Making Every Bit Count: Variable Precision?

Jeff Hittinger
Group Leader, Scientific Computing Group, CASC

3 Feb 2017
How to make an omlette inefficiently...

- Eggs come by the dozen
- Making an omelette, do you break all 12 but use only 3?
- This is how we use bits!

Exascale: like making a billion billion omlettes per second!
The cost of data motion is a critical issue on future computing architectures.

- On-node flops are increasing at least an order of magnitude faster than bandwidth.
- Memory per core is decreasing.
- Bandwidth-limited algorithms will not access the full potential of exascale.

EXASCALE:

- 100x MORE FLOPS
- 5-8x MORE BANDWIDTH
- 0.1x LESS MEMORY/CORE

We could get a 10x or greater improvement in data motion and storage if we were more efficient representing data!
We use double precision floating-point by default (when few significant digits are needed)

- Many of the bits are error
- 11 bit exponent: 616 orders of magnitude
- This is wasteful!
 - Use more work, power, or time than necessary
 - Move around lots of meaningless bits
 - Get less performance

Eliminate the bottlenecks: use only as many bits as needed
We are developing tools and methods that we hope will enable adoption of variable precision

Lower precision
- Faster calculations
- Move/store less data
- Challenges
 - Harder to make robust
 - Harder to maintain
 - Insufficient at times

Variable precision
- Faster calculations
- Move/store less data
- Challenges
 - Harder to make robust
 - Harder to maintain
 - Adapts as needed

- When memory was scarce, we were clever in our use of single precision

- Until now, the cost/benefit has been too high

- Locally adapt the precision to the needs of the application

- Develop tools to make the cost/benefit favorable

We already adapt mesh size, order, models – why not precision?
What do we do when we “simulate”?

While (not done)

Advance the solution in time

Read tabular data

If output Write output

If restart Write restart

Write final results

Stop

Read input

Initialize problem

or

Read restart

Discrete Representation

Particles Mesh

\[u^{n+1} = H(u^n) \]

\[u \in \mathbb{R}^N \]

\[H : \mathbb{R}^N \rightarrow \mathbb{R}^N \]
Where can we address precision issues?

- **NIC**
 - Infrequent slow data transfer
 - Uses:
 - Data output
 - Tabular data reads
 - Restart r/w

- **RAM**
 - Frequent fast data transfer
 - Uses:
 - Solution state storage
 - Temporary storage
 - In situ analysis

- **Cache**

- **Processor**

- **Storage**

Mixed precision algorithms

New data representations
Lossy compression can address the I/O bottleneck

GOAL

Develop algorithms & software supporting adaptive precision where errors do not amplify

APPROACH

- **Adaptive Rate Compression (ARC)**
 - Rate of compression differs between data components (by time, space, and/or variable)
- **Multi-resolution data format (IDX) with ARC**
- **Data optimal algorithms for IDX+ARC**
 - Compute desired solution to necessary precision with the minimal number of bits
We have developed ZFP: the first inline compressor for floating-point arrays

- Inspired by ideas from h/w texture compression
 - 1D, 2D, or 3D array divided into fixed-size $4 \times 4 \times 4$ blocks
 - Each block is independently (de)compressed
 - e.g., to a user-specified number of bits or quality
 - Fixed-size blocks ⇒ random read/write access
 - (De)compression is done inline, on demand
 - Write-back cache of uncompressed blocks limits data loss

- Compressed arrays via C++ operator overloading
 - Can be dropped into existing code by changing type declarations
 - $\text{double } a[n] \leftrightarrow \text{std::vector<double> } a(n) \leftrightarrow \text{zfp::array<double> } a(n, \text{precision})$
ZFP lossy compression shows no artifacts in derivative computations (velocity divergence)
We will base our Adaptive Rate Compression (ARC) method on LLNL’s ZFP compression algorithm.

- **ZFP CODEC supports fixed-size storage or minimum quality**
 - **Fixed quality**: User tolerance ensures relative or absolute error bound
 - **Fixed rate**: Inline compressor supports read and write random access
 - Compressed array primitive with user-specified footprint

- **Very high quality and speed**
 - 100x more accurate than closest competitor
 - ~40 bits of accuracy for 16 bits of storage
 - Up to 2 GB/s/core: 2-6x faster than competition
 - Algorithm amenable to h/w implementation

- **Small, independent compressed blocks**
 - Enable adaptive precision, data parallelism
 - Potential for using different compression rate on each block
IDX is a hierarchical indexing scheme that supports progressive reads of sub-sampled data

- Stores data belonging to the same “resolution” together
 - Uses Z-like space filling curves to preserve spatial locality
 - No redundant data

- Supports fast reads of low-resolution data (avoids disk seeks)

- Supports progressive data streaming
Addressing the memory bandwidth limit while computing

- Store data in memory in compressed format
- Decompress before computing
- Recompress after computing
- *Ideally, the compression/decompression would be handled in hardware*
In lab codes, we have shown that 4x inline lossy compression reproduces results with little error.

LULESH: Lagrangian shock hydrodynamics
- QoI: radial shock position
- 25 state variables compressed over 2,100 time steps
- At 4x compression, relative error < 0.06%

pf3D: Laser-plasma multi-physics
- QoI: backscattered laser energy
- At 4x compression, relative error < 0.1%

Miranda: High-order Eulerian hydrodynamics
- QoI: Rayleigh-Taylor mixing layer thickness
- 10,000 time steps
- At 4x compression, relative error < 0.2%

MFEM: Cubic finite elements
- QoI: function approximation
- 6x compression with ZFP error < 0.7% relative to FEM error
Inline compression introduces interesting mathematical questions

\[
 u^{n+1} = C \left(H \left(D \left(u^n \right) \right) \right)
\]

- Lossy compression
- Decompression

\[H' \equiv C \circ H \circ D \]

- What are the properties of the composite operator?
- Accuracy?
- Stability?
Data transfer is one thing, but can we also increase computational throughput?

- Compressed data transfer still wastes operations on unneeded bits
- Better performance in single precision (more than factor of 2X)
- Into what does one decompress?
- How does one compute in lower precision without loss of accuracy?
We are building on and going beyond existing work on varying precision

Single precision
- 30 yrs ago: memory was limited
- Expertise developed to use single precision

Mixed precision
- Most current work (e.g., Buttari, Li, Demmel, Dongarra)
- Static
- Task-based
- Great for libraries; more difficult for applications

Arbitrary-precision
- Focused on extending precision
- Computing irrationals
- Too slow for simulation
- Can leverage some ideas

New formats
- Unums
- Elias Gamma
- Levenstein
- Exponential
- Tangent
- Disruptive – changes fundamentals of floating point computing
Graph Analysis can be done via Linear Algebra

- Consider analyzing the connectivity structure of a social network
- Such relational datasets are modelled with graphs
- Several graph analysis tasks are useful tools for analysis:
 - **Ranking**: Who are the most important members?
 - **Clustering**: What members are more internally connected?
 - **Classification**: Which members are similar to a given set?
- Linear algebra kernels are useful to accomplish these goals
 - Linear solvers, Eigensolvers, SVD, NMF, Tensor factorization, etc
- Low-fidelity approximations are often as useful as high-fidelity
- We are investigating the efficacy of low-precision approximations
Spectral embedding of vertices can be used by a variety of analysis algorithms

Let \(L \in \mathbb{R}^{n \times n} \) be the combinatorial Laplacian.

Let \(L \in \mathbb{R}^{n \times n} \) be the combinatorial Laplacian.

\[L \]

\[V = \begin{bmatrix} V_1 & V_2 & \cdots & V_n \end{bmatrix} \]

\[\Lambda \]

\[\Lambda = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \]

\[V^t e_i \]

Spectral coordinate of vertex \(i \) is \(i \)-th row of \(V \), a \(k \)-dimensional vector.

Eigenvectors provide a mapping from the vertices into \(\mathbb{R}^k \).

Embeddings of real-world graphs tend to have many centrally co-located points and recursion is required to further partition, even in high-fidelity, double precision approximations.

Several clusters are easily separable, even in low-fidelity approximations.

The partitioning algorithm uses the locations in this embedding to make decisions.

 Relevant for spatial clustering algorithms and ML algorithms for classification tasks.
We are also investigating other mixed precision techniques

- **Error transport**
 - Developed as a posteriori error estimator for truncation error
 - Form of defect correction
 - Can also be used to estimate roundoff error

\[
\begin{align*}
\mathbf{u}_t &= \mathbf{u}_{xx} \\
\mathbf{u}_i^n &= \mathbf{v}_i^n + \mathbf{\epsilon}_i^n \\
\begin{bmatrix}
\frac{\mathbf{v}_{i+1}^n - \mathbf{v}_i^n}{\Delta t} - \frac{\mathbf{v}_{i+1}^n - 2\mathbf{v}_i^n + \mathbf{v}_{i-1}^n}{\Delta x^2} \\
\frac{\mathbf{\epsilon}_{i+1}^n - \mathbf{\epsilon}_i^n}{\Delta t} - \frac{\mathbf{\epsilon}_{i+1}^n - 2\mathbf{\epsilon}_i^n + \mathbf{\epsilon}_{i-1}^n}{\Delta x^2}
\end{bmatrix}
&= 0 \\
\text{single}

\begin{bmatrix}
\frac{\mathbf{v}_{i+1}^n - \mathbf{v}_i^n}{\Delta t} - \frac{\mathbf{v}_{i+1}^n - 2\mathbf{v}_i^n + \mathbf{v}_{i-1}^n}{\Delta x^2} \\
\frac{\mathbf{\epsilon}_{i+1}^n - \mathbf{\epsilon}_i^n}{\Delta t} - \frac{\mathbf{\epsilon}_{i+1}^n - 2\mathbf{\epsilon}_i^n + \mathbf{\epsilon}_{i-1}^n}{\Delta x^2}
\end{bmatrix}
&= -\mathbf{Res}(\mathbf{v}^n, \mathbf{v}^{n+1}) \\
\text{single}

\mathbf{Res}(\mathbf{v}^n, \mathbf{v}^{n+1}) &= \begin{bmatrix}
\frac{\mathbf{v}_{i+1}^n - \mathbf{v}_i^n}{\Delta t} - \frac{\mathbf{v}_{i+1}^n - 2\mathbf{v}_i^n + \mathbf{v}_{i-1}^n}{\Delta x^2} \\
\frac{\mathbf{\epsilon}_{i+1}^n - \mathbf{\epsilon}_i^n}{\Delta t} - \frac{\mathbf{\epsilon}_{i+1}^n - 2\mathbf{\epsilon}_i^n + \mathbf{\epsilon}_{i-1}^n}{\Delta x^2}
\end{bmatrix} \\
\text{double}
\end{align*}
\]

But this is *more* expensive!
We are investigating the potential for an AMR-like dynamic, local mixed precision

- **Dynamic Mixed Precision**
 - Hierarchical representation: sum of singles
 - Block-based refinement
 - Most calculations in single precision
 - Key issues
 - Refinement criteria
 - Propagation of round-off error
 - Cost/benefit

- **Could be done recursively**

\[
\mathcal{U} = \mathcal{V} + \epsilon^{(0)} + \epsilon^{(1)} + \cdots
\]

\(\mathcal{U}\) double, \(\mathcal{V}\) single, \(\epsilon^{(0)}\) single, \(\epsilon^{(1)}\) single
We have promising (and puzzling) preliminary results

- Correction gains factor of 100
- Why so little?
Why limit ourselves to existing types?

Piecewise linear systems

- **IEEE (half, float):** $y = (-1)^s 2^e (1 + f)$
 - $e + \text{bias}$ written in binary using m bits
 - e bits of f encode int, rest encode frac
- **Elias gamma:** for $y \geq 1$
 - $|e|$ written in unary using $e + 1$ bits
 - Use sign, reciprocal bit when $y < 1$
- **Levenstein (modified for Z_+):**
 - Encode e recursively: $e = 2^{e'} (1 + f')$
 - As with IEEE/gamma, append fraction

Corresponding “smooth” systems

- **Exponential:** $y = (-1)^s (2^b)^t = (-1)^s 2^b t$
 - $2^b = \text{IEEE bias, e.g. } b = 128$ for floats
 - $t = 2|x| - 1$
- **Tangent:** $\tan(\pi/2 \times x)$
 - $\tan(\pi/2 (1 - x)) = \cot(\pi/2 x)$
- **Superexponential:** $\lg f(x) = f(2x - 1)$
 - log, exp, mul, div trivial if we have addition, subtraction
And a few more...

- **Binary exponent**
 - Identical to IEEE, but uses reciprocal bit instead of negative exponent when $0 < |y| < 1$

- **Gustafson’s type-ii unums (w/o u-bit)**
 - Uses sign bit, reciprocal bit
 - Starts with seed set of “Kindergarten numbers” \{0.1, 0.2, ..., 1, 2, ..., 10\}
 - Expands via reciprocal and multiplicative closure (multiply, divide by 10)
 - Reduces wobbling precision, but still not very smooth
 - NOTE: requires lookup table, binary search to encode/decode

- **Gustafson’s type-iii unums (w/o u-bit)**
 - Identical to Elias gamma (when $useed = 2$), but without reciprocal bit (piecewise linear everywhere)

- **“Hyperbolic” numbers [hyp]**
 - $f(x) = x / (1 - |x|) = \text{sign}(x) \exp(2 \text{arctanh}(2 |x| - 1))$
 - Smooth map
 - Cheap conversion

- **zfp: fixed-rate compressed arrays**
 - Fixed-length compressed bit string amortized over blocks of 4 x 4 values
What is a Unum? Let’s represent 6.022×10^{23}

IEEE 754 double

- **64 bits**
- **Exponent**: 11 bits
- **Fraction**: 52 bits
- **Sign**: 1 bit

Unum

- **29 bits**
- **Exponent**: 11 bits
- **Fraction**: 11 bits
- **Ubit**: 6 bits
- **Utag**: 5 bits

Dynamically adjustable sizes here

Select number of bits here

Self-descriptive “utag” bits track and manage uncertainty, exponent size, and fraction size.
We can consider an accuracy evaluation using the nonlinear hyperbolic Euler PDEs

- Shock passing through L-shaped chamber
- Uniform grid: 512x256 + 256x768 cells
- All arithmetic done in IEEE double precision
- All data stored as 16- or 32-bit precision
 - 640 kB or 1.25 MB per array
 - vs. 2.5 MB per array using IEEE double precision
- zfp run with and without a cache
 - zfp16: 16 bits/value, single-block “cache”
 - zfp16c: 16 bits/value, 64 kB cache per array
Some representations are promising
Some representations are abysmal
RMS error vs. time
32-bit precision

- IEEE is consistently among the worst numerical representations!
- zfp is 1-3 orders more accurate than uncompressed representations
Important products of our project are tools that will help developers deal with complexity

- **Goal is to develop tools that will help users:**
 - Rapidly change type/implementations
 - Analyze code sections for precision sensitivity
 - Automate conversions

- **We will use the ROSE infrastructure to build new tools**
 - Software analysis and source-to-source transformation

- **Variable precision tools will use software patches**
 - Introduce generated transformations
 - Demonstrated on million-line C++ ASC apps for OpenMP optimizations
For Variable Precision Computing to gain acceptance, we must be able to...

Ensure accuracy

Ensure efficiency

Ensure ease of use

But such a paradigm shift could

— Increase scientific throughput up to 10x (weeks to days)
— Increase the utilization of supercomputers
— Reduce data storage needs by 50-99%
Credits

<table>
<thead>
<tr>
<th>Name</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daniel Osei-Kuffuor</td>
<td>Mixed precision, solvers, MD applications</td>
</tr>
<tr>
<td>David Beckingsale</td>
<td>AMR, performance analysis</td>
</tr>
<tr>
<td>Geoff. Sanders</td>
<td>Solvers, complex networks apps</td>
</tr>
<tr>
<td>Peter Lindstrom (Co-PI)</td>
<td>Data compression, multi-resolution methods</td>
</tr>
<tr>
<td>Timo Bremer</td>
<td>Multi-resolution methods</td>
</tr>
<tr>
<td>Daniel Quinlan (Co-PI)</td>
<td>Compiler tools</td>
</tr>
<tr>
<td>Markus Schordan</td>
<td>Program analysis</td>
</tr>
<tr>
<td>Scott Lloyd</td>
<td>Unums, reconfigurable computing</td>
</tr>
</tbody>
</table>

This work was funded by LLNL Laboratory Directed Research and Development as Project 17-SI-004: *Variable Precision Computing*
Consider the monotonic mapping \(f : (-1, +1) \rightarrow \mathbb{R} \)
- \(x \) in \((-1, +1)\) is the binary representation of the real value \(y = f(x) \)
- In practice, we uniformly sample the interval \((-1, +1)\) at \(2^p\) points

Monotonicity, closure under negation & reciprocation impose these constraints
- \(-f(x) = f(-x)\) (two’s complement avoids negative zero)
- \(1/f(x) = f(1-x)\), \(0 < x < 1\)

Hence
- \(f(0) = 0\)
- \(f(\pm 1/2) = \pm 1\)
- \(f(+1) = f(-1) = \pm \infty\) (the point at infinity)

We are free to map \(f : (1/2, 1) \rightarrow (1, \infty)\) as we like
- \((-1, 1/2)\) map given by negation, reciprocation
We will investigate multiple techniques for varying precision to address the bottlenecks.
Thrust 2: We will develop Variable Precision Algorithms for dynamic data

GOAL

Using *standard data types*, develop algorithms and software to support *adaptive precision* on data where *errors can amplify*.

APPROACH

- Extend static mixed precision algorithms
- Develop dynamic mixed precision through layered representation (like AMR)
- Apply Adaptive Rate Compression (ARC) inline

ISSUES

- Precision refinement criteria
- Stability of new algorithms
- Behavior (propagation) of roundoff errors
- Non-contiguous data layouts
Thrust 3: We will investigate new data representations for variable precision computing

GOAL

- Using new data types, develop algorithms and software to support adaptive precision on data where errors can amplify

APPROACH

- Universal numbers (unums)
- ZFP as a new number format
- New floating-point compression algorithm suitable for unums

ISSUES

- Utility of unums in numerical algorithms
- Stability/accuracy/convergence of new algorithms
- Ability to transform operations w/ compression
- Prospects for hardware implementations
We will continue the work of a feasibility study to evaluate the potential benefits of unums

- Better answers with fewer bits
- No rounding errors
- Less memory usage without loss of information
- Bit-identical results across systems
- New algorithms leveraging variable precision

Unum FS Status

- Developed first C unum implementation
 - Built on GNU multi-precision library
 - Includes C++ API
- Unum implementation demonstrated in parts of LULESH
- Developed compiler support to identify and transform types within application code
 - Ongoing work:
 - Additional operators added as needed
 - Translate more of LULESH to unums
 - Extend compiler work