Data communications and analysis in simulation of plasma turbulence on a five-dimensional phase space

> Tomo-Hiko Watanabe and Shinya Maeyama Department of Physics, Nagoya University, Japan

> > watanabe.tomohiko@nagoya-u.jp www.p.phys.nagoya-u.ac.jp

Outline

Introduction

- What is plasma turbulence?
- Why do we meet big data in plasma physics?
- Basic equations and simulation model
- Multiscale turbulence simulation in plasma
 - Peta-scale simulation of fusion plasma turbulence
 - Data communication optimized on peta-scale computer
 - Nonlinear interactions in kinetic plasma turbulence

Summary

What is plasma turbulence?

Biggest plasma in the universe

• Virgo clusters

Visible (left) and X-ray (right) images

http://www.astro.isas.jaxa.jp/xjapan/asca/5/cggas/

2017/1/30

DMC2017@IPAM, UCLA

Plasma turbulence in the

interplanetary space

 Solar wind observation by spacecraft confirms the power law scaling of fluctuations

5

Strong turbulence and transport in magnetic fusion plasma

• Strong turbulence drives the particle and heat transport, if mean gradients of n and/or T exist in magnetic fusion plasma.

Fluid approximation may break down in high temperature plasmas

- Fluid approximation can be valid for L
 > λ_{ii}: mean-free-path (// to B)
 > ρ_i: gyro-radius (perpendicular to B)
- In fusion plasmas of $T_i \sim 10$ keV, $n \sim 10^{14}/cc$, $v_{ii} \sim 10^2 \text{ s}^{-1}$, $\lambda_{ii} \sim 10^4$ m, $a \sim 1$ m, $qR_0 \sim 10$ m Thu, the Knudsen number $\lambda_{ii} / qR_0 \sim 10^3$!!
- How large is λ_{ii} in the Earth's magnetosphere? $\lambda_{ii} \sim O(10^8 \text{ km}) \parallel (\text{for } T_i \sim 10 \text{ eV}, n \sim 5/\text{cc})$

Why do we meet big data in plasma physics?

Properties of plasma turbulence

• Plasma turbulence consists of fluctuations of particle and velocity distributions and electromagnetic fields.

• $f = f_0 + \delta f$, $E = E_0 + \delta E$, $B = B_0 + \delta B$

- Due to the high temperature of *T* > keV, the one-body distribution function, *f*(*x*, *v*, *t*), may deviate from the equilibrium with the Maxwellian *F_M*.
 - $\delta f \neq F_M$
- Due to the magnetic field B₀, the charged particle motions, and thus, the turbulence is anisotropic.
 - $\delta f = \delta f(x_{\parallel}, \boldsymbol{x}_{\perp}, \boldsymbol{v}_{\parallel}, \boldsymbol{v}_{\perp})$

The Vlasov equation

 Advection of *f* along particle trajectories in the phase space is describe by the Vlasov equation,

$$\frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \nabla f + \frac{q}{m} (\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}) \cdot \frac{\partial f}{\partial \boldsymbol{v}} = 0$$

or
$$\frac{\partial f}{\partial t} + \{H, f\} = 0$$

which involves a variety of kinetic effects, i.e., Landau damping, particle trapping, finite gyroradius effects, ...

• Fine structures are generated by the advection terms on the phase space, that is, shearing of *f* by the Hamiltonian flow,

 $u(x_i)\frac{\partial}{\partial x_j}f(x_i,x_j,\dots)$

=> Generation of "Big Data" on the phase space

DMC2017@IPAM, UCLA

How does the distribution function develop on the phase space?

- Collisionless damping in 1-D Vlasov-Poisson system is shown below, where $f(x, v, t = 0) = F_M(1 A \cos kx)$
- Fine structures of *f* continuously develop
 - Ballistic modes with scale-lengths of 1/kt in v-space
 - Stretching of *f* due to shear of the Hamiltonian flow

Basic equations and simulation model

Kinetic model simplified for lowfrequency phenomena

- Although the Vlasov equation is "the first principle" for describing collisionless plasma behaviors, it involves short time scale of Ω_i^{-1} , Ω_e^{-1} , ω_p^{-1} ...
 - In a magnetic fusion plasma with B = 1T, $\Omega_i = \frac{eB}{m_i} \sim 1 \times 10^8 \text{ [rad} \cdot \text{sec}^{-1}\text{]}$
- We need reduced kinetic equations to eliminate the fast gyro-motion as well as ω_p, while keeping finite gyro-radius and other kinetic effects.

=> Gyrokinetic equations

From Vlasov to gyrokinetic eqs.

• To deal with fluctuations slower than the gyro-motion, reduce the Vlasov equation to a gyro-averaged form:

- Gyrokinetic ordering and perturbation expansion $\varepsilon \sim \frac{\omega}{\Omega} \sim \frac{\rho}{L} \sim \frac{k_{\parallel}}{k_{\perp}} \sim \frac{\delta f}{f_0} \sim \frac{e\phi}{T} \sim \frac{\delta B}{B_0}$, $f = f_0 + \delta f$
 - Recursive formulation of linear gyrokinetic equations [Rutherford & Frieman (1968); Antonsen & Lane (1980)]

Perturbed gyrokinetic equation

- Gyrocenter coordinates $(X^{(g)}, v_{\parallel}, \mu, \xi)$
 - μ : magnetic moment, ξ : gyrophase

• Nonlinear gyrokinetic equation for $\delta f_s^{(g)}$ $\begin{bmatrix} \frac{\partial}{\partial t} + v_{\parallel} \mathbf{b} \cdot \nabla + \mathbf{v}_{ds} \cdot \nabla - \frac{\mu_s}{m_s} \mathbf{b} \cdot \nabla B \frac{\partial}{\partial v_{\parallel}} \\ \text{Magnetic } m_s \frac{\partial}{\partial v_{\parallel}} \end{bmatrix} \delta f_s^{(g)} + \frac{c}{B_0} \begin{cases} \Phi - \frac{v_{\parallel}}{c} \Psi, \delta f_s^{(g)} + \frac{e_s \varphi}{T_s} \\ \Phi - \frac{v_{\parallel}}{c} \Psi, \delta f_s^{(g)} + \frac{e_s \varphi}{T_s} \end{cases}$ $= -v_{\parallel} F_{0s} \frac{e_s}{T_s} \left(\mathbf{b} \cdot \nabla \Phi + \frac{1}{c} \frac{\partial \Psi}{\partial t} \right) + F_{0s} \frac{e_s}{T_s} \left[\mathbf{v}_{*s} \cdot \nabla \left(\Phi - \frac{v_{\parallel}}{c} \Psi \right) - \mathbf{v}_{ds} \cdot \nabla \Phi \right]$ Parallel electric field Diamagnetic drift [Friemann & Chen, '82]

• Potential Φ and Ψ act on the gyrocenter (nonlinear term).

• Major "flow shear" terms in the GK equation generate fine structures of $\delta f_s^{(g)}$ on the phase space,

$$v_{\parallel} \boldsymbol{b} \cdot \nabla \delta f_{s}^{(g)}, \quad \boldsymbol{v}_{ds} \cdot \nabla \delta f_{s}^{(g)}, \quad \left\{ \Phi - \frac{v_{\parallel}}{c} \Psi, \delta f_{s}^{(g)} \right\}.$$

 $X^{(g)}$

Fluctuations of δf on (x,v)-space

• Gyrokinetic simulation of the ion temperature gradient driven turbulence causes energy transport and fluctuations of $\delta f_s^{(g)}$ on the velocity space. [Watanabe & Sugama, NF2006]

Snapshot of $\delta f_s^{(g)}$ on v-space Re $(f_{k_x,k_y}/\phi_{k_x,k_y})$ (c) 4 -5 -4 -3 -2 -1 0 1 2 3 4 5

Grid points ~ 50 billion (5x10¹⁰) Memory ~ 2.6TB Computation ~ 5TFlops on Earth Simulator 192 nodes (peak 12TFlops) 24 hours.

(Nx, Ny, Nz, Nv, Nm) = (256, 256, 128, 128, 48) (peak 12TFlops) 24 hours. DMC2017@IPAM, UCLA

Peta-scale simulation of fusion plasma turbulence

The K computer

"Kei" means 10¹⁶.

- K computer
- CPU: SPARC64 VIIIfx 2 GHz 8 cores/processor 16 GFlops/core Memory BW 8 GB/s/core
- Interconnect: Torus fusion (Tofu)
 6D mesh/torus topology
 Interconnect BW 5 GB/s × 4
 4 send + 4 recv. simultaneously
- 88128 nodes (705024 cores)
- 10.51 PFlops (No. 1 of Top500 in Nov 2011)
- Top 1 of Graph500 still in Nov 2016

Tofu interconnect with 6D mesh/torus topology [Ajima,2012] (3D torus network as a user view)

http://www.aics.riken.jp/en/kcomputer/

Gyrokinetic simulation of multiscale plasma turbulence

- The flux tube code, GKV, has been applied to the direct numerical simulation of the multiscale turbulence.
- Ion and electron scale turbulence are simultaneously computed with high spatial resolution.
- Employ the periodic boundary in x₁
- $m_i/m_e = 1836$ leads to 43 times difference of the two scales.

DMC2017@IPAM, UCLA

Maeyama+ PRL (2015) ¹⁹

Transport in multi-scale turbulence: "More is different"

• Transport in the multi-scale turbulence is characterized *neither* by the ITG and ETG transport in a single-scale.

Computation meeting big data needs optimization

- The peta-scale turbulence simulation needs large amount of data communications
 - ~100MB data transfer for each MPI process / time step
 - ~ 1TB data transfer / time step for 12,288 MPI processes
 - It costs ~ 0.9 sec / time step (best estimate after optimization)
- Computational cost for the same run
 - 190 TFLOP / time step
 - 140 TFLOPS achieved on 12,288 nodes (~9% to peak)
 - It costs ~ 1.36 sec / time step (memory bottle neck)
- Computation / communication ~ only 1.5
- How to achieve the high performance => Optimization

Data communication optimized on peta-scale computer

Requirements for multi-scale simulations

- Fine resolutions in x and y to resolve electron and ion scales.
- Small time step size to resolve rapid electron motions.

Resource: ~100 EFlop Time steps: ~10⁵ steps Problem size: $1024 \times 1024 \times 96 \times 96 \times 32 \times 2 = 6 \times 10^{11}$ grids FFT FD, Reduction

Parallelization: over 100 k cores

The improvement of the strong scaling (reducing the cost of inter-node communications) is critically important.

- ➢ Optimizations of MPI-rank mapping and communications
 → reduce the communication costs
- Computation-communication overlaps

 \rightarrow mask the communication costs

Segmented rank mapping on 3D torus network

①Arrange rank_xy:Data transpose isperformed in a segment.

②Arrange rank_z, rank_v, rank_m: Point-to-point communications are performed between adjacent segments. DMC2017@IPAM, UCLA

Segmented rank mapping on 3D torus network

①Arrange rank_xy: Data transpose is performed in a segment.

②Arrange rank_z, rank_v, rank_m: Point-to-point communications are performed between adjacent segments. DMC2017@IPAM, UCLA ③Arrange rank_s:Reduction isperformed in across section. 29

Computation-communication overlaps

Effects of the optimizations

The segmented rank mapping reduces comm. cost.

The pipelined overlaps efficiently mask comm. cost.

2017/1/30

Strong scaling toward million cores

- Excellent strong scaling up to ~ 600k cores.
- High parallel efficiency ~ 99.99994%.
- ➢ Flops/Peak is 8.3~10.8%.

The highly-optimized code enables multi-scale turbulence simulations from electron to ion scales.

> Problem size: $(n_x, n_y, n_z, n_v, n_\mu, n_s) =$ (1024, 1024, 96, 96, 32, 2)Parallelization: $(N_{xy}, N_z, N_v, N_\mu, N_s, N_{threads})$ = (8-64, 12, 12, 4, 2, 8)

Nonlinear interactions in kinetic plasma turbulence

Fluctuations of δf on (x,v)-space

- Analysis of the distribution function δf provides us fundamental information on plasma turbulence.
 - Anisotropic flow patterns (zonal flows and 2D turbulence)
 - Generation of smaller (x,v)-scales (cascading)

Entropy Balance and Transfer

- A quadratic functional of $\delta f_{ik_{\perp}}^{(g)}$, that is, $\delta S_{ik_{\perp}}$, is a measure of fluctuation, "entropy variable"
- Production rate of $\delta S_{ik_{\perp}}$ balances with transport $Q_{ik_{\perp}}$ and dissipation $D_{ik_{\perp}}$
- In kinetic plasma turbulence, $\delta S_{ik_{\perp}}$ is produced with fine velocity-space structures by $u(x_i) \frac{\partial}{\partial x_j} f(x_i, x_j, ...),$
- and is transferred in the k space through interactions of turbulence and zonal flows

Under the periodic boundary condition in x_{\perp}

$$\delta S_{\mathrm{i}\boldsymbol{k}_{\perp}} = \left\langle \int d\boldsymbol{v} \frac{|\delta f_{\mathrm{i}\boldsymbol{k}_{\perp}}^{(\mathrm{g})}|^2}{2F_{\mathrm{M}}} \right\rangle$$

$$\frac{\partial}{\partial t} \left(\delta S_{\mathbf{i}\boldsymbol{k}_{\perp}} + W_{\boldsymbol{k}_{\perp}} \right) \\ = L_{T_{\mathbf{i}}}^{-1} Q_{\mathbf{i}\boldsymbol{k}_{\perp}} + \mathcal{T}_{\mathbf{i}\boldsymbol{k}_{\perp}} + D_{\mathbf{i}\boldsymbol{k}_{\perp}}$$

$$Q_{\mathbf{i}\boldsymbol{k}_{\perp}} = \operatorname{Re}\left\langle v_{\mathrm{ti}} \int d\boldsymbol{v} \delta f_{\mathbf{i}\boldsymbol{k}_{\perp}}^{(\mathrm{g})} \left(\frac{m_{\mathrm{i}}v_{\parallel}^{2} + 2\mu B}{2T_{\mathrm{i}}} \right) ik_{y}\rho_{\mathrm{ti}} \frac{e\delta\psi_{\boldsymbol{k}_{\perp}}^{*}}{T_{\mathrm{i}}} \right\rangle$$
$$D_{\mathbf{i}\boldsymbol{k}_{\perp}} = \operatorname{Re}\left\langle \int d\boldsymbol{v} \, \mathcal{C}[h_{\mathbf{i}\boldsymbol{k}_{\perp}}] \frac{h_{\mathbf{i}\boldsymbol{k}_{\perp}}^{*}}{F_{\mathrm{M}}} \right\rangle$$

DMC2017@IPAM, UCLA

Entropy Transfer Function T_k

 Entropy transfer function describes nonlinear interactions in anisotropic turbulence including drift waves and zonal flows. [Sugama+ PoP 2009; Nakata+ PoP 2012]

$$\begin{split} \mathcal{T}_{\mathbf{i}\boldsymbol{k}_{\perp}} &= \sum_{\boldsymbol{q}_{\perp}} \sum_{\boldsymbol{p}_{\perp}} \delta_{\boldsymbol{k}_{\perp} + \boldsymbol{p}_{\perp} + \boldsymbol{q}_{\perp}, 0} \mathcal{J}_{\mathbf{i}}[\boldsymbol{k}_{\perp} | \boldsymbol{p}_{\perp}, \boldsymbol{q}_{\perp}] \\ \mathcal{J}_{i}[\boldsymbol{k}_{\perp} | \boldsymbol{p}_{\perp}, \boldsymbol{q}_{\perp}] &= \left\langle \frac{c}{B} \boldsymbol{b} \cdot (\boldsymbol{p}_{\perp} \times \boldsymbol{q}_{\perp}) \int d\boldsymbol{v} \frac{1}{2F_{\mathrm{M}}} \mathrm{Re}[\delta \psi_{\boldsymbol{p}_{\perp}} h_{\mathbf{i}\boldsymbol{q}_{\perp}} h_{\mathbf{i}\boldsymbol{k}_{\perp}} - \delta \psi_{\boldsymbol{q}_{\perp}} h_{\mathbf{i}\boldsymbol{p}_{\perp}} h_{\mathbf{i}\boldsymbol{k}_{\perp}}] \right\rangle \\ h_{\mathbf{k}}: \text{non-adiabatic part of } f^{(\mathrm{g})} \end{split}$$

• Detailed balance relation for the triad transfer function $J[k_{\perp}|p_{\perp}, q_{\perp}]$ holds for the triad interaction with $k_{\perp} + p_{\perp} + q_{\perp} = 0$

 $\mathcal{J}_{\mathrm{i}}[\boldsymbol{k}_{\perp}|\boldsymbol{p}_{\perp},\boldsymbol{q}_{\perp}] + \mathcal{J}_{\mathrm{i}}[\boldsymbol{p}_{\perp}|\boldsymbol{q}_{\perp},\boldsymbol{k}_{\perp}] + \mathcal{J}_{\mathrm{i}}[\boldsymbol{q}_{\perp}|\boldsymbol{k}_{\perp},\boldsymbol{p}_{\perp}] = 0$

2017/1/30

DMC2017@IPAM, UCLA

Scale Turbulence

Turbulence (k_y ≠ 0) entropy is transferred to higher-k_r side via nonlinear interactions with zonal flows (k_y = 0) => Spectral broadening and transport reduction

Detailed Entropy Transfer Analysis Demands Computational Costs

- The triad transfer function J[k_⊥|p_⊥, q_⊥] represents an element of nonlinear interactions, and is useful when several players co-exist in the multi-scale turbulence.
- But, computation of *J*[*k*_⊥|*p*_⊥, *q*_⊥] for the whole *k*_⊥-space demands huge computational costs.

(nkx,nky,nz,nv,nm,ns)x(nkx,nky)

= (320,640,64,96,16,2)x(320,640)= 8x10¹⁵ loops (!?)

$$p_{\perp} \bigvee_{k_{\perp}} p_{\perp}^{\prime\prime} \bigvee_{k_{\perp}} p_{\perp}^{\prime\prime\prime} \bigvee_{k_{\perp}} k_{\perp} \bigvee_{p_{\perp}^{\prime\prime\prime}} q_{\perp}^{\prime\prime\prime} \dots k_{\perp}^{\prime}, k_{\perp}^{\prime\prime}, k_{\perp}^{\prime\prime\prime}, \dots$$

• A reduce model is necessary for the triad transfer analysis of the multiscale turbulence.

2017/1/30

DMC2017@IPAM, UCLA

A reduced model for the triad

entropy transfer

• Apply the Hermite-Laguerre polynomial expansion,

$$\begin{aligned} H_{0sk}g_{sk}(z,v_{\parallel},\mu) &= \sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \frac{M_{sklm}(z)}{l!} H_{l}(v_{\parallel}) L_{m}(\mu) F_{Ms} \\ M_{sklm}(z) &= \int dv^{3} H_{l}(v_{\parallel}) L_{m}(\mu) J_{0sk}g_{sk}(z,v_{\parallel},\mu) \end{aligned}$$

• With an approximation of $J_{0sp} \approx J_{0sq}J_{0sk}$ for $\mathbf{k} + \mathbf{p} + \mathbf{q} = 0$ $J_{sk}^{\mathbf{p},\mathbf{q}} \approx \delta_{\mathbf{k}+\mathbf{p}+\mathbf{q},0} \frac{n_s T_s}{2B} \mathbf{b} \cdot \mathbf{p} \times \mathbf{q} Re \sum_{l} \sum_{m} \left\langle \frac{M_{sklm}}{l!} \left(\phi_{\mathbf{p}} M_{sqlm} - \phi_{\mathbf{q}} M_{splm} \right) \right\rangle$

for the electrostatic part.

• In practice, sum over *l* and *m* are taken up to the third order, reducing the computational cost by a factor of *O*(10²).

Sub-space transfer analysis

Dividing the wave-number space into sub-spaces, we define the sub-space transfer by a sum over Ω_k

 $\frac{d}{dt}(S_{\Omega_k} + W_{\Omega_k}) = X_{\Omega_k} + D_{\Omega_k} + E_{\Omega_k} + I_{\Omega_k}$ $I_{\Omega_k} = \sum_{\Omega_p} \sum_{\Omega_q} J_{\Omega_k}^{\Omega_p, \Omega_q} \qquad \begin{array}{l} \text{Use FFT with filters of} \\ \Omega_p \text{ and } \Omega_q \text{ and compute} \\ \text{in the real space} \end{array}$ Ω_p Ω_k $J_{\Omega_k}^{\Omega_p,\Omega_q} = \sum \sum \sum J_{sk}^{p,q}$ $\Omega_q \mathbf{k}$ $s=i, e \mathbf{k} \in \Omega_k \mathbf{p} \in \Omega_p \mathbf{q} \in \Omega_q$ which satisfies • Symmetry $J_{\Omega_k}^{\Omega_p,\Omega_q} = J_{\Omega_k}^{\Omega_q,\Omega_p}$ • Detailed balance $J_{\Omega_k}^{\Omega_p,\Omega_q} + J_{\Omega_q}^{\Omega_k,\Omega_q} + J_{\Omega_p}^{\Omega_q,\Omega_k} = 0$ • $J_{\Omega_k}^{\Omega_p,\Omega_p} \neq 0 \ (if \ \Omega_p \neq \Omega_k)$ Ω_k 46

Analysis of the nonlinear mode coupling

Sub-space transfer is

- a generalization of the shell-to-shell transfer for the isotropic turbulence.
- is applied to anisotropic and multi-scale turbulence.

$$\begin{cases} \text{Zonal flows } \Omega_{ZF} = \{k_{\theta} = 0\} \\ \text{Ion-scale turbulence} \\ \Omega_i = \{k_{\theta} \neq 0 \cap k_{\perp} \rho_{ti} \leq 2\} \\ \text{Electron-scale turbulence} \\ \Omega_e = \{k_{\theta} \neq 0 \cap k_{\perp} \rho_{ti} > 2\} \end{cases}$$

Enhancement mechanism of ITGs by ETGs

- > Weaker zonal flow generation in the multi-scale run.
- Reduction of ZF enhances the ion-scale transport.
- Electron-scale turbulence has damping effects on short-wave-length zonal flows.

Summary

- Data communication in multiscale plasma turbulence simulation
 - Simulation data of ~5TB for a single variable distributed on 72 k nodes of the K computer are transferred through all-to-all, all-reduce, and one-to-one MPI communications.
 - The inter-node communications optimized for the network topology are efficiently overlapped with computations, achieving strong scaling to ~600 k cores
- Data analysis for the nonlinear turbulence interactions demands computational costs of $O(N^2)$. (*N*: # of Fourier modes)
 - Reduced model of triad transfer function is developed and applied to the multiscale turbulence results.
 - Sub-space transfer is useful for studying interactions among sub-groups of Fourier modes, such as ion- and electron-scale turbulence and zonal flows.