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Overview

1 - Functions on the data, parametrizations, embeddings, and features;

2 - Connections with classical signal processing;

3 - Fourier global analysis;

4 - Multiscale analysis;

5 - Examples.
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Functions on the data

We are presented with a data set, modeled for example as a point cloud in Rn, or
a graph. Most (all?) the questions about this data sets and tasks we want to
perform with it can be cast in terms of analysis of functions on the data set.

For example:

• Semi-supervised learning: some data points are labeled as belonging to
certain classes, and would like to assign labels to non-labeled points. Well,
given labels {Lj}j=1,...,J on X̃ ⊆ X, I can consider the J functions
{χLj}j=1,...,J on X̃ defined by χLj (x̃) = 1 if x̃ ∈ X̃ was labeled as Lj , and 0
otherwise. The question is about “extending” or “interpolating” the
functions χLj at all the points in X.

• Given a preference function for a subset of the points X̃ (e.g. preference
function on a set of movies/products/music/...), predict how much I am
likely to prefer a point X \ X̃: again an “extension” or “interpolation”
problem, for the preference function.
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Parametrizations

A parametrization on a subset of the data provides a mapping from data points
to Rd, with good properties (e.g. small distortion). “It locally re-orders the point
in an Euclidean way”, in such a way that Euclidean constructions can be applied
to the portion of the data being parametrized. It also reveals intrinsic
dimensionality of the data.

Example of techniques: local principal component analysis, Jones’ β-numbers for
determining dimensionality; isomap, LLE, Laplacian eigenmaps, LTSA, and
several others for nonlinear parametrization.

Parameters found with the above techniques may (or not) be interpreted as a
physical/probabilistic/... variables which governing the structure of the problem.
This is of course not guaranteed, since the algorithms above do not know what
interpretability means.
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Embeddings

Here I use this as a synonym of parametrization, maybe with an emphasis on the
metric and distortion properties. For example the emphasis may be to map from
a metric space into Euclidean space (maybe low-dimensional), with small
distortion: this is the goal of classical multidimensional scaling (see M. Trosset’s
talk) and its generalizations and particularizations, such as approximate
multiscale (Bourgain) and measured descent embeddings (Assaf Naor et al.),
randomized projections (Lindenstrauss), hierarchical tree approximations
(Bartal), etc...
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Connections with classical signal processing

The above justifies the need to be able to perform analysis, regularization,
denoising, interpolation and extrapolation of functions on the data. Of course we
do this all the time for functions defined on one-dimensional (e.g. sounds) or
low-dimensional (images, movies, hyper-spectral images...) functions. Many
successful algorithms in low-dimension are often based on the availability of good
basis functions: in particular the Fourier basis and wavelet bases have been
proven to be excellent tools. They have also provided extremely useful in
harmonic analysis, pure and applied, for example they lead to state-of-the-art
solvers for PDEs certain very important classes of integral equations. [More
about this on my talk in the Math Department on Monday!]. Main idea: write

f =
∑

k

αkψk

where ψk are the basis elements (this is just a change of coordinates!), then work
on the new coordinates αk. When is this change of basis useful? If tasks such as
denoising, compression or others (e.g. evolving a PDE) become much easier in
these coordinates.
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One slide about Fourier analysis

(i) Fourier: approximate solutions of the heat equation on the interval [0, π] (or
rectangle) with sine and cosine functions: φk(x) = sin(kx).

(ii) Fourier on Euclidean domains: instead of sines and cosines need the
eigenfunctions of the Laplacian on the domain: φk :

∆φk = λkφk .

(iii) Fourier on manifolds: as above, with the natural Laplace-Beltrami operator
on the manifold.

The good and the bad: FFT in some special cases; φk’s are global approximants,
and αk are not as sparse as one may wish, hence denoising and compression are
far from optimal.
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Laplacian on manifolds

The Laplace-Beltrami operator ∆BL can be defined naturally on a Riemannian
manifold, and is a well-studied object in differential geometry and global
analysis. The corresponding heat kernel e−t∆ is the Green’s function for the heat
equation on the manifold, associated with Brownian motion “restricted” to the
manifold. The spectral decomposition ∆φi = λiφi yields

Ht(x, y) := e−t∆(x, y) =
∑

i

e−tλi︸ ︷︷ ︸
µt

i

φi(x)φi(y) .

The eigenfunctions φi of the Laplacian generalize Fourier modes: Fourier analysis
on manifolds, global analysis.

Surprisingly, they also allow to analyse the geometry of the manifold, and
provide embeddings of the manifold (“eigenmaps” or “diffusion maps”): for
m = 1, 2, . . . , t > 0 and x ∈M, define

Φ(t)
m (x) = (µ

t
2
i φi(x))i=1,...,m ∈ Rn .
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Laplacian on Graphs

Given a weighted graph (G,W,E), the combinatorial Laplacian is defined by
L = D −W , where (D)ii =

∑
j Wij , and the normalized Laplacian is defined by

L = D− 1
2 (D −W )D− 1

2 = I −D− 1
2 WD− 1

2 .

These are self-adjoint positive-semi-definite operators, let λi and φi be the
eigenvalues and eigenvectors. Fourier analysis on graphs. The heat kernel is of
course defined by Ht = e−tL; the natural random walk is D−1W .

If

• points are drawn from a manifold according to some (unknown) probability
distribution [M. Belkin, P. Niyogi; RR Coifman, S. Lafon], or

• points are generated by a stochastic dynamical system driven by a
Fokker-Planck equation [RR Coifman, Y. Kevrekidis, S. Lafon, B. Nadler]

the Laplace-Beltrami operator and, respectively the Fokker-Planck operator, can
be approximated by a graph Laplacian on the discrete set of points with certain
appropriately estimated weights.
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Graph associated with data sets

A deluge of data: documents, web searching, customer databases, hyper-spectral
imagery (satellite, biomedical, etc...), social networks, gene arrays, proteomics
data, financial transactions, traffic statistics (automobilistic, computer
networks)...

Assume we know how to assign local similarities: map data set to weighted
graph. Global distances are not to be trusted!

Data often given as points in high-dimension, but constraints (natural,
physical...) force it to be intrinsically low-dimensional.

Model the data as a weighted graph (G,E, W ): vertices represent data points
(correspondence could be stochastic), edges connect similar data points, weights
represent a similarity measure. Example: have an edge between web pages
connected by a link; or between documents with very similar word frequencies.
When points are in high-dimensional Euclidean space, weights may be a function
of Euclidean distance, and/or the geometry of the points. How to define the
similarity between very similar objects in each category is important but not
always easy. That’s the place where field-knowledge goes.
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Weights from a local similarity kernel

The similarity between points of a set X can be summarized in a kernel K(x, y)
on X ×X. Usually we assume the following properties of K:

K(x, y) = K(y, x) (symmetry)

K(x, y) ≥ 0 (positivity − preserving)

〈v, Kv〉 ≥ 0 (positive semi− definite)

If X ⊆ Rn, then choices for K include e−(
||x−y||

δ )2 , δ
δ+||x−y|| ,

〈x,y〉
||x||||y|| .

If some “model” for X is available, the kernel can be designed to be consistent
with that model.

In several applications, one starts by applying a map to X (projections onto
lower-dimensional subspaces, nonlinear maps, etc...) before constructing the
kernel.
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Eigenfunctions of the Laplacian on data sets

We have already seen in other talks that eigenfunctions of the Laplacian can be
used as:

• Embedding, as a particular case of (kernelized) MDS (M. Trosset’s talk)

• Local coordinate systems with good distortion properties (P. Jones’ talk)

• Study large-time diffusion on the graph and diffusion distances between
points on the graph (R. Coifman, S. Lafon, A. Tomkins’s talks)

These are useful for further tasks in semi-supervised learning, classification and
clustering, as shown by several people, working on several different data sets. For
example: image segmentation (Shi-Malik), classifiers in the semi-supervised
learning context [M. Belkin-P. Nyogi], fMRI data [F. Meyer, X. Shen], art data
[W Goetzmann, PW Jones, MM, J Walden], hyperspectral Imaging in Pathology
[MM, GL Davis, F Warner, F. Geshwind, A Coppi, R. DeVerse, RR Coifman],
molecular dynamics simulations [RR. Coifman, G.Hummer, I. Kevrekidis, S.
Lafon, MM, B. Nadler], text documents classification [RR. Coifman, S. Lafon, A.
Lee; RR Coifman, MM].
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Application to Hyper-spectral Pathology

For each pixel in a hyper-spectral image we have a whole spectrum (a
128-dimensional vector for example). We view the ensemble of all spectra in a
hyper-spectral image as a cloud in R128, induce a Laplacian on the point set and
use the eigenfunctions for classification of spectra into different classes, which
turn out to be biologically distinct and relevant.

On the left, we have mapped the values of the top 3 eigenfunctions to RGB.



IPAM - DS2006 Multiscale Analysis and Diffusion Wavelets - Mauro Maggioni, Yale U. 13

'

&

$

%

An example of a text document corpus

Consider about 1000 Science News articles, from 8 different categories. For each
we compute about 10000 coordinates, the i-th coordinate of document d

representing the frequency in document d of the i-th word in a fixed dictionary.
The diffusion map gives the embedding below.
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An example from Molecular Dynamics...

The dynamics of a small protein ini a bath of water molecules is approximated
by a Fokker-Planck system of stochastic equations ẋ = −∇U(x) + ẇ .

The alanine molecule

The set of states of the protein
is a noisy set of points in R36, since we
have 3 coordinates for each of the 12 atoms.
This set is a priori very complicated. However
we expect for physical reasons that the
constraints on the molecule to force this set
to be essentially lower-dimensional. We can
explore the space of states by running long
simulations, for different initial conditions.
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Example from Molecular Dynamics revisited

The dynamics of a small protein in a bath of water molecules is approximated by
a Fokker-Planck system of stochastic equations ẋ = −∇U(x) + ẇ. Many millions
of points in R36 can be generated by simulating of the stochastic ODE, U is
needed only “on the fly” and only at the current positions (not everywhere in
R36).

Embedding of the set of states of the molecule.

Then a graph
Laplacian on this set of points can
be constructed, that approximated
the Fokker-Planck operator, and the
eigenfunctions of this approximation
yield a low-dimensional
description and parametrization
of the set, as well as a subspace
in which the long-term behavior
of the system can faithfully projected.
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Shortcomings of Fourier Analysis

It is good for analysis of globally uniformly smooth functions, bad for analyzing
transient phenomena, singularities. This is mainly because the basis elements
have global support: non-zero everywhere (compare with principal components!),
so each of them is sensitive to even a local transient in the function.

In general we do not expect that the functions we are interested in are uniformly
smooth. For example, document space (as a family of mappings) is an elephant
(see D. Marchette’s talk).

Remedies: try to localize the Fourier basis! This can be achieved in many ways:
apply window functions (Gabor), local cosine bases (Coifman-Meyer). These
bases tend to be localized at a given scale: how to pick this scale? What if the
function has transients at different scales? Need basis elements at all scales,
nicely fitting together: wavelets (Grossman-Morlet, Daubechies, Coifman,
Meyer,...).
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One slide about wavelets

Wavelets are concentrated both in time and frequency. Wavelets have two
indices: φj,k is an “atom” concentrated in time at position k, width about 2−j ,
and concentrated around frequency 2j . They provide essentially the best possible
building blocks for interesting and large classes of functions, much fewer αk’s for
the representation of these functions in a wavelet basis are needed.

Initially constructed on R (late 80’s), then on Rn, and constructions on meshed
surfaces (graphics, PDEs).

We will talk about a recent general construction on graphs and manifolds, called
diffusion wavelets [Coifman, MM].
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Show example of approximation of discontinuous function!
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Multiscale Analysis, I

We would like to construct multiscale bases, generalizing classical wavelets, on
manifolds, graphs, point clouds.

The classical construction is based on geometric transformations (such as
dilations, translations) of the space, transformed into actions (e.g. via
representations) on functions. There are plenty of such transformations on Rn,
certain classes of Lie groups and homogeneous spaces (with automorphisms that
resemble “anisotropic dilations”), and manifolds with large groups of
transformations.

Here the space is in general highly non-symmetric, not invariant under ”natural”
geometric transformation, and moreover it is “noisy”.

Idea: use diffusion and the heat kernel as dilations, acting on functions on the
space, to generate multiple scales.

This is connected with the work on diffusion or Markov semigroups, and
Littlewood-Paley theory of such semigroups (a la Stein).

We would like to have constructive methods for efficiently computing the
multiscale decompositions and the wavelet bases.
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Multiscale Analysis, II

Suppose for simplicity we have a weighted graph (G,E,W ), with corresponding
Laplacian L. Let T = I − L. T is self-adjoint, and assume that high powers of T

are low-rank: T is a diffusion, so range of T t is spanned by smooth functions of
increasingly (in t) smaller gradient.

A “typical” spectrum for the powers of T would look like this:
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Multiscale Analysis, III

The idea is to let Vj be the range of T 2j−1, so that clearly Vj+1 ⊆ Vj . We would
like a localized basis of scaling functions for Vj .

Consider the matrix T 2j−1 and factor it as

T 2j−1 ∼ε Bj T̃j , Bj is N ×Nj , T̃j is Nj ×N

Columns of Bj are basis vectors, and T̃j are the coefficients of the columns of
T 2j−1 written in terms of Bj . For example:

• Bj could be a localized orthonormal basis (want a sparse QR factorization);

• Bj could be a subset of columns of T 2j−1, whose existence is guaranteed by
the Gram-Schmidt algorithm (or, better, Gu-Eisenstat). In this latter case
the entries of Bj are nonnegative, and the basis vectors are nice local bump
functions at scale j.

This is a compression step: the spectrum of T decays, so Nj decreases with j!!
This is computationally intensive: T 2j−1 fills up quite rapidly!
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Interpretation: at every scale pick a set of representative of random walkers. We
expect them to be “meaningful” communities or related documents...a “topic”.

One step further: a fully multiscale construction.

Factor T = B1T̃1 as above, then write T̃1 with respect to the basis B1 also in the
range, obtaining a square matrix T1:

T1 = T̃1B
†
1 .

This means that T1 now writes the result of diffusing a column of B1 in terms of
the basis B1, instead that the original basis. Then to go the next scale, look at
T 2

1 , and factor this to obtain B2 and T̃2, write T2 with respect to B2 in the
range, square T2, and so on! We represent the diffusion at each scale (i.e. T 2j

) in
terms of the representative random walkers Bj at that scale, both in the domain
and the range.
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Construction of (orthonormal) Diffusion Wavelets
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Summary of the Algorithm

Input: A diffusion operator represented on some orthonormal basis (e.g.:
δ-functions), and a precision ε. If you start with a document-word matrix,
construct a document graph and let the diffusion operator be the random walk
on that graph.

Output: Multiscale orthonormal or biorthogonal scaling function bases Φj and
wavelet bases Ψj , encoded through the corresponding multiscale filters Mj , as
well as T 2j

represented (compressed) on Φj .

Pictorially, each basis function in Φj is a “bump” at scale j, and T 2j

represented
on this basis is the diffusion among these bumps, at time scale 2j . One can also
think of each Φj as a point, and T 2j

as a diffusion on these points, and so this
construction gives multiscale representations of the graph itself.

This allows to construct multiscale features on the set, obtain descriptions of the
set at different scales. It also allows for a fast wavelet transform, best basis
algorithms, signal processing on graphs and manifolds, efficient application of
T 2j

, and direct inversion of the Laplacian.
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Diffusion Wavelets on the Sphere

Some diffusion wavelets and wavelet packets on the sphere, sampled randomly uniformly at 2000 points.
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Diffusion Wavelets on Dumbell manifold
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Signal Processing on Manifolds

Left: reconstruction of the function F with top 50 best basis packets. Right: reconstruction with top

200 eigenfunctions of the Beltrami Laplacian operator.
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Multiscale construction on a document corpus
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Scaling functions at different scales represented on the set embedded in R3 via (ξ3(x), ξ4(x), ξ5(x)).

φ3,4 is about Mathematics, but in particular applications to networks, encryption and number

theory; φ3,10 is about Astronomy, but in particular papers in X-ray cosmology, black holes, galaxies;

φ3,15 is about Earth Sciences, but in particular earthquakes; φ3,5 is about Biology and Anthropology,

but in particular about dinosaurs; φ3,2 is about Science and talent awards, inventions and science

competitions.
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Multiscale construction on a document corpus, II

Doclet Document Titles Words

ϕ2,3
Acid rain and agricultural pollution

Nitrogen’s Increasing Impact in agriculture

nitrogen,plant,

ecologist,carbon,

global

ϕ3,3

Racing the Waves Seismologists catch quakes

Tsunami! At Lake Tahoe?

How a middling quake made a giant tsunami

Waves of Death

Seabed slide blamed for deadly tsunami

Earthquakes: The deadly side of geometry

earthquake,wave,

fault,quake,

tsunami

ϕ3,5

Hunting Prehistoric Hurricanes

Extreme weather: Massive hurricanes

Clearing the Air About Turbulence

New map defines nation’s twister risk

Southern twisters

Oklahoma Tornado Sets Wind Record

tornado,storm,

wind,tornadoe,

speed
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Multiscale construction on a document corpus, III

Wordlets:
[university,science,study,team,group,found,psychologist,colleague,sn,finding],

[bitter, glutamate, beetle, tongue, nih, vegetable, taste, corn, pest, seed],

[monarch, tag, caterpillar, bt, butterfly, honeybee, pollen, salmon, bee, wing],

[bead, magnet, mosquito, mosquitoe, intestinal, text, alloy, sampling, coating,
sphere],

[smoker, nicotine, gum, saliva, dioxin, cavity, cigarette, neandertal, dental, coral],

[utah, powder, fungus, smith, bitter, flower, trap, asian, win, caterpillar],

[beer, wine, king, powder, antioxidant, alcohol, vitamin, drink, cholesterol, taste],

[intestinal, vaccine, immune, antibiotic, disease, salmonella, infection, pig,
infectious, pathogen],

[solvent, polymer, pcb, chemist, ozone, gray, dioxide, iq, salmon, epstein]
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Nonlinear Analysis of Images
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Scaling functions on the graph of patches extracted from an image of a white full circle on black background, with

noise.
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Potential Theory, Efficient Direct Solvers

The Laplacian L = I − T has an inverse (on ker(L)⊥) whose kernel is the Green’s
function, that if known would allow the solution of the Dirichlet or Neumann
problem (depending on the boundary conditions imposed on the problem on L).
If ||T || < 1, one can write the Neumann series

(I − T )−1f =
∞∑

k=1

T kf =
∞∏

k=0

(I + T 2k

)f .

Since we have compressed all the dyadic powers T 2k

, we have also computed the
Green’s operator in compressed form, in the sense that the product above can be
applied directly to any function f (or, rather, its diffusion wavelet transform).
Hence this is a direct solver, and potentially offers great advantages, especially
for computations with high precision, over iterative solvers.
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Final observations and conclusions

Multiscale diffusion geometry gives the ability to obtain multiscale functions on
the data, multiscale representations of the graph and of a diffusion on the graph.
These functions can be used for local parametrizations, embeddings and features.

Learning tasks can be viewed as function approximation + regularization
constraints on functions on the data, and multiscale analysis is necessary here as
much as it is in even 1D.

We are still at the beginning of exploring the possibilities offered by these ideas.
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Collaborators

• R.R. Coifman, P.W. Jones (Yale Math) [Diffusion geometry; Diffusion wavelets; Uniformization

via eigenfunctions], S.W. Zucker (Yale CS) [Diffusion geometry];

• G.L. Davis (Pathology), F.J. Warner (Yale Math), F.B. Geshwind , A. Coppi, R. DeVerse (Plain

Sight Systems) [Hyperspectral Pathology];

• S. Mahadevan (U.Mass CS) [Markov decision processes];

• A.D. Szlam (Yale) [Diffusion wavelet packets, top-bottom multiscale analysis, linear and

nonlinear image denoising, classification algorithms based on diffusion];

• J.C. Bremer (Yale) [Diffusion wavelet packets, biorthogonal diffusion wavelets];

• R. Schul (UCLA) [Uniformization via eigenfunctions; nonhomogenous Brownian motion];

• W. Goetzmann (Yale, Harvard Business School), J. Walden (Berkley Business School), P.W.

Jones (Yale Math) [Applications to finance]

• M. Mahoney (Yahoo Research), F. Meyer (UC Boulder), X. Shen (UC Boulder) [Randomized

algorithms for hyper-spectral and fMRI imaging]

• H. Mashkar (LA State) [polynomial frames of diffusion wavelets, characterization of function

spaces];

• Y. Kevrekidis (Princeton Eng.), S. Lafon (Google), B. Nadler (Weizman) [stochastic dynamics];

This talk, papers, Matlab code (currently working on a Matlab toolbox)
available at

www.math.yale.edu/∼mmm82
Thank you!


