Unsupervised learning of natural languages

David Horn
Tel Aviv University http://horn.tau.ac.il

in collaboration with
Zach Solan, Eytan Ruppin, Shimon Edelman

"Unsupervised Learning of Natural Languages"

Zach Solan, David Horn, Eytan Ruppin and Shimon Edelman
in Proc. National. Academy of Sciences. 102:11629-11634, August 16, 2005

We address the problems, fundamental to both linguistics and bioinformatics, of
-Motif extraction

- Grammar induction
i.e., inferring in an unsupervised manner what are the significant patterns in a text, and finding a set of rules that govern its production.
Given a corpus of strings (such as text, transcribed speech, nucleotide base pairs, amino acid sequence data, musical notation, etc.), our unsupervised algorithm MEX finds in it the significant motifs and ADIOS recursively distills from it hierarchically structured patterns via two integrated processes of segmentation and generalization.

Many types of sequential symbolic data possess structure that is (i) hierarchical, and (ii) context-sensitive.

- Music

- DNA sequences

ACTTGGAATTGATCCGTATAAAT.

- Protein sequences

Toy problem: Finding words in strings of letters

```
alicew a sbeginn n i ngtogeetverytiredoofsi
ttingbyhersissteronthebankandofnavinn
gnothinggtodoonceortwiceeshehadpeepped
intothebookhersis terwassreadinngbutit
hadnopiccturesorconversationnsin itand
whatistheuseof abookthoughtal iceewith
outpiccturesorconversation
(A)
```

alicewas beginning toget very tiredof sitting by h ersiste r onthebank andof having nothing todo onceortwice shehad peeped intothe book h ersiste r was reading but ithad no picture so r conversation s in itand w hatisthe useof abook thought alice without picture sor conversation
(B)

MEX: motif extraction algorithm

\square Create a graph whose vertices are letters
\square Load all strings of text onto the graph as paths over the vertices
\square Given the loaded graph consider trial-paths that coincide with original strings of text
\square Use context sensitive statistics to define leftand right-moving probabilities that are used to label the beginning and end-points of motifs

Sum of paths defines a structured graph

Creating the graph - cont'd

(1)
 $r e d o f i s i t t i n g b y h e r s i s t e r o n t h e$ $b a n k a n d o f c o n v e r s a t i o n$

$$
\text { (begin a (} 1 \text { (} \mathbf{i} \text { (e) } 0
$$

(2)
 everydoorshewalkedsadily

Number of paths, L

L	a	1	i	c	e	w	a	s
a	8770							
1	1046	4704						
1	468	912	7486					
c	397	401	637	2382				
e	397	397	488	703	13545			
w	48	48	51	66	579	2671		
a	21	21	21	23	192	624	8770	
s	17	17	17	19	142	377	964	6492
b	2	2	2	2	5	10	14	63
e	2	2	2	2	4	6	9	24
g	2	2	2	2	4	5	5	10

paths allow for the definition of conditional probabilities of (almost) any order.

Probabilities are proportional to the corresponding number of paths (through-moving flux/incoming flux).

Calculating conditional probabilities

L			P_R		
a	8770	$P(a)=0.08$	a	0.08	
1	1046	$P(\\| a)=1046 / 8770$	1	0.12	
1	486	$P($ i \mid al $)=486 / 1046$	i	0.45	
C	397	$P($ c\|ali $)=397 / 486$	C	0.85	
e	397	$P($ e\|alic $)=397 / 397$	e	1	
W	48	$\mathrm{P}($ w \mid alice $)=48 / 397$	W	0.12	
a	21		a	0.44	
S	17		S	0.81	

Right-moving probability

P_R	a	1	i	c	e	w	a	s
a	0.08							
1	0.12	0.043						
i	0.45	0.19	0.069					
c	0.85	0.44	0.085	0.022				
e	1	0.99	0.77	0.3	0.12			
w	0.12	0.12	0.1	0.094	0.043	0.024		
a	0.44	0.44	0.41	0.35	0.33	0.23	0.08	
s	0.81	0.81	0.81	0.83	0.74	0.6	0.11	0.059
b	0.12	0.12	0.12	0.11	0.035	0.027	0.015	0.0097
e	1	1	1	1	0.8	0.6	0.64	0.38
g	1	1	1	1	1	0.83	0.56	0.42

Path dependent probability matrix containing variable order Markov chains

$M\left(e_{1} e_{2} \cdots e_{k}\right)=\left(\begin{array}{ccccc}p\left(e_{1}\right) & p\left(e_{1} \mid e_{2}\right) & p\left(e_{1} \mid e_{2} e_{3}\right) & \ldots & p\left(e_{1} \mid e_{2} e_{3} \ldots e_{k}\right) \\ p\left(e_{2} \mid e_{1}\right) & p\left(e_{2}\right) & p\left(e_{2} \mid e_{3}\right) & \ldots & p\left(e_{2} \mid e_{3} e_{4} \ldots e_{k}\right) \\ p\left(e_{3} \mid e_{1} e_{2}\right) & p\left(e_{3} \mid e_{2}\right) & p\left(e_{3}\right) & \ldots & p\left(e_{3} \mid e_{4} e_{5} \ldots e_{k}\right) \\ \vdots & \vdots & \vdots & & \vdots \\ p\left(e_{k} \mid e_{1} e_{2} \ldots e_{k-1}\right) & p\left(e_{k} \mid e_{2} e_{3} \ldots e_{k-1}\right) & p\left(e_{k} \mid e_{3} e_{4} \ldots e_{k-1}\right) & \ldots & p\left(e_{k}\right)\end{array}\right)$

P_R defined going top down ; P_L defined going bottom up
Once the graph is loaded with all data, search for patterns is carried out along trial-paths, following the paths of the data.

Searching for motifs

- Mathematical formulation:

$$
M_{i j}(S)=\left\{\begin{array}{lll}
P_{R}\left(e_{i}, e_{j}\right) & \text { if } i>j & D_{R}\left(e_{i}, e_{j}\right)=\frac{P_{R}\left(e_{i}, e_{j}\right)}{P_{R}\left(e_{i}, e_{j-1}\right)}<\eta \\
P_{L}\left(e_{j}, e_{i}\right) & \text { if } i<j & D_{L}\left(e_{j}, e_{i}\right)=\frac{P_{L}\left(e_{j}, e_{i}\right)}{P_{L}\left(e_{j+1}, e_{i}\right)}<\eta \\
P\left(e_{i}\right) & \text { if } i=j
\end{array}\right.
$$

Matrix of probabilities

ALICE

The MEX algorithm

Evaluate the matrix of probabilities.
Find candidates for beginning and end-points of motifs.
Check the significance (1- α) of P_R decrease to decide on the end-point.
Rewire graph by adding the motifs as new vertices, starting with the longest and most significant motifs.
Option: Repeat with higher values of α.

The MEX (motif extraction) procedure

Weight Occurrences Length

ALICE motifs

Motifs selected in order of
-length
-weight (significance of drop)

Shown here are results of one run over a trial-path and the beginning of the list of motifs extracted from it

conversation	0.98	11	11
whiterabbit	1.00	22	10
caterpillar	1.00	28	10
interrupted	0.94	7	10
procession	0.93	6	9
mockturtle	0.91	56	9
beautiful	1.00	16	8
important	0.99	11	8
continued	0.98	9	8
different	0.98	9	8
atanyrate	0.94	7	8
difficult	0.94	7	8
surprise	0.99	10	7
appeared	0.97	10	7
mushroom	0.97	19	7
thistime	0.95	13	7
suddenly	0.94	7	7
business	0.94	7	7
nonsense	0.94	6	7
morethan	0.94	20	7
remember	0.92	10	7
consider	0.91	19	6
curious	1.00	17	6
hadbeen	1.00	20	6
however	1.00	16	6
perhaps	1.00	16	6
hastily	1.00	18	6
herself	1.00	11	10

The first paragraph of ALICE using MEX analysis with increasing values of $\alpha=0.001,0.01,0.1,0.5$

(A) alicewasbeginningtogetverytiredofsittingbyhersiste ronthebankandofhavingnothingtodoonceortwiceshehad peepedintothebookhersisterwasreadingbutithadnopict uresorconversationsinitandwhatistheuseofabookthoug htalicewithoutpicturesorconversation
(B) alice was begin n ing toget very $t i r e d o f$ sitting b y hersister onthe b an k and of ha v ing no thing to do on ceortw i ce shehad p ee p ed in tothe b ook hersister was reading but it hadno picture s or conversation sin it and what is the us e of a book thought alice with out p ic t u res or conversation
(C) alice was beginning toget very tiredof sitting $b y$ hersister onthe b an k and of ha v ing no thing to do on ceortw i ce shehad p ee p ed in tothe b ook hersister was reading but it hadno picture sor conversation s in it and what is the us e of a book thought alice with out picture s or conversation
(D) alice was beginning toget very tiredof sitting by hersister onthe bank and of hav ing nothing to do on c eortw i ce shehad p ee p ed in tothe b ook hersister was reading but it hadno picture sor conversation s in it and what is the us e of a book thoughtalice with out picture s or conversation
(E) alicewas beginning toget very tiredof sitting by hersister onthe bank and of having nothing to do onceortwice shehad peep ed intothe book hersister was reading but it hadno picture s or conversation s in it and what is theuseof ab ook thoughtalice without picture s or conversation

Application to Biology

Data: protein sequences in terms of 20 amino acids.
Example: using MEX to search for motifs in a family of 6600 enzymes, after which same motifs are used as the basis for functional classification with SVM.
Success measured by $J=t p /(t p+f p+f n)$
Vered Kunik, Zach Solan, Shimon Edelman, Eytan Ruppin and David Horn, CSB 2005.

Extracting Motifs from Enzymes

- Each enzyme sequence corresponds to a single path

Abstract

>P54233 | 1.7.1.1 LLDPRDEGTADQWIPRNASMVRFTGKHPFNGEGPLPRLMHHGFITPSPLRYVRNHGPVP KIKWDEWTVEVTGLVKRSTHFTMEKLMREFPHREFPATLVCAGNRRKEHNMVKQSIGFNWGA AGGSTSVWRGVPLRHVLKRCGILARMKGAMYVSFEGAEDLPGGGGSKYGTSVKREMAMDPSRDI ILAFMQNGEPLAPDHGFPVRMIIPGFIGGRMVKWLKRIVVTEHECDSHYHYKDNRVLPSHVDA ELANDEGWWYKPEYIINELNINSVITTPCHEEILPINSWTTQMPYFIRGYAYSGGGRKVTRVEVT LDGGGTWQVCTLDCPEKPNKYGKYWCWCFWSVEVEVLDLLGAREIAVRAWDEALNTQPEKLI WNVMGMMNNCWFRVKTNVCRPHKGEIGIVFEHPTQPGNQSGGWMAKEKHLEKSSES

- Applying MEX to oxidoreductases
- 6602 enzyme sequences
- MEX motifs are specific subsequences

Enzymes Representation

- Each enzyme is represented as a 'bag of motifs'
$>$ P54233 |1.7.1.1
LLDPRDEGTADQWIPRNASMVRFTGKHPFNGEGPLPRLMHHGFITPSPLRYVRNHGPVP KIKWDEWTVEVTGLVKRSTHFTMEKLMREFPHREFPATLVCAGNRRKEHNMVKQSIGFNWGA AGGSTSVWRGVPLRHVLKRCGILARMKGAMYVSFEGAEDLPGGGGSKYGTSVKREMAMDPSRDI ILAFMQNGEPLAPDHGFPVRMIIPGFIGGRMVKWLKRIVVTEHECDSHYHYKDNRVLPSHVDA ELANDEGWWYKPEYIINELNINSVITTPCHEEILPINSWTTQMPYFIRGYAYSGGGRKVTRVEVT LDGGGTWQVCTLDCPEKPNKYGKYWCWCFWSVEVEVLDLLGAREIAVRAWDEALNTQPEKLI WNVMGMMNNCWFRVKTNVCRPHKGEIGIVFEHPTQPGNQSGGWMAKEKHLEKSSES


```
>P54233 | 1.7.1.1
RDEGTAD, TGKHPFN, LMHHGFITP, YVRNHGPVP, WTVEVTG, PDHGFP
YHYKDN, KVTRVE, YGKYWCW, MGMMNNCWF
```

- These 1222 MEX motifs cover 3739 enzymes

Enzyme Function

- The functionality of an enzyme is determined according to its EC number
- EC number: $\mathbf{n}_{1 .} \mathbf{n}_{2} . \mathbf{n}_{\mathbf{3}} . \mathbf{n}_{4}$ (a unique identifier)
- Classification Hierarchy [Webb, 1992]
- \mathbf{n}_{1} :
- $\boldsymbol{n}_{1}, \mathbf{n}_{2}$:
${ }^{0} \mathbf{n}_{1} . \mathbf{n}_{2 .} \mathbf{n}_{3}$:
${ }^{0} \mathbf{n}_{1} . \mathbf{n}_{2} . \mathbf{n}_{3}, \mathbf{n}_{4}$:

An example:

The MEX method

- SVM classifier input:

O17433 1148	262	463	610	7987	1627	260
P19992	124	7290	27	111	3706	18128
Q01284	6652	198	1489	710	425	64
Q12723 693	145	7290	3712	65	5432	522
P14060	455	2664	848	55	128	256
Q60555 7290	3712	65	543	522	6748	7159

Classification Tasks:

- $162^{\text {nd }}$ level subclasses
- $323^{\text {rd }}$ level sub-subclasses

Basic notions in linear SVM

\square Given a set of data points x that correspond to classes $y=(1,-$ 1), i.e. given pairs of $\{x, y\}$, we ask for their best linear separator:
\square Find w such that $w . x+b>1$ defines the class $y=1$, while $w . x+b<-1$ defines the class $y=-1$.
$\square \quad M=2 /|w|$ is the optimal margin of separability.
$\square \quad \mathbf{w}$ can be expressed in terms of the linear superposition of a few of the data-points x.
\square These few lucky ones are called support-vectors. They lie on the two separating planes.
\square The SVM method can handle outliers.
\square SVM-light is available on the internet. It chooses the best parameters by itself.

SVM

Maximize:

$$
L_{D} \equiv \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}
$$

subject to:

$$
\begin{aligned}
& 0 \leq \alpha_{i} \leq C, \\
& \sum_{i} \alpha_{i} y_{i}=0 .
\end{aligned}
$$

The solution is given by

$$
\mathbf{w}=\sum_{i=1}^{N_{S}} \alpha_{i} y_{i} \mathbf{x}_{i} .
$$

Results

Average Jaccard scores:

- $2^{\text {nd }}$ level: 0.88 ± 0.06
- 3rd level: 0.84 ± 0.09

2nd level results

EC subclass

Results of the Analysis - cont'd

ADIOS (Automatic DIstillation Of Structure)

\square Representation of a corpus (of sentences) as paths over a graph whose vertices are lexical elements (words)
\square Motif Extraction (MEX) procedure for establishing new vertices thus progressively redefining the graph in an unsupervised fashion
\square Recursive Generalization

Purpose

Goal: achieve an integrated understanding of acquisition and representation of linguistic structures that is
-computationally viable
-theoretically sound
-empirically proven.
Inspiration: classical distributional approaches (Harris 1954, 1991), psycholinguistic data (Bates and Goodman 1999), grammar induction algorithms (Klein and Manning 2002), natural language processing (Barlow 2000).

Iexicon... ana a grapn inaucea dy a corpus of strings

And is that a horse?

The MEX (motif extraction) procedure

Generalization

First pattern formation

Higher hierarchies: patterns (P) constructed of other Ps, equivalence classes (E) and terminals (T)

Trees to be read from top to bottom and from left to right

Final stage: root pattern

CFG: context free grammar

wo representations f a CFG

P84 \rightarrow that P58 P63
P63 \rightarrow E64 P48
E64 \rightarrow Beth \mid Cindy \mid George \mid Jim \mid Joe \mid Pam \mid P49 \mid P
P48 \rightarrow, doesn't it
P51 \rightarrow the E50
P49 \rightarrow a E50
E50 \rightarrow bird \mid cat \mid cow \mid dog \mid horse \mid rabbit
P61 \rightarrow who E62
E62 \rightarrow adores \mid loves \mid scolds \mid worships
E53 \rightarrow Beth \mid Cindy \mid George \mid Jim \mid Joe \mid Pam
E85 \rightarrow annoys \mid bothers \mid disturbs \mid worries
P58 \rightarrow E60 E64
E60 \rightarrow flies \mid jumps \mid laughs

that a bird flies bothers Jim who adores the cat, doesn't it

Example of context free grammar (first and last 15 out of 92 rules)

P53	(E54)
E54	\{a,the $\}$
P55	(E56)
E56	\{,\}
P57	(E58)
E58	\{barks,meows\}
P59	(E60)
E60	\{flies,jumps,laughs\}
P61	(E62)
E62	\{that\}
P63	(E64)
E64	\{annoys,bothers,disturbs,worries\}
P65	(E66)
E66	\{eager,easy,tough\}
P67	(E68)

P130	(E131)
E131	\{P132,P133\}
P132	(P73,P81,that,E131)
P133	(P73,P81,that)
P134	(E135)
E135	\{P136\}
P136	(P75,P81,that,E131)
P137	(E138)
E138	\{P139\}
P139	(E101,that,E131)
P140	(E141)
E141	\{P142,P143,P144\}
P142	(E138,E115,E128,E105)
P143	(E135,E95,E92)
P144	(P61,E115,E89,E95,P63,E115)

note loop

student learns from teacher

\square Teacher generates a corpus of sentences
\square Student distills syntax composed of significant patterns and equivalence classes
\square Unseen teacher-generated patterns are checked by student (recall)
\square Student-generated patterns are checked by teacher (significance)

student-teacher process

$$
\begin{aligned}
& \text { Recall }=\mathrm{tp} /(\mathrm{tp}+\mathrm{fn}) \\
& \text { Precision }=\mathrm{tp} /(\mathrm{tp}+\mathrm{fp})
\end{aligned}
$$

results

Corpus size	recall	error	precision	error
800	.85	.06	.72	.22
1600	.87	.06	.63	.09
3200	.84	.05	.61	.12
6400	.95	.01	.86	.08

ATIS experiments

The ATIS-CFG is a hand-made CFG of 4592 rules, constructed to provide good recall (45\%) of ATIS-NL, a corpus of natural language (13,000 sentences, 1300 words).

We train multiple ADIOS learners using ATIS-CFG as the teacher. Recursion is limited to depth 10. In testing performance, precision is defined by taking the mean across individual learners, while for recall acceptance by one learner suffices.

ADIOS learning from ATIS-CFG (4592 rules) using different numbers of learners, and different window length L

ATIS experiments

The ATIS natural language corpus contains 13,000 sentences. Training ADIOS on it leads to recall of 40% (ATIS-CFG reaches recall of 45%). Nonetheless human judged precision is remarkable: 8 subjects judged the grammatical acceptability to be roughly the same as that of ATIS-NL! All this while ATIS-CFG produces 99% of ungrammatical sentences!

Grammaticality

Language Model

-For any given l-word string
-For all prefixes of length k
-Find all parse-trees and assign probabilities for predicted words -Assign larger weights to longer k

ATIS2 train:12.6K test:400
ATIS3 train:7K test: 1K

results

ATIS ver:	method	\# of parameters	perplexity	ref.
2	ADIOS SSLM	under 5000	$\mathbf{1 1 . 5}$	
2	Trigram Kneser-Ney backoff smooth.	$1 . \mathrm{E}+05$	14	$[14]$
2	PFA Inference (ALERGIA) + trigram	$1 . \mathrm{E}+05$	20	$[15]$
2	PFA Inference (ALERGIA)	$1 . \mathrm{E}+05$	42	$[15]$
3	ADIOS SSLM	under 5000	$\mathbf{1 3 . 5}$	
3	SLM-wsj + trigram	$1 . \mathrm{E}+05$	15.8	$[10]$
3	NLPwin + trigram	$1 . \mathrm{E}+05$	15.9	$[10]$
3	SLM-atis + trigram	$1 . \mathrm{E}+05$	15.9	$[10]$
3	trigram	$4 . \mathrm{E}+04$	16.9	$[10]$
3	NLPwin	$1 . \mathrm{E}+05$	17.2	$[10]$
3	SLM-wsj	$1 . \mathrm{E}+05$	17.7	$[10]$
3	SLM-atis	$1 . \mathrm{E}+05$	17.8	$[10]$

Table 1: The perplexity of the ADIOS SSLM, compared with some results from the literature $[15,14,10]$. Note that our SSLM uses for training only the data provided for that purpose in the ATIS corpora themselves. Although our model requires that only the three parameters of the ADIOS algorithm be specified in advance, we have stated the approximate overall number of patterns of all learners as the counterpart to the number of parameters in the other methods.

10: Chelba,2001. 14: Kneser-Ney 1995. 15: Kermovrant et al 2004.

Meta-analysis of ADIOS results.

We define a pattern spectrum as the histogram of pattern types, whose bins are labeled by sequences such as (T, P) or (E, E, T), E standing for equivalence class, T for tree-terminal (original unit) and P for significant pattern.
We apply this analysis to the Parallel Bible, a text containing 31,000 verses in six different languages.

Dendrogram of languages

The typological relations among six different natural languages, as judged according to pattern spectra. These are accepted relations according to linguists.

ADIOS analysis of 4777 genes in C. elegans, using as initial units the 64 codons (nucleotide triplets). D : first exon, E : first 500 bases

Compression is most favorable when correct Open Reading Frame is employed, in the coding case where it is meaningful.

Summary

\square MEX is a motif-extraction method applicable to linguistic texts.
\square Its application to proteins allowed for enzyme classification: from sequence to function!
\square ADIOS is a grammar induction algorithm, employing MEX in a space of words, patterns and equivalence classes, and constructing a CFG representing syntax of the data.
\square It was successfully applied to several corpora.
\square It can serve as the basis for a language model.
Unsupervised learning of natural languages PNAS 102 (2005) 11629

