Algorithmic Applications of Low-Distortion Embeddings

Piotr Indyk MIT

Embeddings

Embeddings

- Given $M_1 = (X_1, D_1)$, $M_2 = (X_2, D_2)$
- A mapping f: $X_1 \rightarrow X_2$, such that $\forall p,q \in X_1$:

$$D_1(p,q) \le D_2(f(p),f(q)) \le c*D_1(p,q)$$

is called a c-embedding of M₁ into M₂

The c-embedding definition composes:

```
If M_1 c_1-embeds into M_2, and M_2 c_2-embeds into M_3, then M_1 c_1c_2-embeds into M_3
```

Metrics/Norms 101

- Metric M=(X,D):
 - Reflexive: D(p,q)=0 iff p=q
 - Symmetric: D(p,q)=D(q,p)
 - Triangle ineq.: $D(p,q) \le D(p,t) + D(t,q)$
- Norms over Rd:
 - $-L_{s}$ norm: $||x||_{s} = (\Sigma_{i} |x_{i}|^{s})^{1/s}$
 - $-L_{\infty}$ norm: $||x||_{\infty} = \max_{i} |x_{i}|$
- Norm induces a metric: D(p,q)=||p-q||_s
- Use I_s^d to denote (R^d,I_s)

Outline

- Brief history of embeddings
 - Major results
 - Impact on TCS
- Dimensionality reduction: Johnson-Lindenstrauss Theorem
 - Theorem + construction
 - Inspirations: Locally-Sensitive Hashing for Approx Near Neighbor
- Metrics for computer vision: Earth-Mover Distance
- Conclusions and Resources

Very Brief History of Embeddings

- [Frechet, 1909]:
 Any metric (X,D), |X|=n, is 1-embeddable into l_∞ⁿ
- Proof:
 Let X={p₁,...,p_n}. Define the mapping f as:

$$f(p)=[D(p,p_1), D(p,p_2), ..., D(p,p_n)]$$

- Then $||f(p)-f(q)||_{\infty} = \max_{i} |D(p,p_{i})-D(q,p_{i})|$
 - Non-expansion: ≤ D(p,q)
 - Non-contraction: $\geq |D(p,p) D(q,p)| = D(q,p)$

Brief History ctd.

[Bourgain'85]:

Any (X,D) is $O(\log n)$ -embeddable into l_2^k

- The dimension k can be made O(log n) (next slide)
- Technique: generalization of Frechet
- Proof gives a randomized O(n² log² n)
 algorithm [Linial-London-Rabinovich'95]

Brief History ctd.

[Johnson-Lindenstrauss'84]:

```
For any X \subseteq I_2^d, there is a (1+\epsilon)-embedding of (X,I_2) into I_2^{d'}, where d'=O(\log n/\epsilon^2)
```

Brief History - Algorithms

- [Linial-London-Rabinovich'95]:
 - Used Bourgain's theorem to get an approximation algorithm for the sparsest cut problem
 - Introduced the notion of embeddings to CS community

Brief History – Algorithms ctd.

- Probabilistic embeddings of general metrics into trees [Alon-Karp-Peleg-West'91, Bartal'96 '98, Fakcharoenphol-Rao-Talwar'03]
 - Applications to combinatorial optimization problems
- Dimensionality reduction:
 - Approximate nearest neighbor algorithms with polynomial space [Kleinberg'97, Kushilevitz-Ostrovski-Rabani'98, Indyk-Motwani'98, Indyk'00, Datar-Immorlica-Indyk-Mirrokni'04]
 - Algorithms for streaming data [Alon-Matias-Szegedy'96, Indyk'00, GGIKMS'02, Indyk'04]
- •
- Machine learning: PCA, MDS [Kruskal], LLE [Roweis-Saul'00], Isomap [Tenenbaum-da Silva-Langford'00]

Embeddings for Algorithms

In This Talk

- Dimensionality reduction: techniques and inspirations
- Earth-Mover Distance (EMD) into I₁

Dimensionality Reduction

Randomized Dim Reduction

JL Theorem: For any $X \subseteq I_2^d$, there is a $(1+\epsilon)$ -embedding of (X,I_2) into $I_2^{d'}$, where $d' = A \ln n/\epsilon^2$ (A=4)

Proof: For a linear mapping f(p)=Ap, where A is a d'×d "random" matrix, we have for any p,q in X $\Pr[\ |\ |Ap-Aq||_2 - ||p-q||_2\ | > \epsilon ||p-q||_2\] \le e^{-\Omega(d'/\epsilon^2)}$

- Choices of A:
 - Rows: random orthogonal unit vectors [JL'84]
 - Rows: random unit vectors
 - Entries: independently chosen from N(0,1)
 - Entries: independently chosen from {-1,1} [Achlioptas'00]

—

Proof

- We map f(u)=Au=[a^{1*}u,...,a^{d'*}u], where each entry of A has normal distribution
- Need to show that there exists scaling factor S such that, with probability at least ½, for each pair p,q in X, we have ||f(p)-f(q)|| ≈ S ||p-q||
- Sufficient to show that for a *fixed* u=p-q, where p,q in X, we have ||Au|| ≈ S||u|| with probability at least 1-1/n²
- In fact, by linearity of A we can assume ||u||=1, so we just need to show ||Au|| ≈ S

Normal Distribution

Normal distribution:

- Range: (-∞, ∞)
- Density: $f(x)=e^{-x^2/2}/(2\pi)^{1/2}$
- Mean=0, Variance=1
- If X and Y independent r.v. with normal distribution, then X+Y has normal distribution

Basic facts:

- $Var(cX)=c^2 Var(X)$
- If X,Y independent, then Var(X+Y)=Var(X)+Var(Y)

Back to embedding

- Consider Z=a^{i*}u = a*u=∑_i a_i u_i
- Each term a_i u_i
 - Has normal distribution
 - With variance u_i²
- Thus, Z has normal distribution with variance ∑_i u_i ² = 1
- This holds for each a^j

What is $||Au||_2$

- $||Au||^2 = (a^1 * u)^2 + ... + (a^{d'} * u)^2 = Z_1^2 + ... + Z_{d'}^2$ where:
 - All Z_i's are independent
 - Each has normal distribution with variance=1
- Therefore, E[||Au||²]=d'*E[Z₁²]=d'
- By Chernoff-like bound

$$Pr[| ||Au||^2 - d'| > \epsilon d'] < e^{-B d' \epsilon^2} < 1/n^2$$

for some constant B

• So, ||Au||₂ ≈(d')^{1/2} with probability 1-1/n²

Implications

- Replace d by O(ln(n)/ε²) in the running time
- Works (w.h.p.) even if not all points known in advance. E.g., query point in nearest neighbor
- Mapping is linear

Experiments I

- [Dasgupta, UAI'00]: Compared JL with PCA in the context of supervised learning using EM (on OCR data set):
 - Reduce dimension
 - Run EM to fit a Gaussian mixture
 - Use it as a classifier
- Conclusions:
 - Reduction from 256 to 40 dim improved the accuracy (of both PCA and JL)

Experiments II

- [Fradkin-Madigan, KDD'03]: Compared JL with PCA in the context of supervised learning
 - Reduce the dimension
 - Apply C4.5, 1NN, 5NN or SVM
 - Measure the classification error
- Conclusions:
 - To reach optimal error, JL needs dimension that is {1, 10, 50} times larger than PCA
 - However:
 - JL needs no additional space (matrix A can be pseudogenerated), and has lower pre-computation time
 - JL needs no updating when new data points are added

Inspiration

- c-Approximate Near Neighbor:
 - Given: set P of points in l₂^d,r>0
 - Goal: build data structure
 which, for any query q, if
 there is a point p∈ P,||q-p||₂≤r,
 it returns p'∈ P, ||q-p'||₂ ≤ cr

LSH

- A family H of functions h: I_s^d → U is called (P₁,P₂,r,cr)-sensitive [IM'98],if for any p,q:
 - $\text{ if } ||p-q||_s < r \text{ then } Pr[h(p)=h(q)] > P_1$
 - $\text{ if } ||p-q||_s > \text{cr then Pr}[h(p)=h(q)] < P_2$
- Given H, we can solve a c-approximate NN with:
 - Query time: O(d n^p log n), $\rho = \log_{1/P_2}(1/P_1)$
 - Space: $O(n^{\rho+1} + dn)$

LSH [DIIM'04]

Define $h_X(p) = \lfloor p^*X/w \rfloor$, where:

- $w \approx r$
- X=(X₁...X_d), where X_i is chosen from "stable" distribution
- I.e., p*X has same distribution as ||p|| Z, where Z is "stable"
- For I₂, Gaussian distribution is stable

LSH [DIIM'04]

- Recall the query time is O(dn^p)
- Bounds on ρ:
 - ρ <1/c for I_2 (improves on [IM'98])
 - $\rho \approx 1/c$ for I_1
- Works directly in Is spaces (unlike [IM'98])

Earth Mover Distance

Earth-Mover Distance

- Given: two (multi)sets P,Q ⊆ R², |P|=|Q|
- EMD(P,Q)=min weight matching between P and Q

Applications

- A natural measure of dissimilarity between point-sets
- [Rubner-Tomasi-Guibas'98] used it for comparing
 - color histograms of images
 - texture information of images
 - **—** ...
- Experimentally works well

Issues

- EMD(P,Q) takes a superlinear (in |P|) time to compute
- Typically, one wants to find a NN of Q with respect to EMD
- How to do this faster than linear scan?

Approximate NN via Embeddings

Approach:

- Embed EMD into I₁^d (with distortion c)
- Use c'-approximate NN for I₁^d
- This gives cc' -approximate NN for EMD

Used earlier in

- [FarachColton-Indyk'99]: Hausdorff metric over Ipd into low-dimensional Ipd
- [Cormode-Paterson-Sahinalp-Vishkin'00, Muthukrishnan-Sahinalp'00, Cormode-Muthukrishnan'02]:
 Block-edit distance into | 1

EMD into I₁

- Assume $P \subseteq \{1,...,\Delta\}^d$
- Impose square grids $G_{-1}...G_k$, with side lengths $2^{-1},2^0,...,2^k = \Delta$, shifted at random.
- For each square cell c in G_i, let nⁱ_P(c) be the number of points in |c∩P|.
- Embedding: P is mapped to

Guarantees

Theorem:

- $EMD(P,Q) < O(||f(P)-f(Q)||_1)$
- $E[||f(P)-f(Q)||_1] = O(log \Delta) EMD(P,Q)$

Due to:

- Charikar'02, Kleinberg-Tardos'99, Bartal'96,
 Peleg'97+Goel [personal communication]
- Indyk-Thaper'02, Varadarajan'02

Proof intuition

- EMD(P,Q) small:
 - Most points in P are close to the corresponding points in Q
 - Corresponding points fall to the same cell
 - Counts cancel out: ||f(P)-f(Q)||₁ small
- EMD(P,Q) large:
 - Many points in P are far from the points in Q
 - Corresponding points fall to different cells
 - Counts do not cancel out

How Does This Work in Practice?

- Data: color histograms of 20,000 Corel-Draw images:
 - Each pixel in an image is a point in 3D color space
 - Image represented by a bag of pixels
- 100 queries
- Parameters:
 - Probability of failure set to 10%
 - Embedding done 5 times per query
 - Approximation factor c set by hand
- Compare our approximate NN to the exact NN (w.r.t. EMD)

NN Quality: Rank

Speedup Over Linear Scan

Data profile

- Shows the number of c-approximate nearest neighbors as a function of c:
 - Bad case
 - Typical case

Conclusions for NN under EMD

- Efficient algorithm for NN under EMD via:
 - Embedding EMD into I₁^d
 - Fast NN in I₁^d
- $O(\log \Delta)$ pretty good in practice