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Embeddings
• Given M1=(X1,D1) ,  M2=(X2,D2)
• A mapping f: X1 →X2, such that ∀p,q∈X1 :

D1(p,q) ≤ D2(f(p),f(q)) ≤ c*D1(p,q)

is called a c-embedding of M1 into M2

• The c-embedding definition composes:     
If M1 c1-embeds into M2, and 

M2 c2-embeds into M3, , then
M1 c1c2-embeds into M3
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Metrics/Norms 101

• Metric M=(X,D) :
– Reflexive: D(p,q)=0 iff p=q
– Symmetric: D(p,q)=D(q,p)
– Triangle ineq.: D(p,q) ≤ D(p,t) + D(t,q)

• Norms over Rd:
– Ls norm: ||x||s = (Σi |xi|s )1/s

– L∞ norm: ||x||∞ = maxi |xi|
• Norm induces a metric: D(p,q)=||p-q||s
• Use lsd to denote (Rd,ls)
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Outline
• Brief history of embeddings

– Major results
– Impact on TCS

• Dimensionality reduction: Johnson-
Lindenstrauss Theorem
– Theorem + construction
– Inspirations: Locally-Sensitive Hashing for Approx 

Near Neighbor
• Metrics for computer vision: Earth-Mover 

Distance
• Conclusions and Resources
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Very Brief History of Embeddings

• [Frechet, 1909]:
Any metric (X,D), |X|=n, is 1-embeddable into l∞n

• Proof:
Let X={p1,…,pn} . Define the mapping f as:

f(p)=[ D(p,p1), D(p,p2), … ,D(p,pn) ]

• Then ||f(p)-f(q)||∞ = maxi |D(p,pi)-D(q,pi)| 
– Non-expansion:                                             ≤ D(p,q)
– Non-contraction:           ≥ |D(p,p) - D(q,p)|     = D(q,p)
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Brief History ctd.

[Bourgain’85]:
Any (X,D) is O(log n)-embeddable into l2k

– The dimension k can be made O(log n) (next 
slide)

– Technique: generalization of Frechet
– Proof gives a randomized O(n2 log2 n)

algorithm [Linial-London-Rabinovich’95]
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Brief History ctd.

[Johnson-Lindenstrauss’84]:
For any X ⊆ l2d, there is a (1+ε)-embedding 
of (X,l2) into l2d’, where d’=O(log n/ε2)
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Brief History - Algorithms

• [Linial-London-Rabinovich’95]:
– Used Bourgain’s theorem to get an 

approximation algorithm for the sparsest cut 
problem

– Introduced the notion of embeddings to CS 
community
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Brief History – Algorithms ctd.
• Probabilistic embeddings of general metrics into trees 

[Alon-Karp-Peleg-West’91, Bartal’96 ’98,  Fakcharoenphol-Rao-Talwar’03]
– Applications to combinatorial optimization problems

• Dimensionality reduction:
– Approximate nearest neighbor algorithms with polynomial space 

[Kleinberg’97, Kushilevitz-Ostrovski-Rabani’98, Indyk-Motwani’98, 
Indyk’00, Datar-Immorlica-Indyk-Mirrokni’04]

– Algorithms for streaming data [Alon-Matias-Szegedy’96, 
Indyk’00, GGIKMS’02, Indyk’04]

• ...
• Machine learning: PCA, MDS [Kruskal], LLE [Roweis-Saul’00],

Isomap [Tenenbaum-da Silva-Langford’00] 
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Embeddings for Algorithms



12

In This Talk

• Dimensionality reduction: techniques and 
inspirations

• Earth-Mover Distance (EMD) into l1
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Dimensionality Reduction
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Randomized Dim Reduction
JL Theorem: For any X ⊆ l2d, there is a (1+ε)-embedding of 

(X,l2) into l2d’, where d’= A ln n/ε2   (A=4)

Proof: For a linear mapping f(p)=Ap, where A is a d’×d
“random” matrix, we have for any p,q in X

Pr[ | ||Ap-Aq||2 - ||p-q||2 | > ε||p-q||2 ] ≤ e-Ω(d’/ε2)

• Choices of A:
– Rows: random orthogonal unit vectors [JL’84]
– Rows: random unit vectors
– Entries: independently chosen from N(0,1)
– Entries: independently chosen from {-1,1} [Achlioptas’00]
– ….
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Proof
• We map f(u)=Au=[a1*u,…,ad’*u] , where each 

entry of A has normal distribution
• Need to show that there exists scaling factor S

such that, with probability at least ½, for each 
pair p,q in X, we have  ||f(p)-f(q)|| ≈ S ||p-q||

• Sufficient to show that for a fixed u=p-q, where 
p,q in X, we have ||Au|| ≈ S||u|| with probability at 
least 1-1/n2

• In fact, by linearity of A we can assume ||u||=1, 
so we just need to show ||Au|| ≈ S
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Normal Distribution

• Normal distribution:
– Range: (-∞, ∞)
– Density: f(x)=e-x^2/2 / (2π)1/2

– Mean=0, Variance=1
– If X and Y independent r.v. with normal distribution, 

then X+Y has normal distribution
• Basic facts:

– Var(cX)=c2 Var(X)
– If X,Y independent, then Var(X+Y)=Var(X)+Var(Y)



17

Back to embedding

• Consider Z=ai*u = a*u=∑i ai ui

• Each term ai ui
– Has normal distribution
– With variance ui

2

• Thus, Z has normal distribution with 
variance ∑i ui

2 =1
• This holds for each aj



18

What is ||Au||2
• ||Au||2 = (a1 * u)2+…+(ad’ * u)2 = Z1

2+…+Zd’
2

where:
– All Zi’s are independent
– Each has normal distribution with variance=1

• Therefore, E[ ||Au||2 ]=d’*E[Z1
2]=d’

• By Chernoff-like bound
Pr[ | ||Au||2 –d’|>εd’]<e-B d’ε2 <1/n2

for some constant B
• So, ||Au||2 ≈(d’)1/2 with probability 1-1/n2
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Implications

• Replace d by O(ln(n)/ε2) in the running 
time

• Works (w.h.p.) even if not all points known 
in advance. E.g., query point in nearest 
neighbor

• Mapping is linear
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Experiments I

• [Dasgupta, UAI’00]: Compared JL with 
PCA in the context of supervised learning 
using EM (on OCR data set):
– Reduce dimension
– Run EM to fit a Gaussian mixture
– Use it as a classifier

• Conclusions:
– Reduction from 256 to 40 dim improved the 

accuracy (of both PCA and JL)
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Experiments II
• [Fradkin-Madigan, KDD’03]: Compared JL with 

PCA in the context of supervised learning
– Reduce the dimension
– Apply C4.5, 1NN, 5NN or SVM
– Measure the classification error

• Conclusions:
– To reach optimal error, JL needs dimension that is {1, 

10, 50} times larger than PCA
– However:

• JL needs no additional space (matrix A can be pseudo-
generated), and has lower pre-computation time

• JL needs no updating when new data points are added
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Inspiration 

• c-Approximate Near 
Neighbor: 
– Given: set P of points in l2d, 

r>0
– Goal: build data structure 

which, for any query q, if 
there is a point p∈P,||q-p||2≤r, 
it returns p’∈P, ||q-p’||2 ≤ cr

q
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LSH

• A family H of functions h: lsd → U is called 
(P1,P2,r,cr)-sensitive [IM’98],if for any p,q:
– if ||p-q||s <r   then Pr[ h(p)=h(q) ] > P1

– if ||p-q||s >cr then Pr[ h(p)=h(q) ] < P2

• Given H, we can solve a c-approximate 
NN with:
– Query time: O(d nρ log n), ρ =log1/P2(1/P1)
– Space: O(nρ +1 +dn)



24

LSH [DIIM’04]

Define hX(p)=⎣p*X/w⎦, where:
– w ≈ r
– X=(X1…Xd) , where Xi is 

chosen from “stable”
distribution 

– I.e., p*X has same distribution 
as ||p|| Z, where Z is “stable”

– For l2,  Gaussian distribution 
is stable

X
w

w
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LSH [DIIM’04]

• Recall the query time is O(dnρ)
• Bounds on ρ :

• ρ <1/c for l2 (improves on [IM’98] )
• ρ ≈ 1/c for l1

• Works directly in ls spaces (unlike [IM’98] )
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Earth Mover Distance
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Earth-Mover Distance

• Given: two (multi)sets P,Q ⊆ R2, |P|=|Q|
• EMD(P,Q)=min weight matching between

P and Q



28

Applications

• A natural measure of dissimilarity between 
point-sets

• [Rubner-Tomasi-Guibas’98] used it for 
comparing 
– color histograms of images
– texture information of images 
– …

• Experimentally works well
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Issues

• EMD(P,Q) takes a super-
linear (in |P| ) time to 
compute

• Typically, one wants to find a 
NN of Q with respect to EMD

• How to do this faster than 
linear scan ?

Q

P1
P2

Pn

.....
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Approximate NN via Embeddings

• Approach:
– Embed EMD into l1d (with distortion c)
– Use c’-approximate NN for l1d 

– This gives cc’ -approximate NN for 
EMD

• Used earlier in 
– [FarachColton-Indyk’99]: Hausdorff metric 

over lpd into low-dimensional l∞
– [Cormode-Paterson-Sahinalp-Vishkin’00, Muthukrishnan-

Sahinalp’00, Cormode-Muthukrishnan’02]:

Block-edit distance into l1

Q
P1

P2

P3

f(Q)

f(P1)
f(P2)

f(P3)
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EMD into l1
• Assume  P ⊆ {1,…,Δ}d

• Impose square grids G-1…Gk, with 
side lengths 2-1,20, …, 2k = Δ, 
shifted at random.

• For each square cell c in Gi, let 
ni

P(c) be the number of points in 
|c∩P|.

• Embedding: P is mapped to

f(P) = 2-1n-1
P, 20n0

P … 2knk
P

2 1

1

1

3

1

1

5
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Guarantees

• Theorem:
– EMD(P,Q) < O( ||f(P)-f(Q)||1 )
– E[ ||f(P)-f(Q)||1 ] = O(log Δ ) EMD(P,Q)

• Due to:
– Charikar’02, Kleinberg-Tardos’99, Bartal’96, 

Peleg’97+Goel [personal communication]
– Indyk-Thaper’02, Varadarajan’02
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Proof intuition
• EMD(P,Q) small:

– Most points in P are close to the 
corresponding points in Q

– Corresponding points fall to the 
same cell

– Counts cancel out: ||f(P)-f(Q)||1 small
• EMD(P,Q) large:

– Many points in P are far from the 
points in Q

– Corresponding points fall to different 
cells

– Counts do not cancel out
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How Does This Work in Practice?

• Data: color histograms of 20,000 Corel-Draw 
images:
– Each pixel in an image is a point in 3D color space
– Image represented by a bag of pixels

• 100 queries
• Parameters:

– Probability of failure set to 10%
– Embedding done 5 times per query
– Approximation factor c set by hand

• Compare our approximate NN to the exact NN 
(w.r.t. EMD)
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NN Quality: Rank
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Speedup Over Linear Scan
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Data profile
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• Shows the number of c-approximate nearest 
neighbors as a function of c:
– Bad case
– Typical case
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Conclusions for NN under EMD

• Efficient algorithm for NN under EMD via:
– Embedding EMD into l1d

– Fast NN in l1d

• O(log Δ ) pretty good in practice


