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MULTIRESOLUTION ADAPTIVE NUMERICAL

ENVIRONMENT FOR SCIENTIFIC SIMULATION

MADNESS is a high-level software environment for the solution of multidimensional
integral and differential equations using adaptive, fast multiresolution methods with
guaranteed precision.

MADNESS implements a method whose key components were developed in 1988 (BCR
paper, 1991) and in 2002-2004 based on an integral equation formulation of problems
of quantum chemistry (and later nuclear physics). See e.g. R.J. Harrison, G.I. Fann, T.
Yanai, Z. Gan and G. B., J. Chem. Phys. v. 121, n. 23, 14, 7, 2004.

Code written at ORNL (mostly by R. Harrison and G. Fann), efficiently runs on 4 · 104
processors and was recognized by R&D 100 Award in 2011 (R&D Magazine, 53).
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Multiresolution approach

The multiresolution approach provides:

• Complete elimination of the basis error, correct scaling of the cost with system size

• Implementation for one-electron models (HF, DFT)

• Nuclear Physics modeling (G. Fann et.al.)

• Most accurate computations up to now within these models

• Much smaller computer code than“Gaussians”(<— R. Harrison)
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Topics for the talk

We consider several important features that allow systematic software development:

• Integral equation formulation

• Accurate separated representation of operators via Gaussians

• Multiresolution analysis using multiwavelets

We also briefly discuss

• Additional classes of operators (not yet implemented)

• New developments
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Multiparticle Schrödinger operator

The Hamiltonian for the multiparticle Schrödinger operator is the sum of three terms

H = −1
2

N∑

i=1

∇2
i −

N∑

i=1

Vi +
1

2

N−1∑

i=1

N∑

m=i+1

Wim,

where the 3D Laplacian corresponding to electron i is defined as ∂2

∂x2
i
+ ∂2

∂y2i
+ ∂2

∂z2i
, the

nuclear potential Vi is operator of multiplication by Zα/ ‖ri −Rα‖ and the electron-
electron potential Wim is multiplication by 1/ ‖ri − rm‖. The problem to solve:

Hψ = Eψ.

The Schrödinger operator does not account for spin and, for this reason, the wave function
is required to be antisymmetric, e.g., ψ(γ2, γ1, γ3, . . .) = −ψ(γ1, γ2, γ3, . . .), where
γ = ((x, y, z), σ) and σ is the spin. Solutions are functions of 3N variables (positions of
nuclei are fixed: the so-called Born–Oppenheimer approximation).
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One particle theories

Solving the multiparticle Schrödinger equation directly is a grand challenge.

Currently quantum chemists mostly use the so-called one particle theories (Hartree-Fock
(HF), Density Functional Theory (DFT), Local Density Approximation (LDA), etc.), which
assume that the wave function is a product φ1(γ1)φ2(γ2) · · ·φN(γN).

This assumption yields a coupled system of N equations (in our case integral equations)
that are then solved.

The difference between various one particle theories is in the coupling potentials.
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Example

The Kohn-Sham equations result from minimization of the DFT energy functional with
respect to variation of the occupied orbitals φi (r) which define the electron density

ρ (r) = 2
∑N

i=1 |φi (r)|
2
. The occupied orbitals are the lowest N eigenfunctions of the

Kohn-Sham operator

(
−1
2
∇2

i + V (r)

)
φi (r) = Eiφi (r),

which implicitly depends on the orbitals through the density,

V (r) = −
∑

α

Zα

‖r −Rα‖
+

∫
ρ (r′)

‖r − r′‖dr
′ + Vxc (r).

The first term accounts for the attraction of the electrons to the nuclei, the second term
describes the repulsion between electrons, and the third term is the so-called exchange-
correlation potential (e.g. a scalar function that depends only upon ρ).
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Integral equation formulation

Consider
ψi = 2GµV ψi,

where Gµ is the Green’s function

(
−∇2 + µ2

)
Gµ (r) = δ (r − r′).

If µ =
√
−2Ei then ψi = φi. We solve this system with a fixed µ(n) and, using the result,

compute a new µ(n+1) and solve again, etc. It turns out that these steps constitute a
quadratically convergent iteration that allows us to compute Ei and the orbitals φi.

We avoid a number of problems of the original differential formulation, e.g. we do not
need preconditioners, achieve full accuracy control, etc.

This iteration was first suggested by Kalos in 1962 for a Monte-Carlo approach.
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The Green’s function

The Green’s function Gµ for one particle in free space is readily available,

Gµ (r) =
1

4π

e−µr

r
,

as well as the Coulomb potential
Zα

‖r −Rα‖
.

The question is how to apply these operators efficiently since we need to account for a
very large dynamic range of these functions.

For example, we need a multiresolution representation of the kernel via wavelets but its
straightforward representation in a wavelet basis is too expensive to be practical.
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Separated representation of functions and operators

Standard separation of variables: f(x1, x2, . . . , xd) = φ1(x1) · φ2(x2) · . . . · φd(xd)
Definition: For a given ǫ, we represent a function f = f(x1, x2, . . . , xd) in dimension d
as

r∑

l=1

sl φ
l
1x1)φ

l
2(x2) · · ·φld(xd),

where sl is a scalar, s1 ≥ · · · ≥ sr > 0, and φli are functions of norm one. We require
the error to be less than ǫ,

∥∥∥∥∥f −
r∑

l=1

sl φ
l
1 · φl2 · . . . · φld

∥∥∥∥∥ ≤ ǫ ‖f‖ .

We call the scalars sl separation values and the rank r the separation rank.

For operator kernels, A = A (x1, x
′
1, x2, x

′
2, . . . , xd, x

′
d), separated representation splits

them as
∑r

l=1 slA
l
1(x1, x

′
1)A

l
2(x2, x

′
2) · · ·Al

d(xd, x
′
d).
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Separated representations of kernels via Gaussians

Discretizing integrals

r−α =
1

Γ(α/2)

∫ ∞

−∞

e−r2et+α
2 tdt,

and
e−µr

r
=

1

2
√
π

∫ ∞

−∞

e−r2et/4−µ2e−t+1
2tdt

via the trapezoidal rule yields efficient separated representations. Estimates of accuracy
and the number of terms are obtained using the Poisson summation, see G.B.and L.
Monzón, Approximation by exponential sums revisited, ACHA, 28, (2010).
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Example: the Poisson kernel

We have
∣

∣

∣

∣

∣

1

‖r‖
−

M
∑

m=1

wme
−τm‖x‖2

∣

∣

∣

∣

∣

≤
ǫ

‖r‖
, τm, wm > 0, δ ≤ ‖r‖ ≤ R,

where M = O(− log δ). Example: ǫ = 10−10, δ = 10−13, R = 1013, M = 303.
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Estimates using Poisson summation

Computing
∫
R
f(t)dt :

• For any h > 0 and real shift s, by Poisson summation, we have

h
∑

n∈Z

f(s+ nh) =
∑

n∈Z

f̂(
n

h
)e2πis

n
h , and

∣∣∣∣∣

∫

R

f(t)dt− h
∑

n∈Z

f(s+ nh)

∣∣∣∣∣ ≤
∑

n 6=0

∣∣∣f̂(
n

h
)
∣∣∣ , since f̂(0) =

∫

R

f(t)dt.

• Fast decay of f̂ imply that we can choose h to achieve a small error.

• Fast decay of f yields a finite sum approximation.
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Applying the idea to r−α

We have r−α =
∫∞

−∞
f(t)dt with

f(t) =
eαt

Γ(α)
e−etr, f̂(ξ) =

Γ(α− 2πiξ)

Γ(α)
r2πiξ−α.

Both f and f̂ have exponential or super exponential decay at ±∞. A relative error
estimate (independent of r) follows choosing h such that

∑

n 6=0

∣∣Γ(α− 2πinh)
∣∣

Γ(α)
< ǫ.

The choice of h depends only on ǫ and α,

h ≤ 2π

log 3 + α log(cos 1)−1 + log ǫ−1
.
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Multiwavelet bases

We use multiwavelet bases

On each scale the scaling functions are orthogonal polynomials of degree up to m− 1 on
subintervals.

Choice of bases:

1. The Legendre polynomials

2. The Lagrange interpolating polynomials with the Legendre nodes

Many useful properties of multiwavelet bases make this choice better than alternatives.
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The non-standard form

Let T be an operator acting on a Hilbert space, T : L2 (R)→ L2 (R). Given
multiresolution analysis (a decomposition of the Hilbert space L2 (R) into a chain of
closed subspaces),

. . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . ,

such that Vj+1 = Vj ⊕Wj, we define orthogonal projection operators on subspaces Vj,
Pj : L

2 (R)→ Vj and Wj, Qj : L
2 (R)→Wj. Expanding operator T in a telescopic

series, we obtain

T =
∑

j∈Z

(Pj+1TPj+1 − PjTPj) =
∑

j∈Z

(QjTQj +QjTPj + PjTQj),

its non-standard form. In MADNESS operators are applied via their non-standard form
(introduced in BCR paper, 1991).
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Subdivision of space

At each scale n, divide the unit interval [0, 1] into 2n binary subintervals:

On [0, 1]× [0, 1] we have

(0,1)

(0,0) (1,0)

(1,1)

(2,0) (3,0)

(3,1)(2,1)

(4,0) (5,0)

(5,1)(4,1)

, etc.
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Example of an adaptive representation

Nnod = 10, ǫ = 5.0e − 11, Nblocks = 634
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The cross-correlation functions of scaling functions

For convolution operators we only need to use the cross-correlation functions of the scaling
functions,

Φii′(x) =





Φ+
ii′(x), 0 ≤ x ≤ 1,

Φ−
ii′(x), −1 ≤ x < 0,
0, 1 < |x|,

where i, i′ = 0, . . . ,m− 1, m is the order of the basis, and

Φ+
ii′(x) =

∫ 1−x

0

φi(x+ y)φi′(y)dy , Φ−
ii′(x) =

∫ 0

−x

φi(x+ y)φi′(y)dy .

The scaling functions φi are the normalized Legendre polynomials on the interval [0, 1],

φi(x) =

{ √
2i+ 1Pi(2x− 1), x ∈ [0, 1]

0, x /∈ [0, 1]
,

where Pi are the Legendre polynomials on [−1, 1]. This implies that the functions Φii′

are piecewise polynomials of degree i+ i′ + 1 with the support in [−1, 1].
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The Poisson kernel in a multiwavelet basis

Due to the homogeneity of the Poisson kernel, we have

tn; lii′,jj′,kk′ = 2−2n tlii′,jj′,kk′ ,

where

tlii′,jj′,kk′ = tl1,l2,l3ii′,jj′,kk′ =
1

4π

∫ 1

−1

∫ 1

−1

∫ 1

−1

1

||x+ l|| Φii′(x1) Φjj′(x2) Φkk′(x3) dx,

and

Φii′(x) =

∫ 1

0

φi(x+ y)φi′(y)dy , i, i′ = 0, . . . , k − 1 ,

are the cross-correlation functions of the scaling functions of the multiwavelet basis.
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Separated representation of the Poisson kernel

Theorem: For any ǫ > 0 the coefficients tlii′,jj′,kk′ have an approximation with a low
separation rank,

rlii′,jj′,kk′ =
M∑

m=1

wm

b
Fm,l1
ii′ Fm,l2

jj′ Fm,l3
kk′ ,

such that

∣∣tlii′,jj′,kk′ − rlii′,jj′,kk′
∣∣ ≤ 2ǫ

π
max

i
|li| ≥ 2

∣∣tlii′,jj′,kk′ − rlii′,jj′,kk′
∣∣ ≤ Cδ2 +

2ǫ

π
max

i
|li| ≤ 1

Fm,l
ii′ =

∫ 1

−1

e−τm/b2(x+l)2 Φii′(x) dx ,

b =
√
3 + ‖l‖, and δ, M = O (− log δ) +O (− log ǫ), τm, wm, m = 1, . . . ,M come

from the separated representation of the kernel.
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Projector on divergence free functions

The projector on divergence free vector functions (the so-called Leray projector, a singular
operator) is given by the matrix of convolution kernels,

Pιι′(x) = διι′δ(x)−
1

4π

(
διι′

‖x‖32
− 3xιxι′

‖x‖52

)
,

where ι, ι′ = 1, 2, 3 and διι′ denotes the Kronecker delta function. Multiwavelet
representation requires computing (only) three type of integrals

Fm,l
ii′ =

∫ 1

−1

e−τm/b2(x+l)2 Φii′(x) dx,

Gm,l
ii′ =

∫ 1

−1

e−τm/b2(x+l)2 (x+ l) Φii′(x) dx,

Hm,l
ii′ =

∫ 1

−1

e−τm/b2(x+l)2 (x+ l)2 Φii′(x) dx.
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Example: additional convolution operators

We have for Re (α) > 0,

Gα0 =
(
−∇2 + µ2I

)
−α =

1

Γ(α)

∫ ∞

−∞

ee
t∇2

e−µ2eteαtdt,

so that we can approximate the kernel of this operator via Gaussians by discretizing the
integral and use it in the same manner as the Green’s function, α = 1.

For example, set α = 1/2 so that

G−1/2
0 =

(
−∇2 + µ²I

)
−1/2.

If µ is small, applying this operator to functions is tricky if the function has e.g. a large

bandwidth (this is a pseudo-differential operator with the symbol 1/

√
‖ξ‖2 + µ2).
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Features of MADNESS

In MADNESS the user can program at the level of equations, dial in the desired accuracy
and obtain the appropriate solutions via fast algorithms without worrying about either
discretization or methodology. These features of MADNESS are possible due to the
following two key ingredients:

1. The kernels of physically significant operators (e.g. Green’s functions of operators
of mathematical physics) and potentials depend only on the distance r between in-
teracting particles and both can be efficiently approximated (within any user-selected
accuracy) by a linear combination of Gaussians. Importantly, the number of terms in
such approximations depends logarithmically on all relevant parameters, e.g. ǫ−1, δ−1

and R, where ǫ the desired accuracy and δ ≤ r ≤ R is the range of validity of the
approximation.
The key advantage of using representations via Gaussians is that they yield a separated
representation. Without such separated representations multiresolution operators would
be too expensive to apply in high dimensions.
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2. In order to apply Green’s functions, i.e. compute integrals, separated representations
via Gaussians are converted into separated multiwavelets representations. It turns out
that multiwavelets (which are piece-wise polynomials and provide bases on intervals)
offer more convenient multiresolution representations for numerical purposes than other
possible choices of bases (e.g. Daubechies wavelets).
We emphasize that multiwavelets combined with separated representations permit an
efficient computation of multidimensional integrals.
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A simple example: Hartree-Fock for Helium Hydride Ion HeH+

We solve the Hartree-Fock equation,

(
−1
2
∇2 + V − 4π∆−1

(
|φ|2

))
φ = Eφ,

with the potential

V (r) =
Z1

‖r−R1‖
+

Z2

‖r−R2‖
.

We recasts Hartree-Fock as an integral equation and solve it via iteration.
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Integral Equation

We have (
−∆+ µ2

)
φ = −2Vφφ,

where µ2 = −2E and Vφ = V −4π∆−1
(
|φ|2

)
.We solve this via the following iteration:

φ̃ ← −2
(
−∆+ µ2

)−1
(Vφφ) ,

E ← E +

〈
φ− φ̃, Vφφ

〉

∥∥∥φ̃
∥∥∥
2 ,

φ ← φ̃∥∥∥φ̃
∥∥∥
,

µ ←
√
−2E.
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Operators with boundary conditions on simple domains

In G. B., G. Fann, R.J. Harrison, C. Kurcz and L. Monzon, Multiresolution representation

of operators with boundary conditions on simple domains, ACHA, 33, (2012) we show
that, once a free space convolution operator is approximated by a linear combination of
Gaussians, we can construct a multiresolution approximation of corresponding Green’s
functions with periodic, Dirichlet or Neumann boundary conditions on simple domains
(cubes). In fact, on fine wavelet scales these operators essentially coincide with their free
space versions. Note that e.g. operator with zero boundary conditions is no longer a
convolution but can be treated within the same multiresolution framework.

This construction has not been added yet to MADNESS.
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Differential Operators

One “weakness” of using multiwavelets as a basis is that only first order derivative is
available so that higher order derivatives have to be computed as powers of the first order
derivative. This causes problems since small mismatches at the boundaries are amplified.
In QC one needs to compute (at least) second order derivatives to obtain useful functionals
of solutions.

This summer at a workshop at Stony Brook this issue was raised and it appears that an
interesting solution to this problem has been found. It turns out that we can compute the
derivative (or any other operator) in a different basis while computing only in multiwavelet
basis. This has been tested as a stand-alone procedure and will be put into MADNESS.
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Multiresolution Basis with a Gaussian as a scaling function

Recently in G. B., Lucas Monzón and Ignas Satkauskas, On computing distributions of

products of random variables via Gaussian multiresolution analysis, arXiv:1611.08580, we
constructed multiresolution basis where the scaling function is well approximated by a
Gaussian.

We are working to see if multiwavelets can be replaced by such basis: the difficulty is that
this is not an orthogonal basis so that additional algorithms are needed for its effective
use.

30


