#### Compression Algorithms for Electronic Structure Computations

#### François Gygi

University of California, Davis

fgygi@ucdavis.edu

http://eslab.ucdavis.edu

http://www.quantum-simulation.org

IPAM Workshop, Computation meets Big Data, Feb 2, 2017

Supported by DOE BES DE-SC0008938 and MICCoM







#### Context: First-Principles Molecular Dynamics





#### Context: First-Principles Molecular Dynamics

Molecular Dynamics

Density Functional Theory



Newton equations

Kohn-Sham equations



R. Car and M. Parrinello (1985)

# Electronic Structure and dynamical properties of complex structures

- Complex structures
  - Nanoparticles
  - Assemblies of nanoparticles
  - Embedded nanoparticles
  - Liquid/solid interfaces









#### Nanoparticles



- Multiplicity of locally stable structures requires extensive sampling
- Electronic structure requires accurate methods (beyond DFT)
- Finite temperature properties require first-principles molecular dynamics





#### Embedded nanoparticles, assemblies of nanoparticles



- Annealing of structures
  requires MD simulations
- Calculation of band gaps and band alignments requires accurate electronic structure (beyond DFT)



S. Wippermann, M. Vörös, A. Gali, F. Gygi, G. Zimanyi, G.Galli, Phys. Rev. Lett. **112**, 106801 (2014).



#### Liquids and Liquid-Solid Interfaces



#### H<sub>2</sub>O/Si(100)H



- Liquids require finite temperature simulations
  - ab initio MD
  - multiple samples/replica exchange simulations
- Electronic structure
  - band alignment
- Spectroscopy
  - requires calculation of IR and Raman spectra

## Challenges

- Multiple length and time scales
  - e.g. nanoparticle assembly process, non-equilibrium processes
- Finite temperature: MD/MC simulations
  - ab initio MD for large systems (>1000 atoms)
- Need for accurate electronic structure
  - hybrid DFT and/or GW/BSE level



# Qbox code: DFT and hybrid DFT first-principles molecular dynamics

- http://qboxcode.org
- massively parallel first-principles MD
- C++/MPI/OpenMP
- DFT and hybrid DFT MD
- GPL license
- All algorithms discussed here are available in the Qbox code



# Computation meets Big Data: Why data compression is necessary

- Storage of restart files in simulations
  - contain full information about wave functions
  - size is O(N<sup>2</sup>) for N atoms, reaches 100 GB-1 TB for large problems
- Acceleration of DFT and/or hybrid DFT calculations
  - Reduce cost (e.g. from  $O(N^4)$  to  $O(N^3)$ )
  - Exploit locality of data on modern computer architectures



# Desirable properties of compression schemes

- Accuracy control
  - ideally a single parameter controlling the accuracy
  - gradual reduction of the error to zero
- Efficiency
  - tradeoff between space efficiency and cost of compression algorithm



### Three compression approaches

- Reduced resolution
  - Easy: in the Fourier basis: Reduce energy cutoff
  - Efficient: requires only 1 FFT per orbital
  - Problem: only moderate reduction is possible
- Compute Wannier functions
  - Efficient (if using the right algorithm)
  - Truncation procedure is ill-defined (no error control)
- Recursive Subspace Bisection (this work)
  - Efficient (as fast as Wannier function calculation)
  - Controllable error and systematic truncation scheme



#### Wannier functions

- Existence of exponentially localized Wannier functions
  - Kohn (1959), des Cloiseaux (1964), Nenciu (1983), Helffer *et al* (1989), Brouder *et al* (2007), Panati (2007, 2013)
- Computation of Wannier functions: find an orthogonal transformation among orbitals that minimizes the spread  $\sigma_X^2 = \left\langle \left( x \left\langle x \right\rangle \right)^2 \right\rangle$
- Optimization problem (with local minima)
  - Marzari, Vanderbilt (1997) Use conjugate gradients, etc.
- Approximate simultaneous diagonalization problem
  - F.G, Fattebert, Schwegler (2003)



F.G., J.L.Fattebert, E.Schwegler, Comput.. Phys. Comm. 155, 1 (2003)

J.F.Cardoso and A. Souloumiac, SIAM J. Mat. Anal. Appl. 17, 161 (1996).

• Spread of an operator  $\hat{A}$  (single orbital)

$$\sigma_{\hat{A}}^{2}(\phi) = \left\langle \phi \left| \left( \hat{A} - \left\langle \phi \right| \hat{A} \right| \phi \right\rangle \right)^{2} \left| \phi \right\rangle$$
$$= \left\langle \phi \left| \hat{A}^{2} \right| \phi \right\rangle - \left\langle \phi \left| \hat{A} \right| \phi \right\rangle^{2}$$

• Spread of a set of orbitals

$$\sigma_{\hat{A}}^{2}\left(\left\{\phi_{i}\right\}\right) = \sum_{i} \sigma_{\hat{A}}^{2}\left(\phi_{i}\right)$$



• The spread is *not* invariant under orthogonal transformations among orbitals

$$\psi_{i} = \sum_{j} x_{ij} \phi_{j} \quad X \in \mathbb{R}^{n \times n} \text{ orthogonal}$$
$$\sigma_{\hat{A}}^{2} \left( \left\{ \psi_{i} \right\} \right) \neq \sigma_{\hat{A}}^{2} \left( \left\{ \phi_{i} \right\} \right)$$

• There exists a matrix X that minimizes the spread



• Let

$$A, B \in \mathbb{R}^{n \times n} \quad a_{ij} = \left\langle i | \hat{A} | j \right\rangle \quad b_{ij} = \left\langle i | \hat{A}^2 | j \right\rangle$$

$$\sigma_{\hat{A}}^{2}\left(\left\{\psi_{i}\right\}\right) = \operatorname{tr}\left(X^{T}BX\right) - \sum_{i=1}^{n} \left(X^{T}AX\right)_{ii}^{2}$$

• Minimize the spread = maximize  $\sum_{i=1}^{n} (X^{T}AX)_{ii}^{2}$ = diagonalize A



• Case of multiple operators

operators 
$$\hat{A}^{(k)} k = 1, ..., m$$
  
matrices  $A^{(k)} k = 1, ..., m$   
 $\sigma_{\hat{A}}^2(\{\psi_i\}) = \sum_i \sum_k \sigma_{\hat{A}^{(k)}}^2(\psi_i)$ 

• Minimize the spread = maximize  $\sum_{i=1}^{n} \sum_{k} (X^{T} A^{(k)} X)_{ii}^{2}$ = joint approximate diagonalization of the matrices  $A^{(k)}$ 



• Example of multiple operators

$$\hat{A}^{(1)} = \hat{X} \qquad \left(\hat{X}\varphi\right)(x, y, z) \equiv x\varphi(x, y, z)$$
$$\hat{A}^{(2)} = \hat{Y} \qquad \left(\hat{Y}\varphi\right)(x, y, z) \equiv y\varphi(x, y, z)$$
$$\hat{A}^{(3)} = \hat{Z} \qquad \left(\hat{Z}\varphi\right)(x, y, z) \equiv z\varphi(x, y, z)$$

• The matrices  $A^{(k)}$  do not necessarily commute, even if the operators  $\hat{A}^{(k)}$  do commute



### **Calculation of Wannier functions**

• In periodic systems

$$\hat{A}^{(1)} = \hat{C}_x \equiv \cos\frac{2\pi}{L_x}\hat{x} \qquad \hat{A}^{(2)} = \hat{S}_x \equiv \sin\frac{2\pi}{L_x}\hat{x}$$
$$\hat{A}^{(3)} = \hat{C}_y \equiv \cos\frac{2\pi}{L_y}\hat{y} \qquad \hat{A}^{(4)} = \hat{S}_y \equiv \sin\frac{2\pi}{L_y}\hat{y}$$
$$\hat{A}^{(5)} = \hat{C}_z \equiv \cos\frac{2\pi}{L_z}\hat{z} \qquad \hat{A}^{(6)} = \hat{S}_z \equiv \sin\frac{2\pi}{L_z}\hat{z}$$



## **Calculation of Wannier functions**

- The spread is minimized by simultaneous diagonalization of the matrices C<sub>x</sub>, S<sub>x</sub>, C<sub>y</sub>, S<sub>y</sub>, C<sub>z</sub>, S<sub>z</sub>
- Positions of the center of mass of the localized solutions ("Wannier centers")

• Spreads



F.G., J.L.Fattebert, E.Schwegler, Comput. Phys. Comm. **155**, 1 (2003) J.F.Cardoso and A. Souloumiac, SIAM J. Mat. Anal. Appl. **17**, 161 (1996).

# Maximally localized Wannier functions

#### Extended orbital



#### Wannier function





## **Truncation of Wannier functions**

- Wannier functions (WFs) can be truncated in real space
  - truncate orbital to zero below a given threshold
  - truncate orbital to zero outside of a given radius



• WFs can have variable localization properties



# Maximally localized Wannier functions

#### Extended orbital

#### Wannier function





## **Truncation of Wannier functions**

- Wannier functions (WFs) can be truncated in real space
  - truncate orbital to zero below a given threshold
  - truncate orbital to zero outside of a given radius



- WFs can have variable localization properties
- Are there other ways to localize orbitals?



#### Recursive subspace bisection

- Localize some orbitals on domains of decreasing size
  - divide the simulation domain into two subdomains
  - localize orbitals on 1)  $\Omega_L$  2)  $\Omega_R$  or 3) keep extended on  $\Omega_L \cup \Omega_R$
  - apply recursively to smaller domains





F.G. Phys. Rev. Lett. **102**, 166406 (2009)

#### Subspace Bisection

$$Y = [\phi_1 \dots \phi_n]$$



UCDAVIS UNIVERSITY OF CALIFORNIA

### The CS decomposition

• A matrix Y having orthogonal columns, can be decomposed as  $Y = \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = \begin{pmatrix} U_1 \Sigma_1 V^T \\ U_2 \Sigma_2 V^T \end{pmatrix}$ 

where  $U_1$ ,  $U_2$ , V are orthogonal matrices,

$$\Sigma_{1} = \begin{pmatrix} C \\ 0 \end{pmatrix} \qquad \Sigma_{2} = \begin{pmatrix} S \\ 0 \end{pmatrix}$$
$$C = \operatorname{diag}(c_{1}, \dots, c_{n}) \qquad S = \operatorname{diag}(s_{1}, \dots, s_{n})$$
$$c_{i}^{2} + s_{i}^{2} = 1$$



Stewart (1982)

#### **CS** Decomposition

Y





YV

### **CS** Decomposition

UNIVERSITY OF CALIFORNIA



### **CS** Decomposition



## Subspace Bisection Algorithm

- 1. Choose the acceptable 2-norm error  $\mathcal{E}$
- 2. Perform a CS decomposition of the matrix Y
- 3. For each vector of YV:
  - if  $c_i^2 < \varepsilon$  orbital localized in  $\Omega_R$  (truncate in  $\Omega_L$ ) else if  $s_i^2 < \varepsilon$  orbital localized in  $\Omega_L$  (truncate in  $\Omega_R$ ) else orbital is extended

Ideal limit: 2-fold data reduction

Cost: The CS decomposition can be achieved by diagonalization of the matrix  $Y_1^TY_1$ 



#### **Recursive Subspace Bisection**

• Bisection is applied simultaneously in 3 directions



Implementation: simultaneous (approximate) diagonalization of symmetric matrices



F.G, J.-L.Fattebert, E.Schwegler, *Comp. Phys. Comm.* **155**, *1* (2003). J.F.Cardoso and A. Souloumiac, SIAM J. Mat. Anal. Appl. **17**, 161 (1996).

#### Recursive subspace bisection

• Use multiple bisecting planes in each direction



Optimal placement of bisecting planes is provided by Walsh functions  $W_j(x)$ j=1,3,6,12,...



#### **Recursive subspace bisection**

Phys. Rev. Lett. 102, 166406 (2009).



UCDAVIS UNIVERSITY OF CALIFORNIA

34

### $(H_2O)_{512}$ orbitals after bisection

#### localized

#### extended







#### **Compression ratio**

• 
$$(H_2O)_{512}$$
  $\mathcal{E} = 10^{-3}$ 

Data size reduction: 4.03

| N <sub>1</sub>   | 48  | 2%          | ר        |          |
|------------------|-----|-------------|----------|----------|
| N <sub>1/2</sub> | 276 | 14%         |          | 2048     |
| N <sub>1/4</sub> | 844 | <b>41</b> % | } orbita | orbitals |
| N <sub>1/8</sub> | 880 | 43%         |          |          |

• (19x0) Carbon nanotube (304 atoms)  $\mathcal{E} = 10^{-3}$ 

Data size reduction: 2.72

| N <sub>1</sub>   | 108 | <b>18</b> % | ן        |
|------------------|-----|-------------|----------|
| N <sub>1/2</sub> | 80  | 13%         | 608      |
| N <sub>1/4</sub> | 183 | 30%         | orbitals |
| N <sub>1/8</sub> | 237 | <b>39</b> % | J        |



#### **Compression ratio using recursive** bisection

• recursion on  $l_{max}$  levels,  $l_{max}=1,2,3$ 



# Localization of orbitals in inhomogeneous systems





### Free electron gas: Distribution of CS singular values



FIG. 3. Singular values of a 256×256 section of a random 1024×1024 unitary matrix, computed with MATLAB.

A. Edelman et al. SIAM J. Sci. Comput. 20, 1094, (1999)



Y matrix = random orthogonal matrix

#### Hybrid density functionals

- Conventional density functionals are often insufficient to describe weak bonds (e.g. hydrogen bonds) or optical properties (band gap)
- *Hybrid density functionals* include a fraction of the Hartree-Fock exchange energy
- The Hartree-Fock exchange energy involves N(N-1)/2 exchange integrals (for all e<sup>-</sup> pairs)

$$E_{x} = -\frac{1}{2} \sum_{i,j}^{N} \int \frac{\varphi_{i}^{*}(r_{1})\varphi_{i}^{*}(r_{2})\varphi_{j}(r_{1})\varphi_{j}(r_{2})}{|r_{1} - r_{2}|} dr_{1} dr_{2}$$

- Cost:  $O(N^3 \log N)$  (with large prefactor) for plane waves
- For atom-centered basis sets: O(N) (Strain, Scuseria (1996), Burant, Scuseria, Frisch (1996), Schwegler, Challacombe, Head-Gordon (1997))



# Acceleration of Hartree-Fock and hybrid DFT calculations

• *N(N-1)/2* exchange integrals (all e<sup>-</sup> pairs)

$$E_{x} = -\frac{1}{2} \sum_{i,j}^{N} \int \frac{\varphi_{i}^{*}(r_{1})\varphi_{i}^{*}(r_{2})\varphi_{j}(r_{1})\varphi_{j}(r_{2})}{|r_{1} - r_{2}|} dr_{1} dr_{2}$$

- using bisection: non-overlapping pairs can be skipped in the sum
- The error is positive



# Speedup of hybrid-DFT calculations vs truncation threshold

#### $(H_2O)_{32}$ , $(H_2O)_{64}$





| 3         | time (s) | speedup |
|-----------|----------|---------|
| 0.0 (ref) | 14000    | 1       |
| 0.1%      | 1179     | 11      |
| 0.25%     | 643      | 21      |
| 0.5%      | 425      | 33      |
| 1.0%      | 303      | 46      |
| 2.5%      | 162      | 86      |
| 5.0%      | 73       | 192     |



# Truncation error due to bisection





### Energy error per orbital vs threshold

#### Table 5. Energy Error (au) per Orbital

| $\epsilon$ | $H_2O$                | $WO_3/H_2O$           | Si/H <sub>2</sub> O   | bulk Mo               |
|------------|-----------------------|-----------------------|-----------------------|-----------------------|
| 0.001      | $2.28 \times 10^{-6}$ | $5.34 \times 10^{-6}$ | $1.17 \times 10^{-6}$ | $7.8 \times 10^{-10}$ |
| 0.005      | $2.87 \times 10^{-5}$ | $1.04 \times 10^{-4}$ | $2.35 \times 10^{-5}$ | $2.68 \times 10^{-5}$ |
| 0.01       | $7.39 \times 10^{-5}$ | $1.46 \times 10^{-4}$ | $6.08 \times 10^{-5}$ | $2.07 \times 10^{-4}$ |
| 0.02       | $1.98 \times 10^{-4}$ | $2.03 \times 10^{-4}$ | $2.95 \times 10^{-4}$ | $3.76 \times 10^{-4}$ |
| 0.05       | $4.31 \times 10^{-4}$ | $7.60 \times 10^{-4}$ | $8.28 \times 10^{-4}$ | $5.45 \times 10^{-4}$ |



#### Force error vs threshold

#### Table 7. Average Absolute Force Error (au)

| $\epsilon$ | H <sub>2</sub> O     | $WO_3/H_2O$          | Si/H <sub>2</sub> O  |
|------------|----------------------|----------------------|----------------------|
| 0.001      | $9.0 \times 10^{-6}$ | $1.1 \times 10^{-5}$ | $1.0 \times 10^{-5}$ |
| 0.005      | $6.4 \times 10^{-5}$ | $2.6 \times 10^{-4}$ | $6.4 \times 10^{-5}$ |
| 0.01       | $1.5 \times 10^{-4}$ | $3.6 \times 10^{-4}$ | $1.2 \times 10^{-4}$ |
| 0.02       | $3.9 \times 10^{-4}$ | $5.0 \times 10^{-4}$ | $3.5 \times 10^{-4}$ |
| 0.05       | $8.1 \times 10^{-4}$ | $1.4 \times 10^{-3}$ | $9.5 \times 10^{-4}$ |



# Error in ionic forces for MD applications



Recursive bisection affects forces in a controlled way



# Error in ionic forces for MD applications



Recursive bisection affects forces in a controlled way



#### HOMO-LUMO gap, band gaps

- Hybrid DFTs lead to large improvements in band gaps (Henderson, Paier, Scuseria, PhysStatSol 2011)
- Bisection algorithm: occupied and empty orbitals must not be mixed when localizing orbitals



 $(H_2O)_{63}Cl^{-1}$ 

| threshold | Egap (eV) |  |
|-----------|-----------|--|
| 0.0       | 7.03      |  |
| 0.01      | 7.01      |  |
| 0.02      | 6.99      |  |
| 0.05      | 6.92      |  |



### Localization of empty orbitals



#### Hybrid-DFT electronic structure of Si nanoparticles embedded in ZnS



- Si<sub>66</sub>Zn<sub>228</sub>S<sub>218</sub>
- 4308 electrons
- 200 empty orbitals
- PBE0
- 1 scf step, 5 iterations
- BG/Q, 16k cores, 772 s.



S. Wippermann, M. Vörös, A. Gali, F. Gygi, G. Zimanyi, G.Galli, Phys. Rev. Lett. **112**, 106801 (2014).



#### Hybrid-DFT electronic structure of bulk SiC (4096 atoms)



- 4096 atoms
- 16384 electrons
- **PBE0** electronic structure (hybrid)
- recursive subspace bisection
- ANL Mira (BG/Q) 64k cores
- 357s/self-consistent iteration

hybrid DFT electronic structure for 4096 atoms



# Where is the (Big) Data?

- Making data accessible is critical for verification and validation of simulation software
- Agreeing on data formats has proved difficult..
- <u>http://www.quantum-simulation.org</u>
  - XML schemas for electronic structure data
  - repository of reference simulations



## Summary

- Simulation of complex materials
- Truncation of Maximally Localized Wannier functions
- Recursive subspace bisection
- Controlled error in inhomogeneous systems
- Acceleration of hybrid DFT simulations
- http://www.quantum-simulation.org
- http://qboxcode.org

Supported by DOE BES DE-SC0008938 and the MICCoM DOE center





## Acknowledgements

- Giulia Galli (UChicago)
- Marco Govoni (UChicago)
- Stefan Wippermann (MPI)
- Eric Schwegler (LLNL)
- Funding
  - DOE BES
- computer time
  - DOE INCITE/ANL-ALCF
  - NSF XSEDE
  - NERSC

- William Dawson (CS, UCDavis)
- Martin Schlipf (CS, UCDavis)
- Cui Zhang (UCDavis)
- Alex Gaiduk (UChicago)
- Marton Vörös (UCDavis, ANL)
- Quan Wan (UChicago)
- T.-Anh Pham (LLNL)

Supported by DOE BES DE-SC0008938 and the DOE MICCoM center





http://qboxcode.org http://www.quantum-simulation.org

http://miccom-center.org

