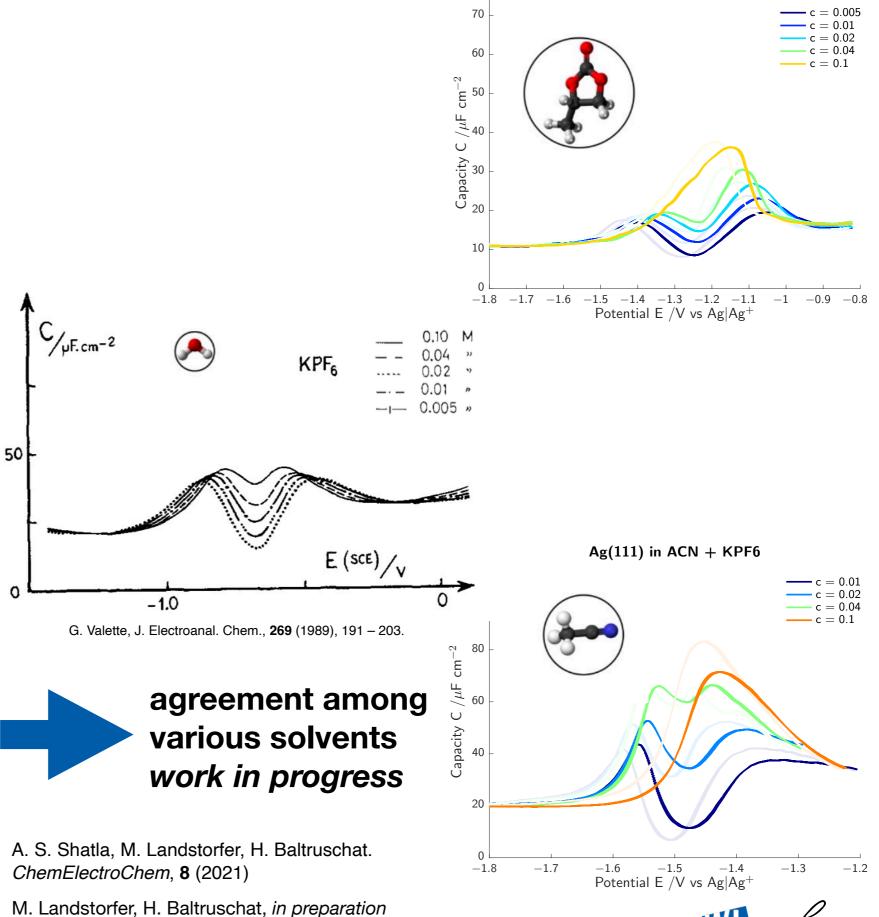
@Helmut: What about Ag(111) and complete the dataset of Valette for various solvents?

Solvated ions have *similar* partial molar volumes in the various solvents

Ag(111) - KPF6



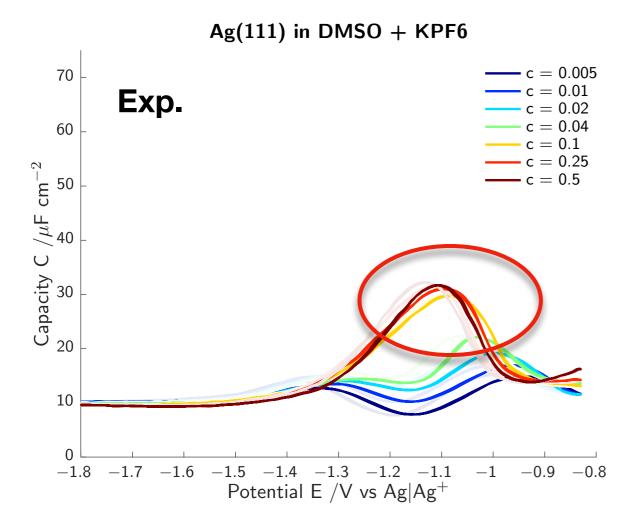




Ag(111) in PC + KPF6

M. Landstorfer, C. Guhlke and W. Dreyer, Electrochim. Acta., 2016, **201**, 187 – 219.

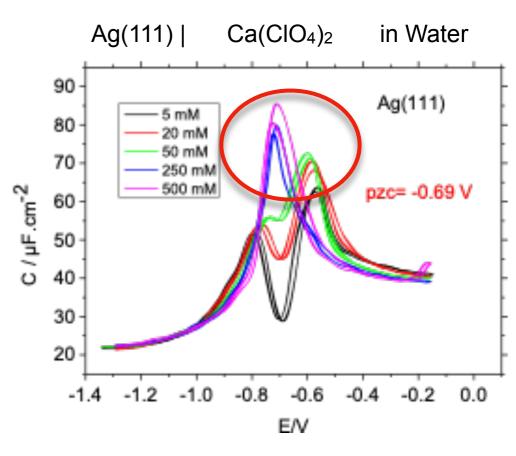
Ag(111) - KPF6 - Higher concentrations



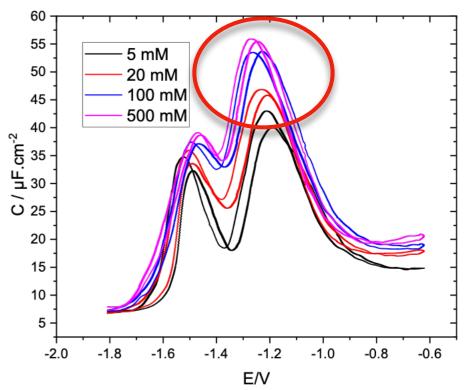
Beyond a certain concentration c>c^{max} the capacity becomes *independent of c*

Incomplete dissocation due to solvation effects

M.Landstorfer, On the dissociation degree of ionic solutions considering solvation effects. *Electrochemistry Communications*, **2018**



Ag(111) | NaClO₄ + 0.1 mM NaBr in DG



A. S. Shatla, M. Landstorfer, and H. Baltruschat. *ChemElectroChem*, **8** (2021)

Discussion - Dissociation degree

Consider 1 mol/L AC solution

common assumption: complete dissociation

Consequence: re-question dissociation reaction

$$AC|^{R} \rightleftharpoons A^{-} + C^{+}$$

1. Step: dissolution of the ion pair

$$AC|^{R} \rightleftharpoons AC$$

2. Step: dissociation of the ion pair with solvation effect

$$AC + (\kappa_A + \kappa_C)S \rightleftharpoons A^- + C^+$$

TD equilibrium condition: $\mu_{AC} + (\kappa_A + \kappa_C)\mu_S = \mu_A + \mu_C$.

same chemical potential functions as previously!

Discussion - Dissociation degree

same chemical potential functions as for the double layer capacity computation

TD equilibrium condition: $\mu_{AC} + (\kappa_A + \kappa_C)\mu_S = \mu_A + \mu_C$.

Dissociation degree: $n_A = n_C = \delta \cdot c$ and $n_{AC} = (1 - \delta)c$

TD equilibrium condition:

$$\frac{\delta^2}{(1-\delta)} \cdot \frac{c}{n_S^{\mathrm{R}} + 2(1-\kappa)\delta \cdot c + (1-\delta) \cdot c} \cdot \left(\frac{n_S^{\mathrm{R}} + 2(1-\kappa)\delta \cdot c + (1-\delta) \cdot c}{n_S^{\mathrm{R}} - 2\kappa \delta \cdot c}\right)^{2\kappa} - \mathrm{e}^{\frac{\Delta g^D}{k_B T}} = 0$$

Ostwald's dilution law: (commonly used to compute diss. degree)

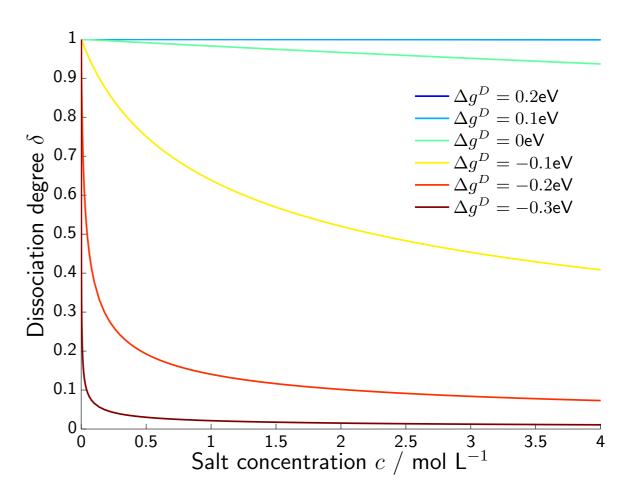
$$\frac{\delta^2}{1-\delta} \cdot \frac{c}{n_S^{\mathrm{R}}} - \mathrm{e}^{\frac{\Delta g^D}{k_{\mathrm{B}}T}} = 0$$

Discussion - Dissociation degree

Solvation mixture: $(\kappa = 30)$



Ostapakity dituriza law:



complete dissociation is impossible when solvation effects are considered!

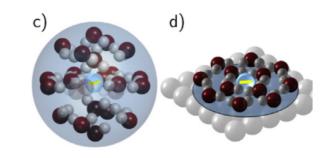
M. Landstorfer, *Electrochem. Comm.*, 2018, **59**, 56 – 59.

Beyond a certain concentration $c > c^{max}$ the capacity becomes independent of c

c^{max} can be estimated from capacity measurements and implicitly be used to determine solvation numbers

Ag(110)|NaClO4 – adsorbing solvated ions

- Capacity of single crystal Ag(111)|NaClO4(H₂O)
- Variation of the salt concentration
- Capacity depends non-linear on the applied voltage
- Unsymmetric capactiy hump



Experimental data

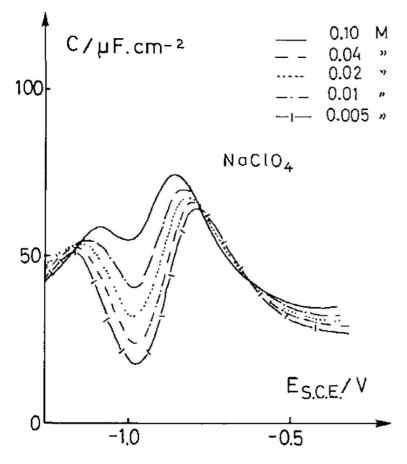
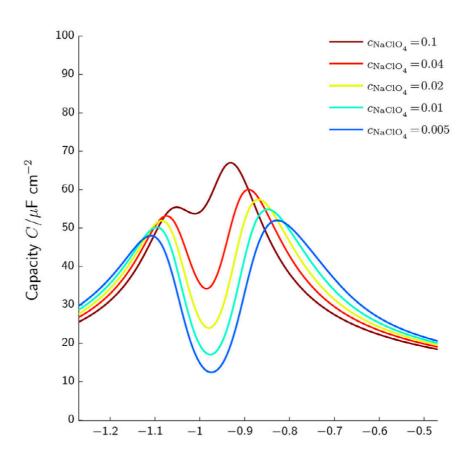


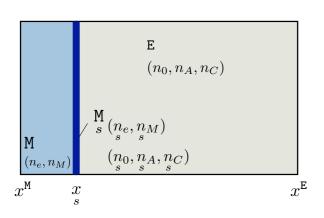
Fig. 5 of G. Valette, J. of Electroanal. Chem., 1981, 122, 285 – 297.

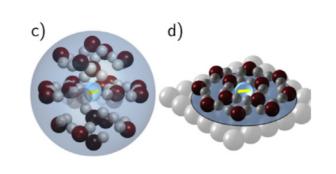
Mathematical model



M. Landstorfer, C. Guhlke and W. Dreyer, Electrochim. Acta., 2016, 201, 187 – 219.

Ag(110)|NaClO4 – adsorbing solvated ions





lacksquare Diffusional equilibrium in Ω^\pm

$$\nabla \mu_{\alpha} + e_0 z_{\alpha} \nabla \varphi = \mathbf{0}$$
 $\alpha = 1, \dots, N$

lacksquare Electrical equilibrium in Ω^\pm

$$-\varepsilon_0 \mathsf{div} \, (\nabla \varphi) = q$$

lacksquare Mechanical equilibrium in Ω^\pm

$$\nabla p = -q \nabla \varphi \qquad \text{with} \qquad q = \sum_{\alpha=0}^{N} z_{\alpha} e_{0} n_{\alpha}$$

lacksquare Adsorption equilibrium at S

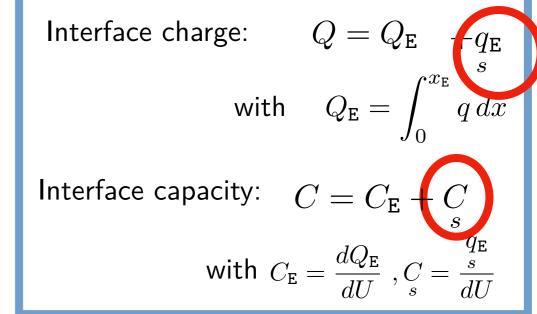
$$\mu_{\alpha} = \mu_{\alpha}|_{x} = \mu_{\alpha}|_{x} + e_0 z \alpha (\varphi - \varphi|_{x})$$

thermodynamic closure relations

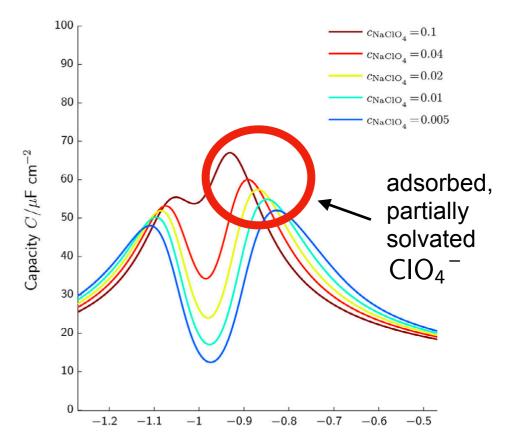
$$\mu_{\alpha} = \psi_{\alpha}^{R} + k_{B}T \ln(y_{\alpha}) - \omega_{\alpha}k_{B}T \ln(y_{V})$$

$$\frac{1}{n} = a_{V}^{R}y_{V} + \sum_{\alpha=0}^{N_{S}-2} a_{\alpha}^{R}y_{\alpha}$$

$$adsorption \ sites$$
Constant number of adsorption sites

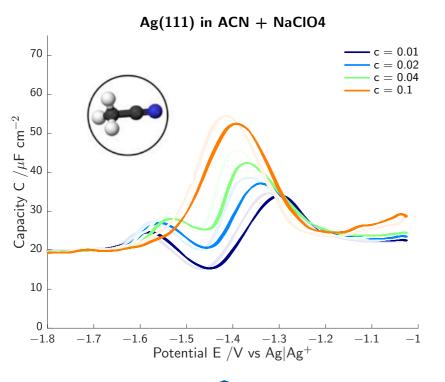


Mathematical model

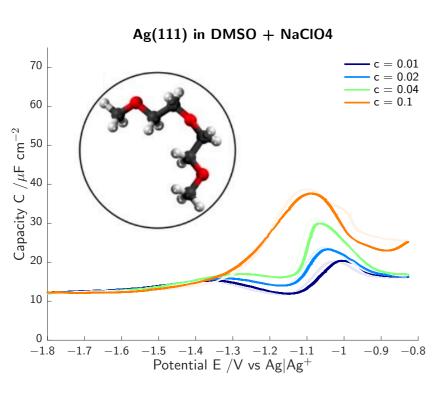


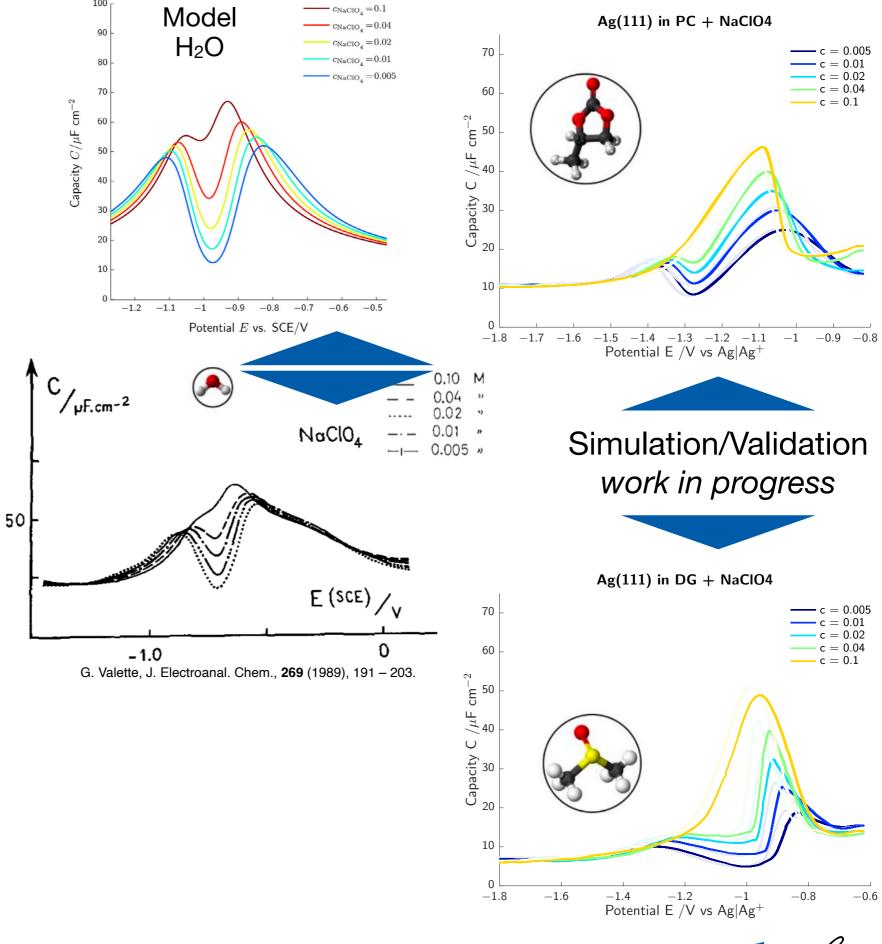
M. Landstorfer, C. Guhlke and W. Dreyer, Electrochim. Acta., 2016, **201**, 187 – 219.

Ag(111) | NaClO4



Simulation/Validation work in progress





M. Landstorfer, H. Baltruschat, in preparation

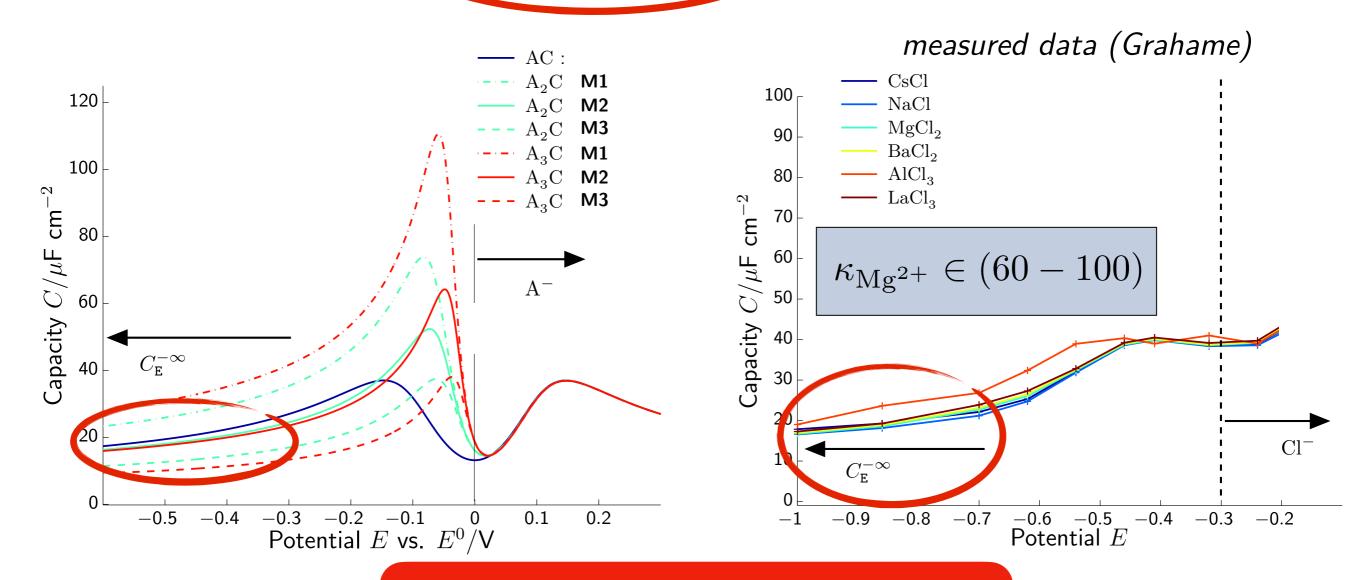
Discussion - multivalent ions

Consider solutions 0.1M AC, 0.5M A₂C, 0.33M A₃C

what is the relationship between partial molar volume and charge number?

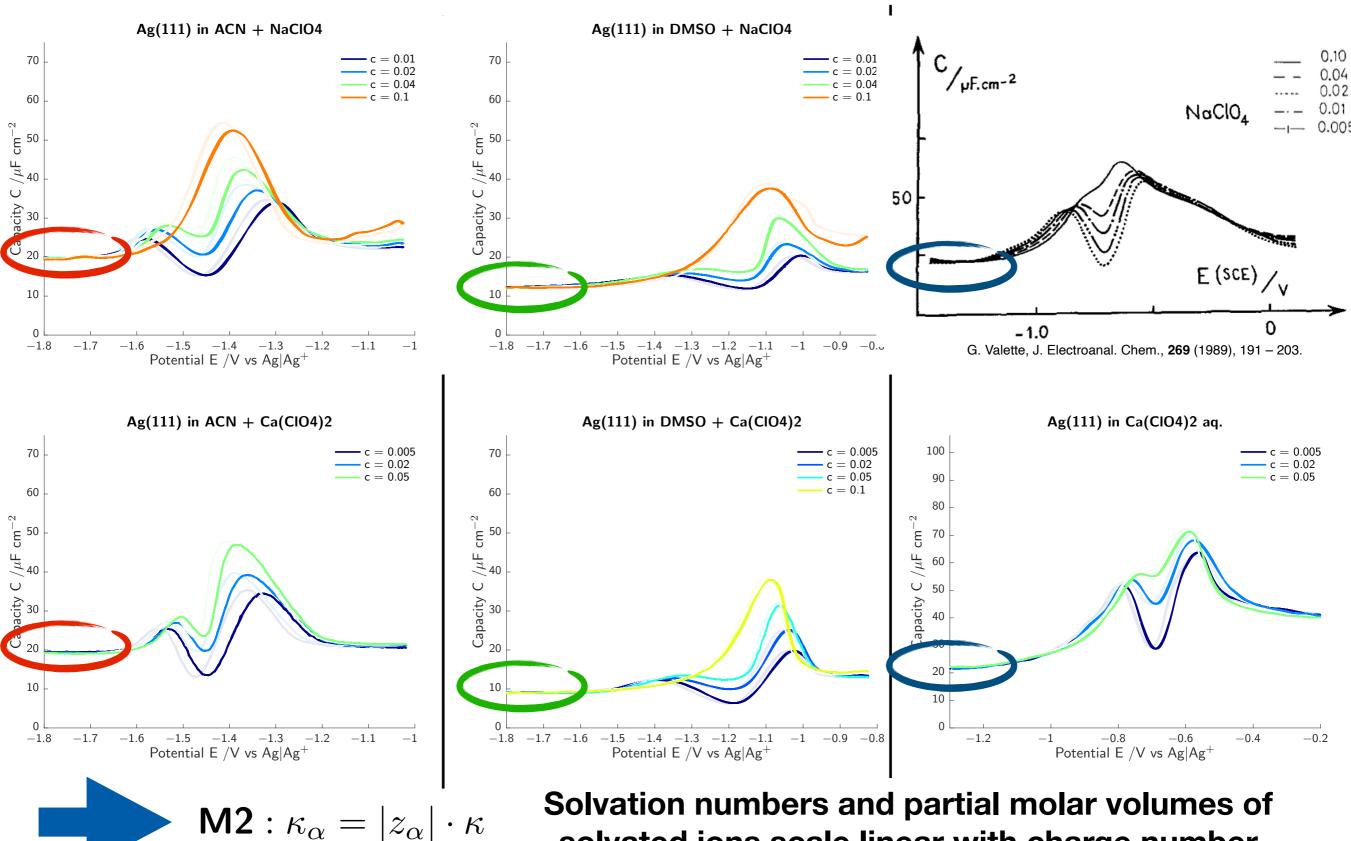
$$\mathbf{M1}: \kappa_{lpha} = \kappa$$
 $\mathbf{M2}: \kappa_{lpha} = |z_{lpha}| \cdot \kappa$ $\mathbf{M3}: \kappa$

$$\mathbf{M3}: \kappa_{\alpha} = |z_{\alpha}|^2 \cdot \kappa$$



less reliable experimental data for multivalent ions available

Multivalent ions

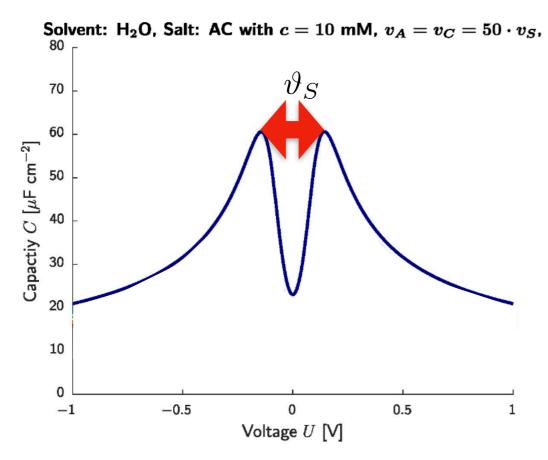


solvated ions scale <u>linear</u> with charge number

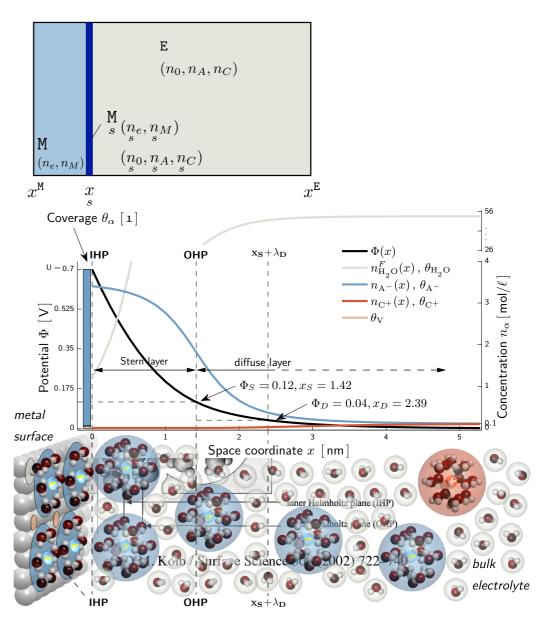
Adsorption of solvent molecules

Yet: Adsorption of surface species do **not** contribute to the overall potential drop

Main consequence: Capacity maxima width ϑ_S is equal for all solvents (fixed concentration, susceptibility, molar volumes)



work in progress



M. Landstorfer et. al, *Electrochim. Acta.*, 2016, **201**, 187 – 219.

Adsorption of solvent molecules

Experimental: Capacity width ϑ_S dependent on the solvent adsorption

Requirement: Adsorption of (solvent) species contributes to the overall potential drop

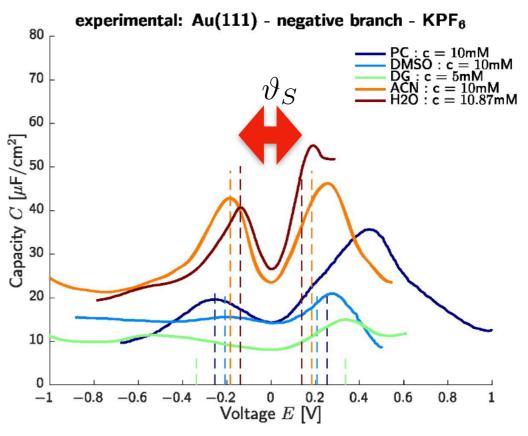
$$U - U_{\rm pzc} = U^S + U^{M,E} \approx (1 + \eta_S) \cdot U^{M,E}$$
 Linear potential drop across the solvent adsorption layer

Consequences:

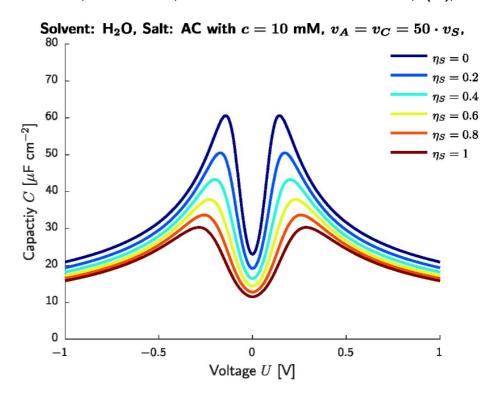
- Capacity **maxima width dependent** on the solvent coefficient η_S
- Capacity scales with η_S

$$C = \frac{dQ}{dU} = \frac{1}{1 + \eta_S} \frac{dQ}{dU^{M,E}}$$

Estimated properties for some organic solvents at 25 °C (KPF ₆).					
	PC	DMSO	DG	ACN	H ₂ O
$\eta_{\scriptscriptstyle S}$	1.02	0.68	1.56	0.15	0.03



A. S. Shatla, M. Landstorfer, and H. Baltruschat. ChemElectroChem, 8(10), 2021.



Charge stored in the interface: $Q_{\text{poly}}(E) = -\frac{1}{|\Sigma|} \int_{\Omega^{\text{E}}} q(x) \, dx$

Double layer capacity (*measurable*): $C_{\text{poly}} = \frac{dQ_{\text{poly}}}{dE}$

thermodynamic equilibrium

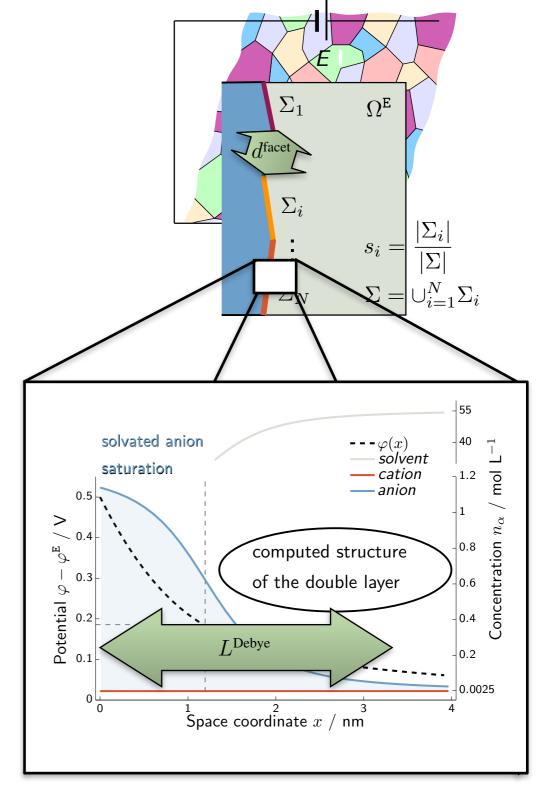
 \rightarrow Single-crystal functions: $(\hat{Q}^{BL}(U), \hat{C}^{BL}(U))$

Two scaling parameters

- double layer width $L^{
 m Debye}$
- faced diameter $d^{
 m facet}$

some results

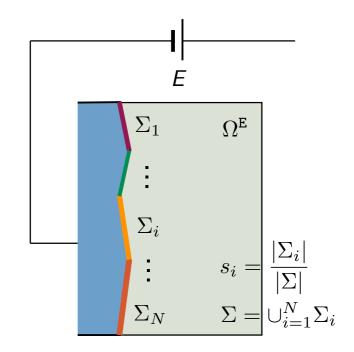
$$(\textbf{M1)} \quad \frac{d^{\text{facet}}}{L^{\text{Debye}}} \rightarrow \infty \quad \begin{cases} Q_{\text{poly}} = \sum_{i=1}^{N} s_i \cdot \hat{Q}^{\text{BL}} \left(E + \frac{1}{e_0} \mu_e^i - E^{\textit{ref}} \right) \\ E_{\text{poly},\infty}^{\text{PZC}} = E \quad \text{s.t.} \quad Q_{\text{poly},\infty}(E) \stackrel{!}{=} 0 \end{cases} \\ C_{\text{poly}} = \sum_{i=1}^{N} s_i \cdot \hat{C}^{\text{BL}} \left(E + \frac{1}{e_0} \mu_e^i - E^{\textit{ref}} \right) \end{cases}$$



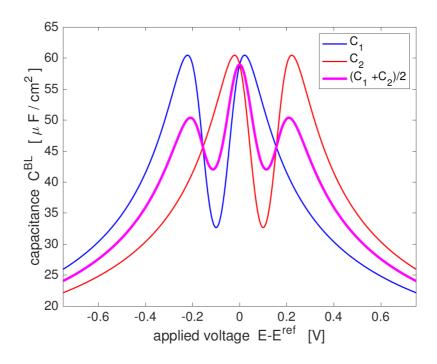
R. Müller, J. Fuhrmann and M. Landstorfer, *Journal of The Electrochemical Society*, 2020, **167**, 106512.

some results

$$(\textbf{M1)} \quad \frac{d^{\text{facet}}}{L^{\text{Debye}}} \rightarrow \infty \quad \begin{cases} Q_{\text{poly}} = \sum_{i=1}^{N} s_i \cdot \hat{Q}^{\text{BL}} \left(E + \frac{1}{e_0} \mu_e^i - E^{\textit{ref}} \right) \\ E_{\text{poly},\infty}^{\text{PZC}} = E \quad \text{s.t.} \quad Q_{\text{poly},\infty}^{\text{BL}}(E) \stackrel{!}{=} 0 \\ C_{\text{poly}} = \sum_{i=1}^{N} s_i \cdot \hat{C}^{\text{BL}} \left(E + \frac{1}{e_0} \mu_e^i - E^{\textit{ref}} \right) \end{cases}$$



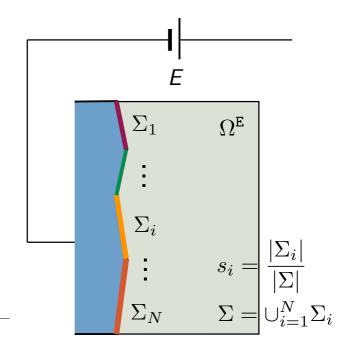
simple example: symmetric bi-crystal



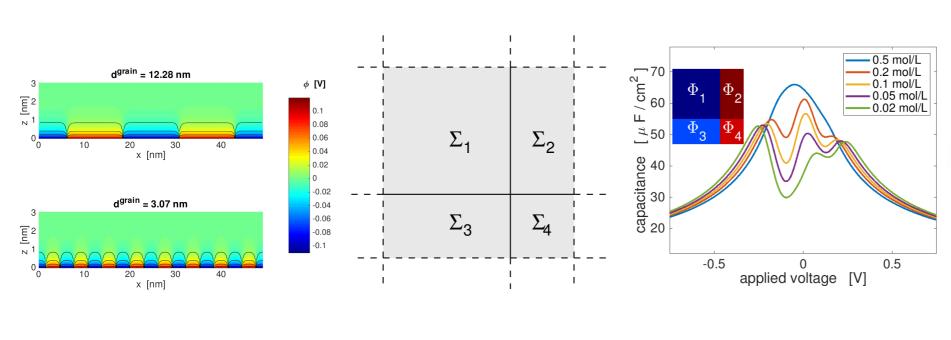
R. Müller, J. Fuhrmann and M. Landstorfer, *Journal of The Electrochemical Society*, 2020, **167**, 106512.

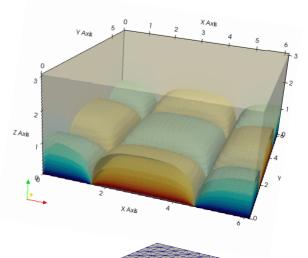
some results

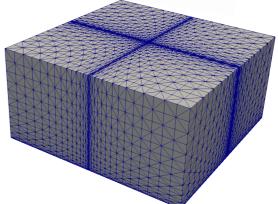
$$(\textbf{M1}) \quad \frac{d^{\text{facet}}}{L^{\text{Debye}}} \rightarrow \infty \quad \begin{cases} Q_{\text{poly}} = \sum_{i=1}^{N} s_i \cdot \hat{Q}^{\text{BL}} \left(E + \frac{1}{e_0} \mu_e^i - E^{ref} \right) \\ E_{\text{poly},\infty}^{\text{PZC}} = E \quad \text{s.t.} \quad Q_{\text{poly},\infty}^{\text{BL}}(E) \stackrel{!}{=} 0 \\ C_{\text{poly}} = \sum_{i=1}^{N} s_i \cdot \hat{C}^{\text{BL}} \left(E + \frac{1}{e_0} \mu_e^i - E^{ref} \right) \end{cases}$$



general case: 2D- and 3D-FEM implementation



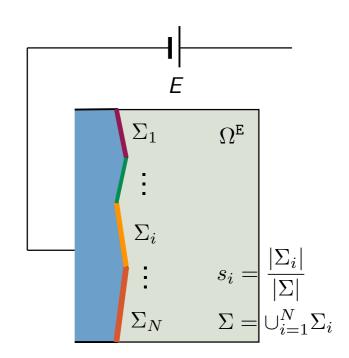




R. Müller, J. Fuhrmann and M. Landstorfer, Journal of The Electrochemical Society, 2020, 167, 106512.

some results

$$(\textbf{M1)} \quad \frac{d^{\text{facet}}}{L^{\text{Debye}}} \rightarrow \infty \quad \begin{cases} Q_{\text{poly}} = \sum_{i=1}^{N} s_i \cdot \hat{Q}^{\text{BL}} \left(E + \frac{1}{e_0} \mu_e^i - E^{ref} \right) \\ E_{\text{poly},\infty}^{\text{PZC}} = E \quad \text{s.t.} \quad Q_{\text{poly},\infty}^{\text{BL}}(E) \stackrel{!}{=} 0 \\ C_{\text{poly}} = \sum_{i=1}^{N} s_i \cdot \hat{C}^{\text{BL}} \left(E + \frac{1}{e_0} \mu_e^i - E^{ref} \right) \end{cases}$$



transition to a labeling regarding work-function values ω

- \rightarrow introduction of a distribution function $f(\omega)$ of the surface fraction
- → stochastic description of polycrystalline surfaces

$$\sum_{i=1}^{N} s_i = \int_{-\infty}^{\infty} f(\omega) d\omega = 1.$$

$$\text{(M2)} \quad \frac{d^{\text{facet}}}{L^{\text{Debye}}} \rightarrow \infty \qquad \begin{cases} Q_{\text{poly}} = (f * \hat{Q}^{\text{BL}})(E) \\ E_{\text{poly},\infty,f}^{\text{PZC}} = E \quad \text{s.t.} \quad Q_{\text{poly},\infty,f}^{\text{BL}}(E) \stackrel{!}{=} 0 \\ C_{\text{poly}} = (f * \hat{C}^{\text{BL}})(E) \end{cases}$$

Concentration and Field dependent Susceptibility

$$\varepsilon_0(1+\chi)\operatorname{div}\nabla\varphi=-q^{\mathsf{F}}(\varphi,p)$$

$$\nabla p=-q^{\mathsf{F}}(\varphi,p)\nabla\varphi$$

 $\chi \neq {\sf const.}$

How to model this?

Concentration and Field dependent Susceptibility

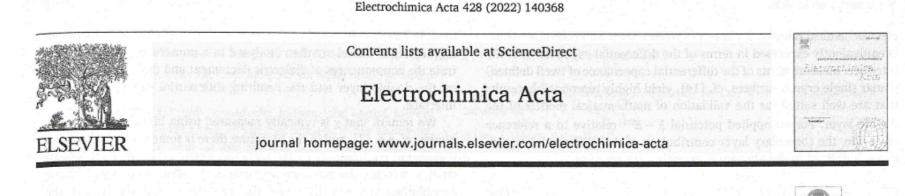
We seek a transition $\chi \to \chi((n_{\alpha})_{\alpha}, |\boldsymbol{E}|^2)$

Can't we just insert our new $\chi((n_{\alpha})_{\alpha}, |\mathbf{E}|^2)$ in the Poisson equation ?

$$-\mathsf{div}\left(arepsilon_0(1+\chi)
ablaarphi
ight)=q(arphi,p)$$

No, you can't

The whole equation system has to be re-derived in order to ensure overall thermodynamic consistently → contributions also to the chemical potential!



Thermodynamic models for a concentration and electric field dependent susceptibility in liquid electrolytes

M. Landstorfer a, R. Müller a,*

Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany

Concentration and Field dependent Susceptibility

Concentration and field dependent susceptibility

$$\nabla p = q \, \boldsymbol{E} + \hat{\chi}^{(3)}((n_{\alpha})_{\alpha}, |\boldsymbol{E}^{2}|)(\boldsymbol{\nabla}\boldsymbol{E})\boldsymbol{E}$$

$$\varepsilon_{0} \operatorname{div}((1 + \hat{\chi}^{(3)}((n_{\alpha})_{\alpha \in \mathcal{I}}, |\boldsymbol{E}^{2}|))\boldsymbol{E}) = q .$$

$$q = q \, (\varphi, p^{\mathsf{mat}}, |\boldsymbol{E}|)$$

M. Landstorfer, R. Müller, Thermodynamic models for a concentration and electric field dependent susceptibility in liquid electrolytes, Electrochimica Acta, 2022, 428

Constant susceptibility

$$\varepsilon_0(1+\chi)\mathrm{div}\,\nabla\varphi=-q^{\mathsf{F}}(\varphi,p)$$

$$\nabla p=-q^{\mathsf{F}}(\varphi,p)\nabla\varphi$$

M. Landstorfer, C. Guhlke and W. Dreyer, Electrochimica Acta, 2016, 201.

diffusional equilibrium

$$\nabla(\mu_{\alpha} + e_0 z_{\alpha} \varphi) = 0 \quad \text{ for all } \alpha \in \mathcal{I}$$

$$\mu_{\alpha}^{\mathsf{pol}} = -\frac{\varepsilon_0}{2} v_{\alpha}^{\mathsf{E}} X_{\alpha}(|\boldsymbol{E}|^2)$$

$$y_{\alpha}(x) = y_{\alpha}^{\text{bulk}} \cdot \exp\left(-\frac{e_0 z_{\alpha}}{k_B T}(\varphi(x) - \varphi^{\text{bulk}}) - \frac{v_{\alpha}^{\text{E}}}{k_B T}(p^{\text{mat}}(x) - p^{\text{bulk}}) + \frac{1}{k_B T}\mu_{\alpha}^{\text{pol}}(|\boldsymbol{E}(x)|)\right) \quad = \hat{y}_{\alpha}(\varphi, p^{\text{mat}}, |\boldsymbol{E}|)$$

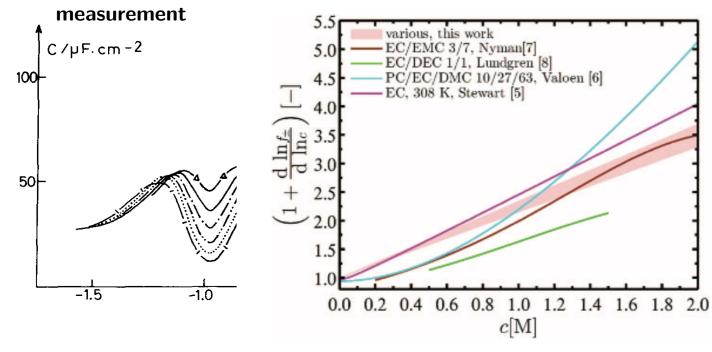
Modeling - Electrolyte - Transport

$$\mu_{\alpha} = g_{\alpha}^{\mathsf{E}} + k_{\mathsf{B}} T \ln \left(\frac{n_{\alpha}}{\sum_{\beta} n_{\beta}} \right) + v_{\alpha}^{\mathsf{E}} (p - p^{\mathsf{E}})$$

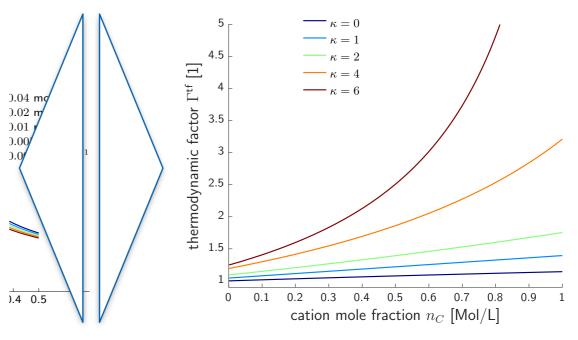
$$\mathbf{J}_{\alpha} = D_{\alpha} \frac{n_{\alpha}}{k_{\mathrm{B}} T} (\nabla \hat{\mu}_{\alpha} + e_{0} z_{\alpha} \nabla \varphi)$$

with
$$\mu_{\alpha} - \frac{m_{\alpha}}{m_0} \mu_0 =: \hat{\mu}_{\alpha}$$

Thermodynamic factor $\Gamma^{\rm tf} = \frac{n_{\alpha}}{k_{\rm B}T} \cdot \frac{d\hat{\mu}_{\alpha}}{dn_{\alpha}}$



J. Landesfeind, A. Ehrl, M. Graf, W. A. Wall, H. A. Gasteiger. *J. Electrochem. Soc.*, **163**(7):A1254–A1264, 2016.



M. Landstorfer, WIAS Preprint, in prep.

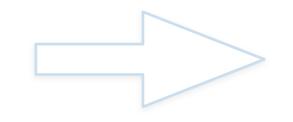
Incompressible solvation mixture

Modeling - Electrolyte - Transport - Nernst-Planck

binary electrolyte without cross-diffusion coefficients

$$q = 0$$

$$\mathbf{J}_{A} = \frac{n_{A}}{k_{\mathrm{B}}T} \mathbf{D}_{A}^{E} \nabla \hat{\mu}_{A} + \frac{z_{A}e_{0}}{k_{\mathrm{B}}T} n_{A} \mathbf{D}_{A}^{E} \nabla \varphi$$
$$\mathbf{J}_{C} = \frac{n_{C}}{k_{\mathrm{B}}T} \mathbf{D}_{C}^{E} \nabla \hat{\mu}_{C} + \frac{z_{C}e_{0}}{k_{\mathrm{B}}T} n_{C} \mathbf{D}_{C}^{E} \nabla \varphi$$



$$\mathbf{J}_C = \Gamma^{ ext{tf}}(c)\,\overline{\mathbf{D}}\cdot
abla c + rac{\mathbf{t}_C}{e_0z_C}\cdot\mathbf{J}_q$$
 $\mathbf{J}_q = e_0z_A\mathbf{J}_A + e_0z_A\mathbf{J}_C$

$$\mathbf{J}_q = e_0 z_A \mathbf{J}_A + e_0 z_A \mathbf{J}_C$$

with

validation: molar conductivity

$$\mathbf{\Lambda} = \frac{e_0^2}{k_{\rm B}T} (\mathbf{D}_A^E + \mathbf{D}_C^E) ,$$

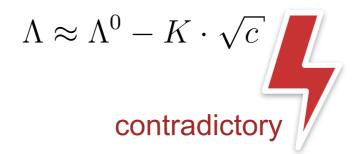
$$\overline{\mathbf{D}} = \frac{2\mathbf{D}_C^E \, \mathbf{D}_A^E}{\mathbf{D}_A^E + \mathbf{D}_C^E} \;,$$

$$\mathbf{t}_C = rac{\mathbf{D}_C^E}{(\mathbf{D}_A^E + \mathbf{D}_C^E)} \; ,$$

$$\overline{\mathbf{S}} := e_0 z_C (\mathbf{D}_C^E - \mathbf{D}_A^E)$$

simple Nernst-Planck-flux leads to a constant molar conductivity (and transference number)

Experimentally it was found by Kohlrausch around 1900 that



Nernst-Planck type fluxes violate Kohlrausch' law

M. Landstorfer, WIAS Preprint, in preparation

Modeling - Electrolyte - Transport - Cross-diffusion

binary electrolyte with cross-diffusion coefficients

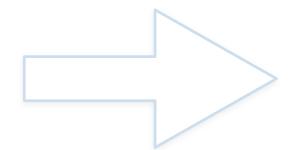
$$\mathbf{J}_A = \mathbf{M}_{A,A} \nabla \hat{\mu}_A + e_0 z_A \mathbf{M}_{A,A} \nabla \varphi$$

$$\mathbf{J}_C = \mathbf{M}_{C,C} \nabla \hat{\mu}_C + e_0 z_C \mathbf{M}_{C,C} \nabla \varphi$$

$$\mathbf{M}_{A,A} = \frac{n_A}{k_{\rm B}T} \mathbf{D}_A^E$$

$$\mathbf{M}_{C,C} = \frac{n_C}{k_{\mathrm{B}}T} \mathbf{D}_C^E$$

$$\mathbf{M}_{A,A} = \frac{n_A}{k_{\mathrm{B}}T}\mathbf{D}_A^E \qquad \qquad \mathbf{M}_{C,C} = \frac{n_C}{k_{\mathrm{B}}T}\mathbf{D}_C^E \qquad \qquad \mathbf{M}_{A,C} = f(c) \cdot \mathbf{F}_{A,C} \frac{n_C}{k_{\mathrm{B}}T}$$



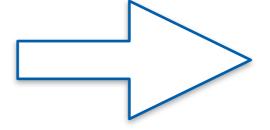
$$\mathbf{J}_C = \Gamma^{\mathsf{tf}}(c) \, \overline{\mathbf{D}} \cdot \nabla c + \frac{\mathbf{t}_C}{e_0 z_C} \cdot \mathbf{J}_q$$
$$\mathbf{J}_q = \Gamma^{\mathsf{tf}}(c) \, \overline{\mathbf{S}} \cdot \nabla c + c \, \Lambda \nabla \varphi \ .$$

lacksquare molar conductivity $oldsymbol{\Lambda} = oldsymbol{\Lambda}^0$

$$\mathbf{\Lambda}^0 = \frac{e_0^2}{k_{\rm B}T} \left(\mathbf{D}_A^E + \mathbf{D}_C^E \right)$$

Kohlrausch

$$\Lambda \approx \Lambda^0 - K \cdot \sqrt{c}$$



$$f(c) = \sqrt{c}$$

cross-coefficients can simply explain Kohlrausch' law!

M. Landstorfer, WIAS Preprint, in preparation

Intercalation electrode - electrolyte interface

$$\operatorname{Li}^{+}\Big|_{\operatorname{E}} + \operatorname{e}^{-}\Big|_{\operatorname{A}} \Longrightarrow \operatorname{Li}\Big|_{\operatorname{A}} + \kappa_{\operatorname{E}} \cdot \operatorname{S}\Big|_{\operatorname{E}}$$

Active phase transport equations

and chemical potential functions

 $\mathbf{J}_{Li(A)} \propto \nabla$

Surface reaction rate for intercalation reaction

$$R_s = L_s \cdot \left(e^{\alpha \cdot \frac{1}{k_B T} \frac{\lambda}{s}} - e^{-(1-\alpha) \cdot \frac{1}{k_B T} \frac{\lambda}{s}} \right)$$

with

$$\lambda_{s} = (\mu_{Li(A)})_{\Sigma} + \kappa_{E} \mu_{S}|_{\Sigma}$$

$$- (\mu_{Li} + ||_{\Sigma} - \mu_{e^{-}}|_{\Sigma} + e_{0}(\varphi^{A}) - (\varphi^{E})$$

Electrolyte transport equations

and chemical potential functions

$$\mathbf{J}_{Li^+} \propto (
abla \mu_{Li^+},
abla arphi^{ extsf{E}},
abla arphi^{ extsf{E}}$$
 $\mathbf{J}_S \propto
abla \mu_S$

W. Dreyer, C. Guhlke, R. Müller. A new perspective on the electron transfer: recovering the butler-volmer equation in non-equilibrium thermodynamics. *Phys. Chem. Chem. Phys.*, **18** (2016), 24966–24983.

M. Landstorfer, Boundary conditions for electrochemical interfaces, *J. Electrochem. Soc.* **164**(2017), 3671–3685

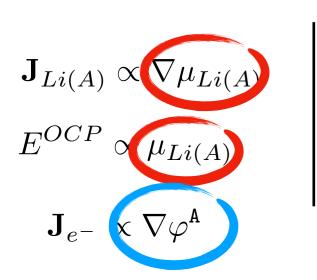
2nd law of surface thermodynamics:

$$L_s \cdot \left(e^{\alpha \cdot \frac{1}{k_B T} \lambda} - e^{-(1-\alpha) \cdot \frac{1}{k_B T} \lambda} \right) \cdot \lambda \ge 0$$

Intercalation electrode - electrolyte interface

Active phase transport equations and chemical

potential functions



Surface reaction rate for intercalation reaction

$$R_s = L_s \cdot \left(e^{\alpha \cdot \frac{1}{k_B T} \frac{\lambda}{s}} - e^{-(1-\alpha) \cdot \frac{1}{k_B T} \frac{\lambda}{s}} \right)$$
 with
$$\lambda_s = \mu_{Li(A)} \sum_{\Sigma} + \kappa_{\Sigma} \mu_{S} |_{\Sigma}$$

Electrolyte transport equations

and chemical potential functions

$$\mathbf{J}_{Li^+} \propto (
abla \mu_{Li^+},
abla arphi^{ extsf{E}})$$
 $\mathbf{J}_S \propto
abla \mu_S$

This coupling ensures overall thermodynamic consistency (and thus predictablility)

M. Landstorfer, M. Ohlberger, S. Rave, M. Tacke, *European Journal of Applied Mathematics*, **2022**, 1-38.

Questions

Thank you for your attention

Acknowledgment for funding

