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Embeddings

« Given M,=(X,,D,), M,=(X,,D,)
* A mapping f: X, —X,, such that Vp,ge X, :

D(p,q) = D,(f(p).f(q)) < c*D4(p,q)

Is called a c-embedding of M, into M,

* The c-embedding definition composes:
If M, c,-embeds into M., and
M, c,-embeds into M, then
M, c,c,-embeds into M,



Metrics/Norms 101

Metric M=(X,D) :

— Reflexive: D(p,q)=0 iff p=q

— Symmetric: D(p,q)=D(q,p)

— Triangle ineq.: D(p,q) < D(p,t) + D(t,q)
Norms over R¢:

~ L norm: [[x]], = (£ [x[*)"s

—L_norm: ||x|[. = max; |x;|

Norm induces a metric: D(p,q)=||p-q|.
Use |.° to denote (RY1.)



Outline

Brief history of embeddings

— Major results

— Impact on TCS

Dimensionality reduction: Johnson-
Lindenstrauss Theorem

— Theorem + construction

— Inspirations: Locally-Sensitive Hashing for Approx
Near Neighbor

Metrics for computer vision: Earth-Mover
Distance

Conclusions and Resources



Very Brief History of Embeddings

e [Frechet, 1909]:
Any metric (X,D), |X|=n, is 1-embeddable into |_"

* Proof:
Let X={p4,...,p,} . Define the mapping f as:

f(p)=[ D(p,p4), D(P,P5), ... ,.D(p.pP,) ]

* Then [[f(p)-f(q)l|.. = max; |D(p,p;)-D(q,p))|
— Non-expansion: =

(p,q)
— Non-contraction: > |D(p,p) - D(q,p)|

D(p,
D(q,p)



Brief History ctd.

[Bourgain'89]:
Any (X,D) is O(log n)-embeddable into |,

— The dimension k can be made O(log n) (next
slide)

— Technique: generalization of Frechet

— Proof gives a randomized O(n?log? n)
algorithm [Linial-London-Rabinovich'93]



Brief History ctd.

[Johnson-Lindenstrauss’'84]:

For any X c |.,9, there is a (1+¢)-embedding
of (X,I,) into .9, where d’=0(log n/e?)



Brief History - Algorithms

* [Linial-London-Rabinovich'995]:

— Used Bourgain’s theorem to get an
approximation algorithm for the sparsest cut
problem

— Introduced the notion of embeddings to CS
community



Brief History — Algorithms ctd.

Probabilistic embeddings of general metrics into trees
[Alon-Karp-Peleg-West'91, Bartal’'96 '98, Fakcharoenphol-Rao-Talwar'03]

— Applications to combinatorial optimization problems

Dimensionality reduction:

— Approximate nearest neighbor algorithms with polynomial space
[Kleinberg’97, Kushilevitz-Ostrovski-Rabani’98, Indyk-Motwani’98,
Indyk’00, Datar-Immorlica-Indyk-Mirrokni’04]

— Algorithms for streaming data [Alon-Matias-Szegedy’96,
Indyk’00, GGIKMS’02, Indyk'04]

Machine learning: PCA, MDS [Kruskal], LLE [Roweis-Saul'00],
Isomap [Tenenbaum-da Silva-Langford’00]
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Embeddings for Algorithms
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In This Talk

* Dimensionality reduction: techniques and
inspirations

» Earth-Mover Distance (EMD) into |,
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Dimensionality Reduction
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Randomized Dim Reduction

JL Theorem: For any X c .9, there is a (1+¢)-embedding of
(X,1,) into 1,¢, where d’= A'ln n/e2 (A=4)

Proof: For a linear mapping f(p)=Ap, where A is a d’'xd
“‘random” matrix, we have for any p,g in X

Pr[ | ||Ap-Adll, - [Ip-all, | > €llp-ql], ] < 97
 Choices of A:

— Rows: random orthogonal unit vectors [JL'84]

— Rows: random unit vectors

— Entries: independently chosen from N(0,1)

— Entries: independently chosen from {-1,1} [Achlioptas’00]
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Proof

We map f(u)=Au=[a'*u,...,a%*u] , where each
entry of A has normal distribution

Need to show that there exists scaling factor S
such that, with probability at least %, for each
pair p,q in X, we have [[i(p)-f(q)[|= S |[p-q]|
Sufficient to show that for a fixed u=p-qg, where
p,q in X, we have ||Au|| = S||u|| with probability at
least 1-1/n?

In fact, by linearity of A we can assume ||ul||=1,
so we just need to show ||Aul|= S

15



Normal Distribution

* Normal distribution:
— Range: (-«, =)
— Density: f(x)=ex"2/2 [ (211)"?2
— Mean=0, Variance=1
— If Xand Y independent r.v. with normal distribution,
then X+Y has normal distribution
« Basic facts:
— Var(cX)=c? Var(X)
— If X,Y independent, then Var(X+Y)=Var(X)+Var(Y)
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Back to embedding

Consider Z=a"u = a*u=) a u,
Each term a u

— Has normal distribution

— With variance u/?

Thus, Z has normal distribution with
variance > u, 2 =1

This holds for each a
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What is ||Aul|,

o ||Au|l2= (@' * u)2+...+(@? * u)2= Z,2+...+Z,?
where:
— All Z’s are independent
— Each has normal distribution with variance=1

« Therefore, E[ ||Aul|? |=d*E[Z,?]=d’
« By Chernoff-like bound
Pr[ | [|Au]|? —d’|>ed’]<eB d€ <1/n2
for some constant B
« So, ||[Aull, =(d")"? with probability 1-1/n?
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Implications

« Replace d by O(In(n)/e?) in the running
time
* Works (w.h.p.) even if not all points known

In advance. E.g., query point in nearest
neighbor

* Mapping is linear
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Experiments |

« [Dasgupta, UAI'00]: Compared JL with
PCA in the context of supervised learning
using EM (on OCR data set):

— Reduce dimension
— Run EM to fit a Gaussian mixture
— Use it as a classifier

 Conclusions:

— Reduction from 256 to 40 dim improved the
accuracy (of both PCA and JL)
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Experiments |

 [Fradkin-Madigan, KDD’03]: Compared JL with
PCA in the context of supervised learning

— Reduce the dimension
— Apply C4.5, 1NN, 5NN or SVM
— Measure the classification error

« Conclusions:

— To reach optimal error, JL needs dimension that is {1,
10, 50} times larger than PCA
— However:

 JL needs no additional space (matrix A can be pseudo-
generated), and has lower pre-computation time

* JL needs no updating when new data points are added
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Inspiration

* c-Approximate Near
Neighbor:

— Given: set P of points in [.,¢,
>0

— Goal: build data structure
which, for any query q, if
there is a point pe P,||g-p||,=r,
it returns p'e P, ||g-p’||, = cr
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LSH

« A family H of functions h: |, — U is called
(P.,P,,r,cr)-sensitive [IM'98],if for any p,q:

—if [|p-q
—if [|p-q
 Given H
NN with

<r then Pr
| >cr then Pr

s

[ h(p)=h(q) ] > P,
[ h(p)=h(q) ] <P,

_we can so

Ve a c-approximate

— Query time: O(d nflog n), p =log,p.(1/P4)

— Space:

O(nP *1 +dn)
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| SH [DIIM’04]

Define hy(p)=Lp*X/w, where:
—W=r
— X=(X,...X,) , where X is
chosen from “stable”
distribution

— l.e., p*X has same distribution
as ||p|| Z, where Z is “stable”

— For |,, Gaussian distribution
Is stable
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| SH [DIIM’04]

* Recall the query time is O(dnP)

* Bounds on p:

* p <1/c for |, (improves on [IM'98] )
» p=1/cforl,

* Works directly in | spaces (unlike [IM'98] )
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Earth Mover Distance
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Earth-Mover Distance

« Given: two (multi)sets P,Q — R?, |[P|=|Q]

- EMD(P,Q)=min weight matching between
Pand Q

./.. ../.

o—0@
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Applications

* A natural measure of dissimilarity between
point-sets

* [Rubner-Tomasi-Guibas’98] used it for
comparing
— color histograms of images
— texture information of images

« Experimentally works well
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Issues

- EMD(P,Q) takes a super-
linear (in |P| ) time to
compute

* Typically, one wants to find a
NN of Q with respect to EMD

« How to do this faster than
linear scan ?
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Approximate NN via Embeddings

* Approach:

— Embed EMD into |,9 (with distortion c)

— Use c’-approximate NN for [, ¢
— This gives cc’ -approximate NN for

EMD

e Used earlier in

[FarachColton-Indyk’99]: Hausdorff metric
over Ipd into low-dimensional |_

[Cormode-Paterson-Sahinalp-Vishkin’00, Muthukrishnan-

Sahinalp’00, Cormode-Muthukrishnan’02]:
Block-edit distance into |,

I:)2
I:)‘I
Q
PS
G
@ )
f(P)
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EMD into |,

Assume P c{1,... A}d

Impose square grids G _,...G,, with
side lengths 2-1,20, ..., 2k = A,
shifted at random.

For each square cell c in G, let

| ﬂ( )lbe the number of points in
cP

Embedding: P is mapped to

f(P) = 2-n"15, 2°n0; ... 2knky
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Guarantees

 Theorem:

— EMD(P,Q) < O( [[f(P)-f(Q)I[+)

— E[ [[f(P)-f(Q)[[;] = O(log A') EMD(P,Q)
 Due to:

— Charikar’'02, Kleinberg-Tardos’99, Bartal’ 96,
Peleg'97+Goel [personal communication]

— Indyk-Thaper'02, Varadarajan'02
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Proof intuition
« EMD(P,Q) small:

— Most points in P are close to the
corresponding points in Q

— Corresponding points fall to the
same cell

— Counts cancel out: [|f(P)-f(Q)||, small
- EMD(P,Q) large:
— Many points in P are far from the
points in Q

— Corresponding points fall to different
cells

— Counts do not cancel out




How Does This Work in Practice?

Data: color histograms of 20,000 Corel-Draw
Images:

— Each pixel in an image is a point in 3D color space
— Image represented by a bag of pixels

100 queries

Parameters:

— Probability of failure set to 10%

— Embedding done 5 times per query
— Approximation factor ¢ set by hand

Compare our approximate NN to the exact NN
(w.r.t. EMD)
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Speedup Over Linear Scan

Speedup Distribution

Frequency
[e+]

, 11

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290 3
Speedup Factor
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Data profile

« Shows the number of c-approximate nearest
neighbors as a function of c:

— Bad case
— Typical case ™|

16000

14000

12000

10000

Number of images

8000

6000

4000 ~

2000

0 |
8 9




Conclusions for NN under EMD

 Efficient algorithm for NN under EMD via:
— Embedding EMD into |,
— Fast NN in [,d

* O(log A) pretty good in practice
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