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How	to	make	an	omlette inefficiently…

§ Eggs	come	by	the	dozen

§ Making	an	omelette,	do	you	break	
all	12	but	use	only	3?

§ This	is	how	we	use	bits!

Exascale:	like	making	a	billion	billion	omlettes per	second!	
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The	cost	of	data	motion	is	a	critical	issue	on	
future	computing	architectures

§ On-node	flops	are	increasing	at	
least	an	order	of	magnitude	
faster	than	bandwidth

§ Memory	per	core	is	decreasing

§ Bandwidth-limited	algorithms	
will	not	access	the	full	potential	
of	exascale

100x FLOPS
MORE

5-8x BANDWIDTH
MORE

EXASCALE:

with	only

0.1x MEMORY/CORE
LESS

and

We	could	get	a	10x	or	greater	improvement	in	data	motion	
and	storage	if	we	were	more	efficient	representing	data!			
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§ Many	of	the	bits	are	error

§ 11	bit	exponent:	616	orders	of	magnitude

§ This	is	wasteful!
— Use	more	work,	power,	or	time	than	necessary
— Move	around	lots	of	meaningless	bits
— Get	less	performance

# of	atoms	in	universe	~	1081

Diameter	of	universe
Planck	length

~	1061

Mass	of	universe
Electron	mass

~	1083

We	use	double	precision	floating-point	by	
default	(when	few	significant	digits	are	needed)

051526263

exponent
sign

fraction

Only a few of bits are meaningful Truncation and other error

Eliminate	the	bottlenecks:	use	only	as	many	bits	as	needed
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We	are	developing	tools	and	methods	that	we	
hope	will	enable	adoption	of	variable	precision

Lower precision 

• Faster calculations
• Move/store less data
• Challenges

• Harder to make robust
• Harder to maintain
• Insufficient at times

§ When	memory	was	scarce,	
we	were	clever	in	our	use	
of	single	precision

§ Until	now,	the	cost/benefit	
has	been	too	high

Variable precision 

• Faster calculations
• Move/store less data
• Challenges

• Harder to make robust
• Harder to maintain
• Adapts as needed

§ Locally	adapt	the	precision	
to	the	needs	of	the	
application

§ Develop	tools	to	make	the		
cost/benefit	favorable

We	already	adapt	mesh	size,	order,	models	– why	not	precision?
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What	do	we	do	when	we	“simulate”?

While (not done)
Advance the solution in time

Start

Stop

Write final results

Write restart

Write output

Read input

If output

If restart

Initialize problem

Read tabular data

Read restartor

u 2 RN

un+1 = H(un)

H : RN ! RN

Particles
Mesh

Discrete Representation
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Where	can	we	address	precision	issues?

RAM Cache Processor

Storage

NIC

Infrequent slow 
data transfer

Frequent fast 
data transfer

Uses:
• Data output
• Tabular data reads
• Restart r/w

Uses:
• Solution state storage
• Temporary storage
• In situ analysis

Decompress

Recompress

New data 
representations

Mixed precision 
algorithms
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Lossy compression	can	address	the	I/O	
bottleneck

• Data	analysis
• Visualization
• Restart
• Tabular	data

G
O

A
L

A
P

P
R

O
A

C
H § Adaptive	Rate	Compression	(ARC)	
- Rate	of	compression	differs	between	data	

components	(by	time,	space,	and/or	variable)

§ Multi-resolution	data	format	(IDX)	with	ARC	

§ Data	optimal	algorithms	for	IDX+ARC
- Compute	desired	solution	to	necessary	precision	

with	the	minimal	number	of	bits	

Develop	algorithms	& software	supporting	
adaptive	precision	where	errors	do	not	amplify

RAM

Cache

Processor

Decom
press

Re
co
m
pr
es
s

Storage
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§ Inspired	by	ideas	from	h/w	texture	compression
— 1D,	2D,	or	3D	array	divided	into	fixed-size	4´4´4	blocks
— Each	block	is	independently	(de)compressed

• e.g.,	to	a	user-specified	number	of	bits	or	quality
— Fixed-size	blocks	Þ random	read/write	access
— (De)compression	is	done	inline,	on	demand
— Write-back	cache	of	uncompressed	blocks	limits	data	loss

§ Compressed	arrays	via	C++	operator	overloading
— Can	be	dropped	into	existing	code	by	changing	type	declarations
— double	a[n]	Û std::vector<double>	a(n)	Û zfp::array<double>	a(n,	precision)

We	have	developed	ZFP:	the	first	inline	
compressor	for	floating-point	arrays
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ZFP lossy compression	shows	no	artifacts	in	
derivative	computations	(velocity	divergence)
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§ ZFP	CODEC	supports	fixed-size	storage	or	minimum	quality
— Fixed	quality:	User	tolerance	ensures	relative	or	absolute	error	bound
— Fixed	rate:	Inline	compressor	supports	read	and	write	random	access

• Compressed	array	primitive	with	user-specified	footprint

§ Very	high	quality	and	speed
— 100x	more	accurate	than	closest	competitor
— ~40	bits	of	accuracy for	16	bits	of	storage
— Up	to	2	GB/s/core:	2-6x	faster	than	competition
— Algorithm	amenable	to	h/w	implementation

§ Small,	independent	compressed	blocks
— Enable	adaptive	precision,	data	parallelism
— Potential	for	using	different	compression

rate	on	each	block

We	will	base	our	Adaptive	Rate	Compression	(ARC)	
method	on	LLNL’s	ZFP	compression	algorithm

8-bit

24-bit

16-bit

32-bit
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§ Stores	data	belonging	to	the	same	“resolution”	together	
— Uses	Z-like	space	filling	curves	to	preserve	spatial	locality	
— No	redundant	data	

§ Supports	fast	reads	of	low-resolution	data	(avoids	disk	seeks)

§ Supports	progressive	data	streaming

IDX	is	a	hierarchical	indexing	scheme	that	
supports	progressive	reads	of	sub-sampled	data
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Addressing	the	memory	bandwidth	limit	while	
computing

RAM

Cache

Processor

Decom
press

Re
co
m
pr
es
s § Store	data	in	memory	in	compressed	format

§ Decompress	before	computing

§ Recompress	after	computing

§ Ideally,	the	compression/decompression	
would	be	handled	in	hardware
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: High-order
Eulerian hydrodynamics
• QoI: Rayleigh-Taylor mixing layer thickness
• 10,000 time steps
• At 4x compression, relative error < 0.2%

: Laser-plasma multi-physics
• QoI: backscattered laser energy
• At 4x compression, relative error < 0.1%

: Lagrangian shock hydrodynamics
• QoI: radial shock position
• 25 state variables compressed over 2,100 time steps
• At 4x compression, relative error < 0.06%

In	lab	codes,	we	have	shown	that	4x	inline	lossy
compression	reproduces	results	with	little	error

20 bits/value uncompressed

: Cubic finite elements
• QoI: function approximation
• 6x compression with ZFP

error < 0.7% relative to FEM error 

16 bits/value
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Inline	compression	introduces	interesting	
mathematical	questions

Lossy
compression Decompression

§ What	are	the	properties	of	the	composite	operator?

§ Accuracy?

§ Stability?
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Data	transfer	is	one	thing,	but	can	we	also	
increase	computational	throughput?
§ Compressed	data	transfer	still	wastes	operations	on	unneeded	bits

§ Better	performance	in	single	precision	(more	than	factor	of	2X)

§ Into	what	does	one	decompress?

§ How	does	one	compute	in	lower	precision	without	loss	of	accuracy?	

unumhalfsingledouble

RAM

Decompress
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We	are	building	on	and	going	beyond	existing	
work	on	varying	precision

Single 
precision

• 30 yrs ago: 
memory was 
limited

• Expertise 
developed to 
use single 
precision 

Mixed 
precision

• Most current 
work (e.g., 
Buttari, Li, 
Demmel, 
Dongarra)

• Static
• Task-based
• Great for 

libraries; more 
difficult for 
applications

Arbitrary-
precision

• Focused on 
extending 
precision

• Computing 
irrationals 

• Too slow for 
simulation

• Can leverage 
some ideas

New formats

• Unums
• Elias Gamma
• Levenstein
• Exponential
• Tangent
• Disruptive –

changes 
fundamentals 
of floating 
point 
computing
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Graph	Analysis	can	be	done	via	Linear	Algebra

§ Consider	analyzing	the	connectivity	structure	of	a	social	network

§ Such	relational	datasets	are	modelled	with	graphs

§ Several	graph	analysis	tasks	are	useful	tools	for	analysis:
— Ranking:	Who	are	the	most	important	members?
— Clustering:	What	members	are	more	internally	connected?
— Classification:	Which	members	are	similar	to	a	given	set?

§ Linear	algebra	kernels	are	useful	to	accomplish	these	goals
— Linear	solvers,	Eigensolvers,	SVD,	NMF,	Tensor	factorization,	etc

§ Low-fidelity	approximations	are	often	as	useful	as	high-fidelity	

§ We	are	investigating	the	efficacy	of	low-precision	approximations	
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Spectral	embedding	of	vertices	can	be	used	by	a	
variety	of	analysis	algorithms

The partitioning algorithm uses the locations 
in this embedding to make decisions.

Λ=L V V

V

i
tV e

Spectral coordinate 
of vertex i is i-th row 
of V, a k-dimensional 

vector.

n x n n x k n x k
k x k

v (2)
i

v (3)
i

Eigenvectors provide 
a mapping from the 

vertices into Rk.

Spectral Coordinates

Several clusters are easily 
separable, even in low-fidelity 

approximations.   

Embeddings of real-world graphs 
tend to have many centrally co-
located points and recursion is 

required to further partition, even in 
high-fidelity, double precision 

approximations

Let 𝐿 ∈ ℝ$×$ be the combinatorial Laplacian

Relevant for spatial clustering algorithms and ML algorithms for classification tasks
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We	are	also	investigating	other	mixed	precision	
techniques

§ Error	transport
— Developed	as	a	posteriori	error	estimator	for	truncation	error
— Form	of	defect	correction	
— Can	also	be	used	to	estimate	roundoff error
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But	this	is	more expensive!
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We	are	investigating	the	potential	for	an	AMR-
like	dynamic,	local	mixed	precision	

§ Dynamic	Mixed	Precision
— Hierarchical	representation:	sum	of	singles
— Block-based	refinement
— Most	calculations	in	single	precision
— Key	issues	

• Refinement	criteria
• Propagation	of	round-off	error
• Cost/benefit	

§ Could	be	done	recursively

double singlesingle

Solve residual 
equations here

v

✏

u = v + ✏(0) + ✏(1) + · · ·
single
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We	have	promising	(and	puzzling)	preliminary	
results

§ Correction	gains	factor	of	100

§ Why	so	little?

Error at final time
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Why	limit	ourselves	to	existing	types?	

Piecewise	linear	systems

§ IEEE	(half,	float):	y =	(-1)s 2e (1	+	f)
— e +	bias written	in	binary	using	m bits
— e bits	of	f encode	int,	rest	encode	frac

§ Elias	gamma:	for	y	≥	1
— |e|	written	in	unary	using	e +	1	bits
— Use	sign,	reciprocal	bit	when	y <	1

§ Levenstein	(modified	for	Z+)
— Encode	e recursively:	e =	2e’ (1	+	f’)
— As	with	IEEE/gamma,	append	fraction

Corresponding	“smooth”	systems

§ Exponential:	y =	(-1)s (2b)t =	(-1)s 2b t
— 2b =	IEEE	bias,	e.g.	b =	128	for	floats
— t =	2|x|	- 1

§ Tangent:	tan(π/2	x)
— tan(π/2	(1	– x))	=	cot(π/2	x)

§ Superexponential:	lg	f(x)	=	f(2	x – 1)
— log,	exp,	mul,	div	trivial	if	we	have	

addition,	subtraction
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§ Binary	exponent
— Identical	to	IEEE,	but	uses	reciprocal	bit	instead	of	negative	exponent	when	0	<	|y|	<	1

§ Gustafson’s	type-ii	unums (w/o	u-bit)
— Uses	sign	bit,	reciprocal	bit
— Starts	with	seed	set	of	“Kindergarten	numbers”	{0.1,	0.2,	…,	1,	2,	…,	10}
— Expands	via	reciprocal	and	multiplicative	closure	(multiply,	divide	by	10)
— Reduces	wobbling	precision,	but	still	not	very	smooth
— NOTE:	requires	lookup	table,	binary	search	to	encode/decode

§ Gustafson’s	type-iii	unums (w/o	u-bit)
— Identical	to	Elias	gamma	(when	useed =	2),	but	without	reciprocal	bit	(piecewise	linear	

everywhere)

§ “Hyperbolic”	numbers	[hyp]
— f(x)	=	x /	(1	- |x|)	=		sign(x)	exp(2	arctanh(2	|x|	- 1))
— Smooth	map
— Cheap	conversion

§ zfp:	fixed-rate	compressed	arrays
— Fixed-length	compressed	bit	string	amortized	over	blocks	of	4	x	4	values

And	a	few	more…
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What	is	a	Unum?		Let’s	represent	6.022x1023

051526263

exponent
sign

fraction

exponent
sign

fraction

ubit

exponent
size

fraction
size

IEEE 754
double

Unum

Select number of 
bits here

Dynamically 
adjustable sizes here

utag

Self-descriptive	“utag”	bits	track	
and	manage	uncertainty,	
exponent	size,	and	fraction	size

0 10001001101 1111111000010101010011110100010101111110101000010011

0 11001101 111111100001 1 111 101129 bits

64 bits
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§ Shock	passing	through	L-shaped	
chamber

§ Uniform	grid:	512x256	+	256x768	cells

§ All	arithmetic	done	in	IEEE	double	
precision

§ All	data	stored	as	16- or	32-bit	
precision
— 640	kB or	1.25	MB	per	array
— vs.	2.5	MB	per	array	using	IEEE	double

§ zfp run	with	and	without	a	cache
— zfp16:	16	bits/value,	single-block	“cache”
— zfp16c:	16	bits/value,	64	kB cache	per	

array

We	can	consider	an	accuracy	evaluation	using	
the	nonlinear	hyperbolic	Euler	PDEs
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Some	representations	are	promising
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Some	representations	are	abysmal
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RMS	error	vs.	time
32-bit	precision

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1 10 100

RM
S 

er
ro

r

time

zfp16c float bin32 lev32 gam32 exp32

sup32 tan32 hyp32 zfp32 zfp32c § IEEE	is	
consistently	
among	the	
worst	numerical	
representations!

§ zfp is	1-3	orders	
more	accurate	
than	
uncompressed	
representations	
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§ Goal	is	to	develop	tools	that	will	help	users:
— Rapidly	change	type/implementations
— Analyze	code	sections	for	precision	sensitivity
— Automate	conversions

§ We	will	use	the	ROSE	infrastructure	to	build	new	tools
— Software	analysis	and	source-to-source	transformation	

§ Variable	precision	tools	will	use	software	patches
— Introduce	generated	transformations	
— Demonstrated	on	million-line	C++	ASC	apps	for	OpenMP

optimizations	

Important	products	of	our	project	are	tools	that	
will	help	developers	deal	with	complexity

Transformed 
source code

Source code

RO
SE
-b
as
ed

	To
ol

ROSE
Frontend

Unparser

Code
Analysis
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Ensure accuracy

Ensure efficiency

Ensure ease of use

For	Variable	Precision	Computing	to	gain	
acceptance,	we	must	be	able	to…

But	such	a	paradigm	shift	could
—Increase	scientific	throughput	up	to	10x	(weeks	to	days)
—Increase	the	utilization	of	supercomputers
—Reduce	data	storage	needs	by	50-99%	
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Credits

Daniel Osei-Kuffuor Mixed precision, solvers, MD applications
David Beckingsale AMR, performance analysis
Geoff. Sanders Solvers, complex networks apps
Peter Lindstrom  (Co-PI) Data compression, multi-resolution methods
Timo Bremer Multi-resolution methods
Daniel Quinlan (Co-PI) Compiler tools
Markus Schordan Program analysis
Scott Lloyd Unums, reconfigurable computing

This work was funded by LLNL Laboratory Directed Research and Development as 
Project 17-SI-004: Variable Precision Computing 
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§ Consider the monotonic mapping f : (-1, +1) -> R
— x in	(-1,	+1)	is the binary representation of the real value y = f(x)
— In practice, we uniformly sample the interval (-1, +1) at 2p points

§ Monotonicity, closure under negation & reciprocation impose 
these constraints
— -f(x) = f(-x)   (two’s complement avoids negative zero)
— 1/f(x) = f(1-x)   0 < x < 1

§ Hence
— f(0) = 0
— f(± 1/2) = ± 1
— f(+1) = f(-1) = ± ∞ (the point at infinity)

§ We	are	free	to	map	f	:	(1/2,	1)	->	(1,	∞)	as	we	like
— (-1, 1/2) map given by negation, reciprocation

Axioms for a closed number system 
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We	will	investigate	multiple	techniques	for	
varying	precision	to	address	the	bottlenecks

Task-based	
mixed	

precision

Multilevel	
representation

Adaptive-rate	
compression

Unum	
computing

Libraries and Tools

16 bits/value

Applications

ARM / Commodity 
GPU cluster

Success	requires	close	
collaboration	with	applications
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Thrust	2:	We	will	develop	Variable	Precision	
Algorithms	for	dynamic	data

RAM

Cache

Processor

Decom
press

Re
co
m
pr
es
s

Mixed	
Precision

Algs

G
O

A
L

A
P

P
R

O
A

C
H § Extend	static	mixed	precision	algorithms

§ Develop	dynamic	mixed	precision	through	
layered	representation	(like	AMR)

§ Apply	Adaptive	Rate	Compression	(ARC)	inline

Using	standard	data	types,	develop	algorithms	
and	software	to	support	adaptive	precision	on	
data	where	errors	can	amplify

THRUST	2

IS
S

U
E

S § Precision	refinement	criteria
§ Stability	of	new	algorithms
§ Behavior	(propagation)	of	roundoff errors
§ Non-contiguous	data	layouts
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Thrust	3:	We	will	investigate	new	data	
representations	for	variable	precision	computing

RAM

Cache

Processor

Decom
press

Re
co
m
pr
es
s

New	Data	
Types

G
O

A
L

A
P

P
R

O
A

C
H § Universal	numbers	(unums)

§ ZFP	as	a	new	number	format

§ New	floating-point	compression	algorithm	
suitable	for	unums

Using	new	data	types,	develop	algorithms	and	
software	to	support	adaptive	precision	on	data	
where	errors	can	amplify

IS
S

U
E

S § Utility	of	unums in	numerical	algorithms
§ Stability/accuracy/convergence	of	new	algorithms
§ Ability	to	transform	operations	w/	compression	
§ Prospects	for	hardware	implementations

THRUST	3
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§ Better	answers	with	fewer	bits

§ No	rounding	errors

§ Less	memory	usage	without	loss	
of	information

§ Bit-identical	results	across	
systems

§ New	algorithms	leveraging	
variable	precision

We	will	continue	the	work	of	a	feasibility	study	
to	evaluate	the	potential	benefits	of	unums

Unum	FS	Status	
ü Developed	first	C	unum	implementation
- Built	on	GNU	multi-precision	library
- Includes	C++	API

ü Unum	implementation	demonstrated	in	
parts	of		LULESH	

ü Developed	compiler	support	to	identify	and	
transform	types	within	application	code

o Ongoing	work:
- Additional	operators	added	as	needed
- Trasnslate	more	of	LULESH	to	unums	
- Extend	compiler	work

THRUST	3


