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Document Proximity

The concept of proximity is intrinsic to most text mining activities. For example,
what is a cluster of documents? What does it mean for subsets of a corpus to
exhibit internal cohesion and external isolation?

The phrase proximity comprehends both similarity and dissimilarity:

• A dissimilarity measure δ is symmetric (δ(i, j) = δ(j, i)), nonnegative (δ(i, j) ≥
0), and hollow (δ(i, i) = 0). The interpretation of dissimilarity demands the
following monotonicity property: pair (i, j) is more dissimilar than pair (r, s) if
and only if δ(i, j) > δ(r, s).

• A similarity measure γ is symmetric, nonnegative, and satisfies γ(i, i) ≥ γ(i, j).
The interpretation of similarity demands the following monotonicity property:
pair (i, j) is more similar than pair (r, s) if and only if γ(i, j) > γ(r, s).

In theory, document proximities might be obtained by direct comparison of actual
documents; more commonly, attributes of each document are quantified, then
proximities are computed from a mediating vector space model (VSM).
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Binary VSM

Suppose that the corpus comprises n documents, and that q terms are of interest.
To compare documents i and j, we construct a 2× 2 contingency table:

present absent
in j in j

present in i a b
absent in i c d

Two natural measures of similarity are the simple matching coefficient and Jaccard’s
matching coefficient:

γij =
a + d

a + b + c + d
γij =

a

a + b + c

In both cases,

• an intuitive measure of dissimilarity is δij = 1− γij;

• the n× n similarity matrix Γ = [γij] is positive semidefinite (psd).
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Quantitative VSM

Let oik denote the presence (oik = 1) or absence (oik = 0) of term k in document
i. Let mik denote the number of occurences of term k in document i.

To construct an n× q data matrix Y = [yik], we might quantify the importance of
term k on document i in various ways, e.g.,

yik = mik,

yik = (1 + mik) log2

(
n

o+k

)
,

yik = log
(

mik/mi+

m+k/m++

)
.

Two natural measures of dissimilarity between documents i and j are weighted
Minkowski (Lp) distance and a measure proposed by Lance & Williams (1966):

δp
ij =

q∑
k=1

wk |yik − yjk|p δij =
q∑

k=1

|yik − yjk|
|yik + yjk|
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Angles

Let y1, . . . , yn denote the feature vectors in the VSM, i.e., the rows of the data
matrix Y = [yik]. For ỹi, ỹj ∈ <q, the quantity

rij =
〈ỹi, ỹj〉
‖ỹi‖ ‖ỹj‖

=
〈

ỹi

‖ỹi‖
,

ỹj

‖ỹj‖

〉
,

is the cosine of the angle between ỹi and ỹj. Other than Ỹ0 = Y , one might
construct

Ỹcol =
(

In −
1
n
enet

n

)
Y or Ỹrow = Y

(
Iq −

1
q
eqe

t
q

)
.

The former translates the yi so that their centroid lies at the origin.

The latter projects the feature vectors into the linear subspace e⊥q , in which case rij

is Pearson’s product-moment correlation coefficient.
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Euclidean Subspaces

Suppose that we want to represent the documents as x1, . . . , xn ∈ <d, d � q. If
y1, . . . , yn ∈ <q, i.e., if δij = ‖yi − yj‖, then a natural approach is to project the yi

into the (affine) linear subspace that minimizes squared residual error.

•
•
•
•
•

Latent semantic indexing finds the best linear subspace; principal component analysis
finds the best affine linear subspace.

To find the best affine linear subspace, first translate the yi so that their centroid
lies at the origin, then find the best linear subspace.
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Principal Component Analysis

Ỹ = (I − eet/n)Y is the n× q centered data matrix;

Ỹ tỸ is the q × q matrix of inner products between terms (variables);

Ỹ Ỹ t is the n× n matrix of inner products between documents (objects).

Let Ỹ = U

[
Σ
0

]
V t denote the singular value decomposition of Ỹ . Then

Ỹ tỸ = V Σ2V t and Ỹ Ỹ t = U

[
Σ2 0
0 0

]
U t.

Given d < q, let U =
[

Ud ·
]
, V =

[
Vd ·

]
, and Σd = diag (σ1, . . . , σd).

Then the d-dimensional PC representation of Y is

Ỹ Vd = U

[
Σ
0

] vt
1
...
vt

q

 [v1 · · · vd]

= U

[
Σ
0

] [
I
0

]
= U

[
Σp

0

]
= UdΣd.
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Embedding in Euclidean Space

Suppose that δ is non-Euclidean, but that we want to represent the documents as
x1, . . . , xn ∈ <d.

Distance methods embed documents by approximating document dissimilarities, δij,
with Euclidean distances, ‖xi − xj‖, e.g., by minimizing the raw stress criterion,∑

i,j

(‖xi − xj‖ − δij)
2
.

Inner product methods embed documents as follows:

1. Estimate document inner products, bij, e.g., from document dissimilarities.

2. Approximate the bij with Euclidean inner products, 〈xi, xj〉, e.g., by minimizing
the strain criterion, ∑

i,j

(〈xi, xj〉 − bij)
2
.
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Euclidean Distance Geometry

A dissimilarity matrix ∆2 = [δ2
ij] is a Euclidean distance matrix (EDM) iff there exist

x1, . . . , xn ∈ <p such that δ2
ij = ‖xi − xj‖2. The smallest such p is the embedding

dimension of the EDM.

Let P = I−eet/n. Notice that P is symmetric and idempotent; Pv is the projection
of v ∈ <n into e⊥, P∆P is the “double centering” of ∆, and P∆Pe = 0.

Theorem: A dissimilarity matrix ∆2 is an EDM with embedding dimension p iff

τ (∆2) = −1
2
P∆2P

is psd and has rank p. Furthermore, if ∆2 = [δ2
ij] is an EDM and

τ (∆2) =

 xt
1
...

xt
n

 [x1 · · ·xn] ,

then δ2
ij = ‖xi − xj‖2.
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If x1, . . . , xn ∈ Rp have inner product matrix B, then they have EDM

κ(B) = diag(B)eet − 2B + eetdiag(B).

Notice that interpoint distances do not depend on where configurations are centered,
whereas inner products do. To remove this indeterminancy, we center each configu-
ration at the origin, i.e., we require Xte = 0. If a configuration is centered at the
origin, then the corresponding inner product matrix must satisfy Be = XXte = 0.
Conversely, if B = XXt and Be = 0, then 0 = etBe = (Xte)t(Xte) implies that
Xte = 0.

Upon restricting attention to symmetric psd B that satisfy Be = 0, the linear
transformations κ and τ are mutually inverse:

• κ converts centered Euclidean inner products to squared Euclidean distances;

• τ converts squared Euclidean distances to centered Euclidean inner products.
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Classical Multidimensional Scaling

To embed fallible squared dissimilarities in <d, we first convert the fallible squared
dissimilarities to fallible centered inner products, B = τ(∆2), then replace B with
B̄, the nearest symmetric psd matrix with rank ≤ d.

Let λ1 ≥ · · · ≥ λn denote the eigenvalues of B and let v1, . . . , vn denote the
corresponding eigenvectors. Let σ2

i = max(λi, 0) for i = 1, . . . , d. Then

B̄ =
d∑

i=1

σ2
i viv

t
i = [σ1v1 · · ·σdvd]

 σ1v
t
1

...
σdv

t
d


produces a d-dimensional configuration of points whose principal components are
eigenvectors of τ(∆2).
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Example 1: Principal Component Analysis

If δ2
ij = ‖yi − yj‖2, then B = Ỹ Ỹ t and CMDS is equivalent to PCA.

Example 2: Isomap

Suppose that y1, . . . , yn ∈ <q lie on a nonlinear manifold and fix ε > 0.
To construct the ε-Isomap embedding of y1, . . . , yn as x1, . . . , xn ∈ <d:

1. Let wij = 1 if ‖yi−yj‖ < ε and wij = 0 otherwise. Define a weighted undirected
graph G with n vertices as follows: vertices i and j are connected iff wij > 0, in
which case edge i ∼ j is weighted by wij.

2. Let δij denote the shortest path distance in G between vertices i and j.

3. Embed ∆ = [δij] in <d by CMDS.
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Document Space

Our conception of document space depends on decoupling the act of embedding
from the proximities that are embedded.

Corpus of
Documents

⇓
Quantify
Attributes

=⇒ Y =⇒ Compute
Proximities

=⇒ ∆/Γ =⇒ Embed =⇒ X

Y contains feature vectors in the q-dimensional VSM;
X contains vectors in the representational document space, typically <d.

Information retrieval? Supervised learning?
Embed similarities? Other embedding methods?
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Information Retrieval

What is a query? One possibility: a query is a linear combination of terms.

For a quantitative VSM, let fk denote the feature vector in which term k has unit
weight and other terms have zero weight. Given coefficients αk, let

yα(µ) = µ

q∑
k=1

αkfk,

then embed the linear trajectory {yα(µ)} in the VSM as a (possibly nonlinear)
trajectory xα(µ) in the document space <d.

We might answer a query by returning documents with small values of

Dabs (xi) = min
µ
‖xi − xα(µ)‖ or Drel (xi) = Dabs (xi) / ‖xi − xα(0)‖ .

If {xα(µ)} is a line, then the latter is equivalent to returning documents with large
values of

C (xi) =
〈xi − xα(0), xα(1)− xα(0)〉
‖xi − xα(0)‖ ‖xα(1)− xα(0)‖

.
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Example 3: Euclidean Biplots

If ∆2 is an EDM with embedding dimension p, then y1, . . . , yn, yα(µ) can be exactly
embedded in <p+1 as ŷ1, . . . , ŷn, ŷα(µ).

If document space was constructed by CMDS, then the desired trajectory is obtained
by projecting ŷα(µ) ∈ <p+1 into <d, obtaining the line {xα(µ)}.

More generally, a biplot displays information about terms in the constructed docu-
ment space. Constructing a biplot requires: (1) a VSM; (2) a measure of document
dissimilarity; and (3) an embedding method.

Quantitative terms are represented by continuous curves; categorical terms are
represented by simplices. These curves and simplices constitute a reference system
analogous to conventional orthogonal coordinate axes.
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Supervised Learning

Linear discriminant analysis (LDA) requires preliminary construction of a document
space, which may be facilitated by including unlabelled documents. However, the
discriminant coordinates may differ from the principal components.

Suppose that a corpus contains 3 classes, each of which contains 10 documents.
The matrix τ(∆2) has 16 positive eigenvalues:

24.94 13.21 4.70 2.90 2.17 1.56 1.44 1.30
0.99 0.67 0.61 0.42 0.28 0.25 0.09 0.04

We construct 2 discriminant coordinates using various choices of d:

d F1 F2

2 3.26 1.91
3 4.33 2.74
8 20.24 8.25

16 171.15 62.93
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Similarities and Inner Products

Given (possibly fallible) inner products, B = [bij], one might choose X to minimize
‖B−XXt‖2. This is equivalent to computing ∆2 = κ(B), then performing CMDS.

The “standard” transformation from similarity to dissimilarity interprets γ as an
inner product, then computes

∆2 = κ(Γ).

The standard transformation threatens the monotonicity of γ; however, if each
γii = 1, then it yields

δ2
ij = 1− γij.
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Example 4: Matching Coefficients

For a binary VSM, let γij be a matching coefficient and embed by applying CMDS
to ∆2 = κ(Γ).

Because γii = 1, δij =
√

1− γij, as opposed to the more intuitive nonmatching
coefficient, δij = 1− γij.

Because Γ is psd, ∆2 is an EDM.

Example 5: Cosine Measures

For a quantitative VSM ∼ <q, we compute the cosine measure,

rij =
〈ỹi, ỹj〉
‖ỹi‖ ‖ỹj‖

=
〈

ỹi

‖ỹi‖
,

ỹj

‖ỹj‖

〉
,

then embed by applying CMDS to ∆2 = κ(R). This procedure is equivalent to first
scaling each ỹi to lie on the unit sphere in <q, then performing PCA.
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Example 6: Laplacian Eigenmaps

Let G be a weighted undirected graph with a vertex for each document in the corpus
and edge weights γij.

The graph Laplacian is the n× n matrix L = diag(Γe)− Γ.
L is symmetric, psd, and Le = 0.

Let 0 < σ2
1 ≤ · · · ≤ σ2

r denote the strictly positive eigenvalues of L, let v1, . . . , vr

denote the corresponding eigenvectors, and let

X =
[

v1
σ1

· · · vd
σd

]
.

If ∆2 is such that τ(∆2) = L†, then X is constructed from ∆2 by CMDS.

What is ∆2 = κ(L†), i.e., what is the transformation from similarity to dissimilarity?

Because L is psd, so is L†; hence, ∆2 = κ(L†) is an EDM.
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Two interpretations of dissimilarities implicit in Laplacian eigenmaps:

1. G is an electrical circuit. Vertices are terminals. Each edge is a resistor with
conductance γij. ∆2 is the effective resistance of G, i.e., δ2

ij is the potential
difference between terminals i and j when a unit current source is applied.

The resistance, δ2
ij, is small when there are many paths with high conductance

between terminals i and j. The Euclidean distance δij is the resistance distance.

2. G is a Markov chain. Vertices are states and the transition probabilities are
pij = γij/γi+. Let t(j|i) denote the expected number of transitions to get from
state i to state j for the first time. Then

δ2
ij =

t(j|i) + t(i|j)
γ++

.

The expected commute time, γ++δ2
ij, is small when there are many paths with

high probability between states i and j.
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Comparison to Isomap:

Suppose that y1, . . . , yn ∈ <q lie on a nonlinear manifold and fix ε > 0.
To construct an embedding of y1, . . . , yn as x1, . . . , xn ∈ <d:

1. Let wij = 1 if ‖yi−yj‖ < ε and wij = 0 otherwise. Define a weighted undirected
graph G with n vertices as follows: vertices i and j are connected iff wij > 0, in
which case edge i ∼ j is weighted by wij.

2. Let δij denote the distance in G between vertices i and j.
Isomap uses shortest path distance; Laplacian eigenmaps use resistance distance.

3. Embed ∆ = [δij] in <d by CMDS.

Remark: Fast Iterative Denoising uses k approximately nearest neighbors (instead
of ε-neighborhoods) and resistance distance.

IPAM, Jan 2006 21



• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • • • • •• • •• • •

• • •• • •• • • • • • • • •• • •• • •

IPAM, Jan 2006 22



• • •

• • •

• • •

• • •

• • •

• • •

• • •

•
•
•

•
•

•

•
•
•

•
•

•

•
•
•

•

•
•

•
•
•

••••• •••• • • • •••• •••••

IPAM, Jan 2006 23



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
-

-

-

-

-

-

-

-

-

-

-

0

10

20

30

40

50

60

70

80

90

100

•

•
• • • • • • • • • • • • • • • • • •

i 1/σ2
i % cum%

1 21.778 67.75 67.75
2 2.144 6.67 74.43
3 1.000 3.11 77.54
4 1.000 3.11 80.65
5 1.000 3.11 83.76
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i 1/σ2
i % cum%

1 13.471 72.76 72.76
2 0.863 4.66 77.42
3 0.492 2.66 80.08
4 0.405 2.19 82.26
5 0.405 2.19 84.45
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Scalable Distance Embedding

The weighted raw stress criterion is

σ(X) =
∑
i<j

wij [dij(X)− δij]
2
,

where dij = ‖xi−xj‖ and wij ≥ 0. A popular embedding method is to construct an
initial configuration by CMDS/PCA, then minimize σ() by the Guttman majorization
algorithm (GMA), a fixed point method that converges to stationary X. Instead. . .

1. Construct an initial configuration by the method of standards:

• Embed a fixed number of anchor points; then, individually position the
remaining points in relation to the anchor points. This construction is O(n).

• Instead of minimizing a traditional error criterion, use a fast heuristic that
solves Ax = bi, where A is d× d, for b1, . . . , bn−d−1.

2. Decrease σ() by several iterations of a new diagonal majorization algorithm
(DMA). Use O(n) dissimilarities and stop after a fixed number of iterations.
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Guttman Majorization Algorithm

The stationary equation ∇σ(X) = 0 can be written as V X = B(X)X, where

V =
∑
i<j

wij (ei − ej) (ei − ej)
t

and B(X) are n× n matrices. This suggests an iterative algorithm:
choose Xk+1 to solve

V X = B (Xk) Xk, i.e., solve d linear systems, V x = bk.

GMA has traditionally been written as

Xk+1 = V †B (Xk) Xk = Γ (Xk) ,

where Γ is the Guttman transform. This representation creates the misleading
impression that implementing GMA necessitates computing V †, which is generally
expensive when n is large.
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GMA: Equal Weights

If wij = c for i 6= j, then

V = c
∑
i<j

(ei − ej) (ei − ej)
t = cn

(
I − eet

n

)
,

V † =
1
cn

(
I − eet

n

)
, and

B(X)X = c
∑
i<j

δij

dij(X)
(ei − ej) (ei − ej)

t
X.

B(X)X is already centered, so V †B(X)X is

1
n

∑
i<j

δij

dij(X)

 yt
ij1
...

yt
ijn

 , where yijs =

 xi − xj s = i
xj − xi s = j

0 s 6= i, j

 .
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GMA: General Weights

Because col(V ) = e⊥, Ṽ = V + eet > 0.

Instead of computing V † and V †B(Xk)Xk, we can obtain Xk+1 by solving

Ṽ X = B (Xk) Xk = Bk.

To compute K iterations, one must solve Ṽ x = b with Kd choices of b. Because
Ṽ > 0, we can do so as follows:

1. Compute the Cholesky decomposition Ṽ = LLt.
This requires approximately n3/6 multiplications.

2. To solve each LLtx = b,

(a) Backsolve the triangular system Ly = b to obtain ỹ; then
(b) Backsolve the triangular system Ltx = ỹ to obtain x̃.

This requires approximately dn2 multiplications per iteration.
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Diagonal Majorization Algorithm

Because etX = 0, an iteration of GMA is

Xk+1 = Xk −Xk + Xk+1 = Xk − V †V Xk + V †B (Xk) Xk

= Xk −
1
2
V † 2 [V Xk −B (Xk) Xk] = Xk −

1
2
V † ∇σ (Xk) .

DMA replaces V with 2 diag(V ): an iteration of DMA is

Xk+1 = Xk −
1
2

[2 diag(V )]−1 ∇σ (Xk) = Xk +
1
2

diag(V )−1 [B (Xk)− V ]Xk.

After computing [B(Xk)− V ]Xk, DMA requires 2pn additional multiplications per
iteration. In contrast, after computing B(Xk)Xk, GMA with general wij requires
pn2 additional multiplications per iteration, plus an initial n3/6 multiplications to
compute a Cholesky factor.
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Experiment 1

n = 2818 documents, d = 5, equal weights.

Raw Stress Criterion, 20 iterations of PCA-GMA v LIN-GMA,
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Computational expense (in seconds):

PCA-GMA LIN-GMA
Data input 45.48 45.08
Preprocessing 0.16 0.16
Initial configuration 9.11 <0.01
Recover dissimilarities 0.32
Initial stress evaluation 0.42 0.46
20 iterations w/ stress evaluation 24.28 24.16

Notice that. . .

• PCA is surprisingly affordable, but orders of magnitude more expensive than
LIN. LIN-GMA with one iteration is substantially less expensive and produces a
substantially better configuration than PCA.

• Stress evaluation is expensive. Unlike general methods for numerical optimization,
GMA does not require evaluation of the objective function—we only computed
values in order to monitor progress. Eliminating this extravagance substantially
decreases the expense of GMA.
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Now let wij = 0.4/(0.4 + δij) when δij < 0.6 and wij = 0 otherwise, resulting in
58% of the pairs having zero weight.

Weighted Raw Stress Criterion, 20 iterations of LIN-GMA v LIN-DMA
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Computational expense (in seconds):

LIN-GMA LIN-DMA
Data input 45.23 45.54
Preprocessing 0.30 0.33
Initial configuration 0.01 0.01
Initial stress evaluation 0.26 0.28
Cholesky factorization 47.96
20 iterations w/ stress evaluation 23.01 14.07
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Finally, we set wij = 1 for 6k “cycles” of δij, e.g., i ↔ i ± 1, i ↔ i ± 2, etc. and
wij = 0 otherwise. (Thus, for k = 7, DMA uses ≈ 3% of the 3969153 δij.)

We compare the cpu-stress tradeoff for 20 iterations of LIN-GMA with all wij = 1
versus LIN-DMA with k = 1 : 9.
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For d and k fixed, a fixed number of iterations of LIN-DMA requires O(n) operations.
We expect the tradeoff to increasingly favor LIN-DMA as n increases.
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Experiment 2

n = 17, 000 objects, n(n− 1)/2 = 144, 491, 500 pairwise dissimilarities.

y1, . . . , yn ∈ <5

δij = ‖yi − yj‖ · exp (Z/100), where Z ∼ Normal(0, 1)

Embed ∆ = [δij] in <5 using LIN-DMA with 54 cycles.

Initial raw stress criterion: 3,058,174
After 200 DMA iterations: 57,921

2 stress evaluations: 86.5 seconds
Total embedding time: 66.0 seconds

For more information, manuscripts, and source code, please visit

http://www.math.wm.edu/~trosset/X-MDS
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