
Tensor	Network	
Skeletonization

Lexing Ying
Department	of	Mathematics

Stanford	University
Big	Data	Meets	Computation,	IPAM,	UCLA,	2/1/17

What	are	tensor	networks?

What	are	tensor	networks

• A	triple	 𝑉, 𝐸, 𝑇% %∈'
• 𝑉 = {𝑖}:	the	vertex	set
• 𝑑%:	degree

• 𝐸 = 𝑒 :	the	edge	set
• 𝜒/:	bond	dim
• 𝐸 = 𝐸0 ∪ 𝐸2 (int.	vs.	bdry.)

• 𝑇% is	a	𝑑%-tensor	at	𝑖 ∈ 𝑉
• dims	= 𝜒/ of	adj.	edges

• Represent	a	function	

• All	edges	in	𝐸0 are	contracted
• A	high-dim	function	or	a	number	when	𝐸2 = ∅

Overview

tensor network + renormalization group = tensor network renormalization

fully isotropic coarse-graining

boundary MPS

global scale
transformation
(RG transformation)wave-functions /

Hamiltonians

Euclidean path integrals /
classical partition functions

local scale
transformations

global scale
transformation
(RG transformation)

local scale
transformations

2 LEXING YING

edges in EI . The result is an |EB|-tensor and is denoted as

(1) trEI

 O
i2V

T i

!
.

When the set EB is empty, the tensor network contracts to a scalar. Throughout this paper,
we follow the following notation conventions.

• The lower-case letters such as i and j are used to denote vertices in V .
• The lower-case letters such as a, b, c, d, e, and f are used to denote the edges in E.
• The upper-case letters such as T , U , and V are used to denote tensors.

The framework of tensor networks is a powerful tool since mathematically it o↵ers e�-
cient representations for high dimensional functions or probability distributions with certain
underlying geometric structures. For example, let us consider the 2D statistical Ising model
on a periodic square lattice. The vertex set V consists of the lattice points of an n ⇥ n
Cartesian grid, where N = n ⇥ n is the number of vertices. The edge set E consists of
the edges between horizontal and vertical neighbors, defined using the periodic boundary
condition (see Figure 1(a)). Here |E| = 2N , EI = E, and EB = ;.

At temperature T , the partition function ZN (�) for the inverse temperature � = 1/T is
given by

ZN (�) =
X
�

e��HN (�), HN (�) = �
X

(ij)2E

�i�j ,

where � = (�1, . . . ,�N) stands for a spin configuration at N vertices with �i = ±1 and the
sum of � is taken over all 2N configurations. Here (ij) is the edge between two adjacent
vertices i and j and the sum in HN (�) is over these 2N edges.

In order to write ZN (�) in the form of a tensor network, one approach is to introduce a
2⇥ 2 matrix S

S =

✓
e� e��

e�� e�

◆
,

which is the multiplicative term in ZN (�) associated with an edge between any two adjacent
vertices. The partition function ZN (�) is built from the S matrices over all edges in E (see
Figure 1(b)). Since S is a symmetric matrix, its symmetric square root S1/2 is well defined
with the following element-wise identity:

Sij =
X
a

S1/2
ia S1/2

aj

where a denotes the edge that connects i and j (see Figure 1(c)). Here and throughout the
paper, the lower-case letters (e.g. i, j, and k) for denoting a vertex in V are also used for the
running index associated with that vertex. The same applies to the edges: the lower-case
letters (e.g. e and f) for denoting an edge in E are also used as the running index associated
with that edge.

At each vertex i, one can then introduce a 4-tensor T i

(2) T i
abcd =

X
i

S1/2
ia S1/2

ib S1/2
ic S1/2

id ,

𝑖 𝑒
𝑇%

Why	tensor	networks
• Represent	high-dim	functions	and	
probability	distributions

• Existing	methods
• Independent	or	weakly-dependent
• Mean	field	approach	
• Limited	power	for	“hard	or	critical”	
physical	systems

• Tensor	networks
• Powerful	and	flexible
• Encode	geometry

tensor	networks

physically	meaningful	fns

all	high	dim	fns

• Examples
• DMRG/MPS	for	1D	quantum	
ground	state
• PEPS	for	2D	quantum	ground	state

Example:	2D	statistical	Ising model
• Ising	model	with	𝑁 = 𝑛×𝑛 spins	on	a	
Cartesian	grid
• 𝜎 = 𝜎8,… , 𝜎: :	spin	configuration	±1
• 𝛽 = 1/𝑇:	inverse	temperature

• Tensor	network
• 𝑉:	sites	of	Cartesian	grid
• 𝐸: edges	between	neighbors	(periodic)

2 LEXING YING

edges in EI . The result is an |EB|-tensor and is denoted as

(1) trEI

 O
i2V

T i

!
.

When the set EB is empty, the tensor network contracts to a scalar. Throughout this paper,
we follow the following notation conventions.

• The lower-case letters such as i and j are used to denote vertices in V .
• The lower-case letters such as a, b, c, d, e, and f are used to denote the edges in E.
• The upper-case letters such as T , U , and V are used to denote tensors.

The framework of tensor networks is a powerful tool since mathematically it o↵ers e�-
cient representations for high dimensional functions or probability distributions with certain
underlying geometric structures. For example, let us consider the 2D statistical Ising model
on a periodic square lattice. The vertex set V consists of the lattice points of an n ⇥ n
Cartesian grid, where N = n ⇥ n is the number of vertices. The edge set E consists of
the edges between horizontal and vertical neighbors, defined using the periodic boundary
condition (see Figure 1(a)). Here |E| = 2N , EI = E, and EB = ;.

At temperature T , the partition function ZN (�) for the inverse temperature � = 1/T is
given by

ZN (�) =
X
�

e��HN (�), HN (�) = �
X

(ij)2E

�i�j ,

where � = (�1, . . . ,�N) stands for a spin configuration at N vertices with �i = ±1 and the
sum of � is taken over all 2N configurations. Here (ij) is the edge between two adjacent
vertices i and j and the sum in HN (�) is over these 2N edges.

In order to write ZN (�) in the form of a tensor network, one approach is to introduce a
2⇥ 2 matrix S

S =

✓
e� e��

e�� e�

◆
,

which is the multiplicative term in ZN (�) associated with an edge between any two adjacent
vertices. The partition function ZN (�) is built from the S matrices over all edges in E (see
Figure 1(b)). Since S is a symmetric matrix, its symmetric square root S1/2 is well defined
with the following element-wise identity:

Sij =
X
a

S1/2
ia S1/2

aj

where a denotes the edge that connects i and j (see Figure 1(c)). Here and throughout the
paper, the lower-case letters (e.g. i, j, and k) for denoting a vertex in V are also used for the
running index associated with that vertex. The same applies to the edges: the lower-case
letters (e.g. e and f) for denoting an edge in E are also used as the running index associated
with that edge.

At each vertex i, one can then introduce a 4-tensor T i

(2) T i
abcd =

X
i

S1/2
ia S1/2

ib S1/2
ic S1/2

id ,

2 LEXING YING

edges in EI . The result is an |EB|-tensor and is denoted as

(1) trEI

 O
i2V

T i

!
.

When the set EB is empty, the tensor network contracts to a scalar. Throughout this paper,
we follow the following notation conventions.

• The lower-case letters such as i and j are used to denote vertices in V .
• The lower-case letters such as a, b, c, d, e, and f are used to denote the edges in E.
• The upper-case letters such as T , U , and V are used to denote tensors.

The framework of tensor networks is a powerful tool since mathematically it o↵ers e�-
cient representations for high dimensional functions or probability distributions with certain
underlying geometric structures. For example, let us consider the 2D statistical Ising model
on a periodic square lattice. The vertex set V consists of the lattice points of an n ⇥ n
Cartesian grid, where N = n ⇥ n is the number of vertices. The edge set E consists of
the edges between horizontal and vertical neighbors, defined using the periodic boundary
condition (see Figure 1(a)). Here |E| = 2N , EI = E, and EB = ;.

At temperature T , the partition function ZN (�) for the inverse temperature � = 1/T is
given by

ZN (�) =
X
�

e��HN (�), HN (�) = �
X

(ij)2E

�i�j ,

where � = (�1, . . . ,�N) stands for a spin configuration at N vertices with �i = ±1 and the
sum of � is taken over all 2N configurations. Here (ij) is the edge between two adjacent
vertices i and j and the sum in HN (�) is over these 2N edges.

In order to write ZN (�) in the form of a tensor network, one approach is to introduce a
2⇥ 2 matrix S

S =

✓
e� e��

e�� e�

◆
,

which is the multiplicative term in ZN (�) associated with an edge between any two adjacent
vertices. The partition function ZN (�) is built from the S matrices over all edges in E (see
Figure 1(b)). Since S is a symmetric matrix, its symmetric square root S1/2 is well defined
with the following element-wise identity:

Sij =
X
a

S1/2
ia S1/2

aj

where a denotes the edge that connects i and j (see Figure 1(c)). Here and throughout the
paper, the lower-case letters (e.g. i, j, and k) for denoting a vertex in V are also used for the
running index associated with that vertex. The same applies to the edges: the lower-case
letters (e.g. e and f) for denoting an edge in E are also used as the running index associated
with that edge.

At each vertex i, one can then introduce a 4-tensor T i

(2) T i
abcd =

X
i

S1/2
ia S1/2

ib S1/2
ic S1/2

id ,

2 LEXING YING

edges in EI . The result is an |EB|-tensor and is denoted as

(1) trEI

 O
i2V

T i

!
.

When the set EB is empty, the tensor network contracts to a scalar. Throughout this paper,
we follow the following notation conventions.

• The lower-case letters such as i and j are used to denote vertices in V .
• The lower-case letters such as a, b, c, d, e, and f are used to denote the edges in E.
• The upper-case letters such as T , U , and V are used to denote tensors.

The framework of tensor networks is a powerful tool since mathematically it o↵ers e�-
cient representations for high dimensional functions or probability distributions with certain
underlying geometric structures. For example, let us consider the 2D statistical Ising model
on a periodic square lattice. The vertex set V consists of the lattice points of an n ⇥ n
Cartesian grid, where N = n ⇥ n is the number of vertices. The edge set E consists of
the edges between horizontal and vertical neighbors, defined using the periodic boundary
condition (see Figure 1(a)). Here |E| = 2N , EI = E, and EB = ;.

At temperature T , the partition function ZN (�) for the inverse temperature � = 1/T is
given by

ZN (�) =
X
�

e��HN (�), HN (�) = �
X

(ij)2E

�i�j ,

where � = (�1, . . . ,�N) stands for a spin configuration at N vertices with �i = ±1 and the
sum of � is taken over all 2N configurations. Here (ij) is the edge between two adjacent
vertices i and j and the sum in HN (�) is over these 2N edges.

In order to write ZN (�) in the form of a tensor network, one approach is to introduce a
2⇥ 2 matrix S

S =

✓
e� e��

e�� e�

◆
,

which is the multiplicative term in ZN (�) associated with an edge between any two adjacent
vertices. The partition function ZN (�) is built from the S matrices over all edges in E (see
Figure 1(b)). Since S is a symmetric matrix, its symmetric square root S1/2 is well defined
with the following element-wise identity:

Sij =
X
a

S1/2
ia S1/2

aj

where a denotes the edge that connects i and j (see Figure 1(c)). Here and throughout the
paper, the lower-case letters (e.g. i, j, and k) for denoting a vertex in V are also used for the
running index associated with that vertex. The same applies to the edges: the lower-case
letters (e.g. e and f) for denoting an edge in E are also used as the running index associated
with that edge.

At each vertex i, one can then introduce a 4-tensor T i

(2) T i
abcd =

X
i

S1/2
ia S1/2

ib S1/2
ic S1/2

id ,

TENSOR NETWORK SKELETONIZATION 3

which essentially contracts the four S1/2 tensors adjacent to the vertex i (see Figure 1(c)).
Finally, the partition function ZN (�) can be written as

ZN (�) = trE

 O
i2V

T i

!
(see Figure 1(d)).

Figure 1. Representing the partition function ZN (�) of 2D statistical Ising
model using a tensor network. (a) The vertices and edges of the tensor
network. (b) The 2-tensor S associated with each edge. (c) Introducing
S1/2 splits S into the product of two 2-tensors. (d) Contracting the four
2-tensors adjacent to a vertex i forms the 4-tensor T i.

1.2. Previous work. One of the main computational tasks is how to evaluate tensor net-
works accurately and e�ciently. The naive tensor contraction following the definition (1)
is computationally prohibitive since its running time grows exponentially with the number
of vertices.

In recent years, there has been a lot of work devoted to e�cient algorithms for evaluating
tensor networks. In [7], Levin and Nave introduced the tensor renormalization group (TRG)
as probably the first practical algorithm for this task. When applied to the 2D statistical
Ising models, this method utilizes an alternating sequence of tensor contractions and singular
value decompositions. However, one problem with TRG is the accumulation of short-range
correlation, which increases the bond dimensions and computational costs dramatically as
the method proceeds.

In a series of papers [12, 13, 15], Xiang et al introduced the higher order tensor renor-
malization group (HOTRG) as an extension of TRG to address 3D classical spin systems.
The same group has also introduced the second renormalization group (SRG) based on the
idea of approximating the environment of a local tensor before performing reductions. SRG
typically gives more accurate results. However, the computation time of SRG tends to grow
significantly with the size of the local environment and it is also not clear how to generalize
this technique to systems that are not translationally invariant.

In [5], Gu and Wen introduced the method of tensor entanglement filtering renormal-
ization (TEFR) as an improvement of TRG for 2D systems. Comparing with TRG, this
method makes an extra e↵ort in removing short-range correlations and hence produces more
accurate and e�cient computations.

TENSOR NETWORK SKELETONIZATION 3

which essentially contracts the four S1/2 tensors adjacent to the vertex i (see Figure 1(c)).
Finally, the partition function ZN (�) can be written as

ZN (�) = trE

 O
i2V

T i

!
(see Figure 1(d)).

Figure 1. Representing the partition function ZN (�) of 2D statistical Ising
model using a tensor network. (a) The vertices and edges of the tensor
network. (b) The 2-tensor S associated with each edge. (c) Introducing
S1/2 splits S into the product of two 2-tensors. (d) Contracting the four
2-tensors adjacent to a vertex i forms the 4-tensor T i.

1.2. Previous work. One of the main computational tasks is how to evaluate tensor net-
works accurately and e�ciently. The naive tensor contraction following the definition (1)
is computationally prohibitive since its running time grows exponentially with the number
of vertices.

In recent years, there has been a lot of work devoted to e�cient algorithms for evaluating
tensor networks. In [7], Levin and Nave introduced the tensor renormalization group (TRG)
as probably the first practical algorithm for this task. When applied to the 2D statistical
Ising models, this method utilizes an alternating sequence of tensor contractions and singular
value decompositions. However, one problem with TRG is the accumulation of short-range
correlation, which increases the bond dimensions and computational costs dramatically as
the method proceeds.

In a series of papers [12, 13, 15], Xiang et al introduced the higher order tensor renor-
malization group (HOTRG) as an extension of TRG to address 3D classical spin systems.
The same group has also introduced the second renormalization group (SRG) based on the
idea of approximating the environment of a local tensor before performing reductions. SRG
typically gives more accurate results. However, the computation time of SRG tends to grow
significantly with the size of the local environment and it is also not clear how to generalize
this technique to systems that are not translationally invariant.

In [5], Gu and Wen introduced the method of tensor entanglement filtering renormal-
ization (TEFR) as an improvement of TRG for 2D systems. Comparing with TRG, this
method makes an extra e↵ort in removing short-range correlations and hence produces more
accurate and e�cient computations.

TENSOR NETWORK SKELETONIZATION 3

which essentially contracts the four S1/2 tensors adjacent to the vertex i (see Figure 1(c)).
Finally, the partition function ZN (�) can be written as

ZN (�) = trE

 O
i2V

T i

!
(see Figure 1(d)).

Figure 1. Representing the partition function ZN (�) of 2D statistical Ising
model using a tensor network. (a) The vertices and edges of the tensor
network. (b) The 2-tensor S associated with each edge. (c) Introducing
S1/2 splits S into the product of two 2-tensors. (d) Contracting the four
2-tensors adjacent to a vertex i forms the 4-tensor T i.

1.2. Previous work. One of the main computational tasks is how to evaluate tensor net-
works accurately and e�ciently. The naive tensor contraction following the definition (1)
is computationally prohibitive since its running time grows exponentially with the number
of vertices.

In recent years, there has been a lot of work devoted to e�cient algorithms for evaluating
tensor networks. In [7], Levin and Nave introduced the tensor renormalization group (TRG)
as probably the first practical algorithm for this task. When applied to the 2D statistical
Ising models, this method utilizes an alternating sequence of tensor contractions and singular
value decompositions. However, one problem with TRG is the accumulation of short-range
correlation, which increases the bond dimensions and computational costs dramatically as
the method proceeds.

In a series of papers [12, 13, 15], Xiang et al introduced the higher order tensor renor-
malization group (HOTRG) as an extension of TRG to address 3D classical spin systems.
The same group has also introduced the second renormalization group (SRG) based on the
idea of approximating the environment of a local tensor before performing reductions. SRG
typically gives more accurate results. However, the computation time of SRG tends to grow
significantly with the size of the local environment and it is also not clear how to generalize
this technique to systems that are not translationally invariant.

In [5], Gu and Wen introduced the method of tensor entanglement filtering renormal-
ization (TEFR) as an improvement of TRG for 2D systems. Comparing with TRG, this
method makes an extra e↵ort in removing short-range correlations and hence produces more
accurate and e�cient computations.

TENSOR NETWORK SKELETONIZATION 3

which essentially contracts the four S1/2 tensors adjacent to the vertex i (see Figure 1(c)).
Finally, the partition function ZN (�) can be written as

ZN (�) = trE

 O
i2V

T i

!
(see Figure 1(d)).

Figure 1. Representing the partition function ZN (�) of 2D statistical Ising
model using a tensor network. (a) The vertices and edges of the tensor
network. (b) The 2-tensor S associated with each edge. (c) Introducing
S1/2 splits S into the product of two 2-tensors. (d) Contracting the four
2-tensors adjacent to a vertex i forms the 4-tensor T i.

1.2. Previous work. One of the main computational tasks is how to evaluate tensor net-
works accurately and e�ciently. The naive tensor contraction following the definition (1)
is computationally prohibitive since its running time grows exponentially with the number
of vertices.

In recent years, there has been a lot of work devoted to e�cient algorithms for evaluating
tensor networks. In [7], Levin and Nave introduced the tensor renormalization group (TRG)
as probably the first practical algorithm for this task. When applied to the 2D statistical
Ising models, this method utilizes an alternating sequence of tensor contractions and singular
value decompositions. However, one problem with TRG is the accumulation of short-range
correlation, which increases the bond dimensions and computational costs dramatically as
the method proceeds.

In a series of papers [12, 13, 15], Xiang et al introduced the higher order tensor renor-
malization group (HOTRG) as an extension of TRG to address 3D classical spin systems.
The same group has also introduced the second renormalization group (SRG) based on the
idea of approximating the environment of a local tensor before performing reductions. SRG
typically gives more accurate results. However, the computation time of SRG tends to grow
significantly with the size of the local environment and it is also not clear how to generalize
this technique to systems that are not translationally invariant.

In [5], Gu and Wen introduced the method of tensor entanglement filtering renormal-
ization (TEFR) as an improvement of TRG for 2D systems. Comparing with TRG, this
method makes an extra e↵ort in removing short-range correlations and hence produces more
accurate and e�cient computations.

Example:	1D	quantum	Ising model
• 1D	spin	chain	of	length	𝑁
• Hamiltonian	𝐻 is	local

• Ground	states

• Suzuki-Trotter	decomposition

Overview

tensor network + renormalization group = tensor network renormalization

!
Partition function of
classical statistical system
!
!
!
Euclidean path integral of
1D quantum system
!
!
!
Physical properties of 2D
quantum system

Z =

X

{�}

exp(�
X

hiji

�i�j)

e�⌧h

Overview

tensor network + renormalization group = tensor network renormalization

!
Partition function of
classical statistical system
!
!
!
Euclidean path integral of
1D quantum system
!
!
!
Physical properties of 2D
quantum system

Z =

X

{�}

exp(�
X

hiji

�i�j)

e�⌧h

Overview

tensor network + renormalization group = tensor network renormalization

!
Partition function of
classical statistical system
!
!
!
Euclidean path integral of
1D quantum system
!
!
!
Physical properties of 2D
quantum system

Z =

X

{�}

exp(�
X

hiji

�i�j)

e�⌧h

3

B. Quantum many-body systems

Here we describe how, given a local Hamiltonian H
for a 1D quantum system, an arbitrarily precise tensor
network representation of the Euclidean time evolution
operator e−βH can be obtained using a Suzuki-Trotter
decomposition25. We assume, for simplicity, that Hamil-
tonian H is a sum of identical nearest-neighbor terms
h,

H =
∑

r

hr,r+1. (5)

We begin by expanding the time evolution operator as a
product of evolutions over some small time step τ ,

e−βH =
(

e−τH
)(β/τ)

. (6)

The evolution e−τH over small time step τ may then be
approximated,

e−τH ≈ e−τHodde−τHeven (7)

where Hodd and Heven represent the contribution to H
given from sites r odd or r even respectively, and an
error of order O(τ) has been introduced. [Note that one
can obtain an error O(τn), n > 1, by using a higher
order Suzuki-Trotter decomposition26]. Since Hodd is a
sum of terms that act on different sites and therefore
commute, e−τHodd is simply a product of two-site gates,
and similarly for e−τHeven ,

e−τHodd =
∏

odd r

e−τhr,r+1,

e−τHeven =
∏

even r

e−τhr,r+1. (8)

Thus, if one regards each two-site gate e−τh as a four
index tensor and Eqs.8 and 7 are substituted into Eq.6,
a representation of the Euclidean path integral e−βH as
a square-lattice tensor network is obtained, see also Fig.
2(a). Note that this representation of e−βH has incurred
an error of orderO(βτ), which can be diminished through
use of a smaller time step τ .
While this network could potentially serve as the start-

ing point for the TNR approach [or other algorithm for
the renormalization of a tensor network] it is desirable
to perform some preliminary manipulations before em-
ploying TNR. This initial manipulation involves (i) a
transformation that maps to a new square-lattice net-
work tilted 45◦ with respect to the initial network, fol-
lowed by (ii) coarse-graining in the Euclidean time di-
rection. Given that the initial tensor network is highly
anisotropic for small time step τ , as the operator e−τh

is very close to the identity, step (ii) is useful to obtain
a tensor network representation of e−βH that is closer
to being isotropic [and thus more suitable as a starting
point for TNR].

Step (i) is accomplished by performing a modified step
of the TRG algorithm as follows. The singular value
decomposition (SVD) is taken across a vertical partition
of the gate e−τh,

e−τh =
(

u
√
s
) (√

sv†
)

, (9)

where the root of the singular weights s has been ab-
sorbed into each of the unitary matrices u and v, and
likewise the eigen-decomposition is taken across a hori-
zontal partition of the gate e−τh,

e−τh =
(

w
√
d
)(√

dw†
)

, (10)

see Fig.2(d). Here w is a unitary matrix, which follows
from e−τh being Hermitian, and d are the eigenvalues
[which can be argued to be strictly positive for sufficiently
small time step τ]. The SVD and eigen-decompositions
are performed throughout the network according to the
pattern indicated in Fig.2(a), and a new square network
of tensors A, tilted 45◦ with respect to the original, is
formed by contracting groups of the resulting tensors to-
gether as indicated Fig.2(b-c).

In step (ii) the network of tensors A is then coarse-
grained in the Euclidean time direction using standard
techniques, i.e. by combining pairs of rows together and
then truncating the resulting squared bond index similar
to the HOTRG8 method [see Appendix A for details],
until the network is sufficiently isotropic in terms of its
correlations. One way to examine how close the network
is to being isotropic is to compute the spectra of the
transfer matrices formed by tracing out the horizontal or
vertical indices of a single A tensor, whose decay should
match as closely as possible.

III. COARSE-GRAINING TENSOR
NETWORKS

Consider a tensor network G consisting of copies of
four index tensors Aijkl that we assume are arranged in
an L × L square-lattice network with periodic bound-
ary conditions. Our goal is to contract this network, or
perhaps this network with single or multiple impurity
tensors, to evaluate the scalar, denoted ⟨G⟩, associated
to network. As an exact contraction of the network G is
exponentially expensive in system size L one must rely
on approximations in order to evaluate a large network.
In this section we first describe the generic concept of
local approximations that could be employed to approx-
imate such a contraction, then discuss the class of local
approximation used in TRG, namely the truncated sin-
gular value decomposition (SVD), before introducing the
particular class of local approximation that the TNR al-
gorithm is based on, which we call projective truncations.

3

B. Quantum many-body systems

Here we describe how, given a local Hamiltonian H
for a 1D quantum system, an arbitrarily precise tensor
network representation of the Euclidean time evolution
operator e−βH can be obtained using a Suzuki-Trotter
decomposition25. We assume, for simplicity, that Hamil-
tonian H is a sum of identical nearest-neighbor terms
h,

H =
∑

r

hr,r+1. (5)

We begin by expanding the time evolution operator as a
product of evolutions over some small time step τ ,

e−βH =
(

e−τH
)(β/τ)

. (6)

The evolution e−τH over small time step τ may then be
approximated,

e−τH ≈ e−τHodde−τHeven (7)

where Hodd and Heven represent the contribution to H
given from sites r odd or r even respectively, and an
error of order O(τ) has been introduced. [Note that one
can obtain an error O(τn), n > 1, by using a higher
order Suzuki-Trotter decomposition26]. Since Hodd is a
sum of terms that act on different sites and therefore
commute, e−τHodd is simply a product of two-site gates,
and similarly for e−τHeven ,

e−τHodd =
∏

odd r

e−τhr,r+1,

e−τHeven =
∏

even r

e−τhr,r+1. (8)

Thus, if one regards each two-site gate e−τh as a four
index tensor and Eqs.8 and 7 are substituted into Eq.6,
a representation of the Euclidean path integral e−βH as
a square-lattice tensor network is obtained, see also Fig.
2(a). Note that this representation of e−βH has incurred
an error of orderO(βτ), which can be diminished through
use of a smaller time step τ .
While this network could potentially serve as the start-

ing point for the TNR approach [or other algorithm for
the renormalization of a tensor network] it is desirable
to perform some preliminary manipulations before em-
ploying TNR. This initial manipulation involves (i) a
transformation that maps to a new square-lattice net-
work tilted 45◦ with respect to the initial network, fol-
lowed by (ii) coarse-graining in the Euclidean time di-
rection. Given that the initial tensor network is highly
anisotropic for small time step τ , as the operator e−τh

is very close to the identity, step (ii) is useful to obtain
a tensor network representation of e−βH that is closer
to being isotropic [and thus more suitable as a starting
point for TNR].

Step (i) is accomplished by performing a modified step
of the TRG algorithm as follows. The singular value
decomposition (SVD) is taken across a vertical partition
of the gate e−τh,

e−τh =
(

u
√
s
) (√

sv†
)

, (9)

where the root of the singular weights s has been ab-
sorbed into each of the unitary matrices u and v, and
likewise the eigen-decomposition is taken across a hori-
zontal partition of the gate e−τh,

e−τh =
(

w
√
d
)(√

dw†
)

, (10)

see Fig.2(d). Here w is a unitary matrix, which follows
from e−τh being Hermitian, and d are the eigenvalues
[which can be argued to be strictly positive for sufficiently
small time step τ]. The SVD and eigen-decompositions
are performed throughout the network according to the
pattern indicated in Fig.2(a), and a new square network
of tensors A, tilted 45◦ with respect to the original, is
formed by contracting groups of the resulting tensors to-
gether as indicated Fig.2(b-c).

In step (ii) the network of tensors A is then coarse-
grained in the Euclidean time direction using standard
techniques, i.e. by combining pairs of rows together and
then truncating the resulting squared bond index similar
to the HOTRG8 method [see Appendix A for details],
until the network is sufficiently isotropic in terms of its
correlations. One way to examine how close the network
is to being isotropic is to compute the spectra of the
transfer matrices formed by tracing out the horizontal or
vertical indices of a single A tensor, whose decay should
match as closely as possible.

III. COARSE-GRAINING TENSOR
NETWORKS

Consider a tensor network G consisting of copies of
four index tensors Aijkl that we assume are arranged in
an L × L square-lattice network with periodic bound-
ary conditions. Our goal is to contract this network, or
perhaps this network with single or multiple impurity
tensors, to evaluate the scalar, denoted ⟨G⟩, associated
to network. As an exact contraction of the network G is
exponentially expensive in system size L one must rely
on approximations in order to evaluate a large network.
In this section we first describe the generic concept of
local approximations that could be employed to approx-
imate such a contraction, then discuss the class of local
approximation used in TRG, namely the truncated sin-
gular value decomposition (SVD), before introducing the
particular class of local approximation that the TNR al-
gorithm is based on, which we call projective truncations.

3

B. Quantum many-body systems

Here we describe how, given a local Hamiltonian H
for a 1D quantum system, an arbitrarily precise tensor
network representation of the Euclidean time evolution
operator e−βH can be obtained using a Suzuki-Trotter
decomposition25. We assume, for simplicity, that Hamil-
tonian H is a sum of identical nearest-neighbor terms
h,

H =
∑

r

hr,r+1. (5)

We begin by expanding the time evolution operator as a
product of evolutions over some small time step τ ,

e−βH =
(

e−τH
)(β/τ)

. (6)

The evolution e−τH over small time step τ may then be
approximated,

e−τH ≈ e−τHodde−τHeven (7)

where Hodd and Heven represent the contribution to H
given from sites r odd or r even respectively, and an
error of order O(τ) has been introduced. [Note that one
can obtain an error O(τn), n > 1, by using a higher
order Suzuki-Trotter decomposition26]. Since Hodd is a
sum of terms that act on different sites and therefore
commute, e−τHodd is simply a product of two-site gates,
and similarly for e−τHeven ,

e−τHodd =
∏

odd r

e−τhr,r+1,

e−τHeven =
∏

even r

e−τhr,r+1. (8)

Thus, if one regards each two-site gate e−τh as a four
index tensor and Eqs.8 and 7 are substituted into Eq.6,
a representation of the Euclidean path integral e−βH as
a square-lattice tensor network is obtained, see also Fig.
2(a). Note that this representation of e−βH has incurred
an error of orderO(βτ), which can be diminished through
use of a smaller time step τ .
While this network could potentially serve as the start-

ing point for the TNR approach [or other algorithm for
the renormalization of a tensor network] it is desirable
to perform some preliminary manipulations before em-
ploying TNR. This initial manipulation involves (i) a
transformation that maps to a new square-lattice net-
work tilted 45◦ with respect to the initial network, fol-
lowed by (ii) coarse-graining in the Euclidean time di-
rection. Given that the initial tensor network is highly
anisotropic for small time step τ , as the operator e−τh

is very close to the identity, step (ii) is useful to obtain
a tensor network representation of e−βH that is closer
to being isotropic [and thus more suitable as a starting
point for TNR].

Step (i) is accomplished by performing a modified step
of the TRG algorithm as follows. The singular value
decomposition (SVD) is taken across a vertical partition
of the gate e−τh,

e−τh =
(

u
√
s
) (√

sv†
)

, (9)

where the root of the singular weights s has been ab-
sorbed into each of the unitary matrices u and v, and
likewise the eigen-decomposition is taken across a hori-
zontal partition of the gate e−τh,

e−τh =
(

w
√
d
)(√

dw†
)

, (10)

see Fig.2(d). Here w is a unitary matrix, which follows
from e−τh being Hermitian, and d are the eigenvalues
[which can be argued to be strictly positive for sufficiently
small time step τ]. The SVD and eigen-decompositions
are performed throughout the network according to the
pattern indicated in Fig.2(a), and a new square network
of tensors A, tilted 45◦ with respect to the original, is
formed by contracting groups of the resulting tensors to-
gether as indicated Fig.2(b-c).

In step (ii) the network of tensors A is then coarse-
grained in the Euclidean time direction using standard
techniques, i.e. by combining pairs of rows together and
then truncating the resulting squared bond index similar
to the HOTRG8 method [see Appendix A for details],
until the network is sufficiently isotropic in terms of its
correlations. One way to examine how close the network
is to being isotropic is to compute the spectra of the
transfer matrices formed by tracing out the horizontal or
vertical indices of a single A tensor, whose decay should
match as closely as possible.

III. COARSE-GRAINING TENSOR
NETWORKS

Consider a tensor network G consisting of copies of
four index tensors Aijkl that we assume are arranged in
an L × L square-lattice network with periodic bound-
ary conditions. Our goal is to contract this network, or
perhaps this network with single or multiple impurity
tensors, to evaluate the scalar, denoted ⟨G⟩, associated
to network. As an exact contraction of the network G is
exponentially expensive in system size L one must rely
on approximations in order to evaluate a large network.
In this section we first describe the generic concept of
local approximations that could be employed to approx-
imate such a contraction, then discuss the class of local
approximation used in TRG, namely the truncated sin-
gular value decomposition (SVD), before introducing the
particular class of local approximation that the TNR al-
gorithm is based on, which we call projective truncations.

3

B. Quantum many-body systems

Here we describe how, given a local Hamiltonian H
for a 1D quantum system, an arbitrarily precise tensor
network representation of the Euclidean time evolution
operator e−βH can be obtained using a Suzuki-Trotter
decomposition25. We assume, for simplicity, that Hamil-
tonian H is a sum of identical nearest-neighbor terms
h,

H =
∑

r

hr,r+1. (5)

We begin by expanding the time evolution operator as a
product of evolutions over some small time step τ ,

e−βH =
(

e−τH
)(β/τ)

. (6)

The evolution e−τH over small time step τ may then be
approximated,

e−τH ≈ e−τHodde−τHeven (7)

where Hodd and Heven represent the contribution to H
given from sites r odd or r even respectively, and an
error of order O(τ) has been introduced. [Note that one
can obtain an error O(τn), n > 1, by using a higher
order Suzuki-Trotter decomposition26]. Since Hodd is a
sum of terms that act on different sites and therefore
commute, e−τHodd is simply a product of two-site gates,
and similarly for e−τHeven ,

e−τHodd =
∏

odd r

e−τhr,r+1,

e−τHeven =
∏

even r

e−τhr,r+1. (8)

Thus, if one regards each two-site gate e−τh as a four
index tensor and Eqs.8 and 7 are substituted into Eq.6,
a representation of the Euclidean path integral e−βH as
a square-lattice tensor network is obtained, see also Fig.
2(a). Note that this representation of e−βH has incurred
an error of orderO(βτ), which can be diminished through
use of a smaller time step τ .
While this network could potentially serve as the start-

ing point for the TNR approach [or other algorithm for
the renormalization of a tensor network] it is desirable
to perform some preliminary manipulations before em-
ploying TNR. This initial manipulation involves (i) a
transformation that maps to a new square-lattice net-
work tilted 45◦ with respect to the initial network, fol-
lowed by (ii) coarse-graining in the Euclidean time di-
rection. Given that the initial tensor network is highly
anisotropic for small time step τ , as the operator e−τh

is very close to the identity, step (ii) is useful to obtain
a tensor network representation of e−βH that is closer
to being isotropic [and thus more suitable as a starting
point for TNR].

Step (i) is accomplished by performing a modified step
of the TRG algorithm as follows. The singular value
decomposition (SVD) is taken across a vertical partition
of the gate e−τh,

e−τh =
(

u
√
s
) (√

sv†
)

, (9)

where the root of the singular weights s has been ab-
sorbed into each of the unitary matrices u and v, and
likewise the eigen-decomposition is taken across a hori-
zontal partition of the gate e−τh,

e−τh =
(

w
√
d
)(√

dw†
)

, (10)

see Fig.2(d). Here w is a unitary matrix, which follows
from e−τh being Hermitian, and d are the eigenvalues
[which can be argued to be strictly positive for sufficiently
small time step τ]. The SVD and eigen-decompositions
are performed throughout the network according to the
pattern indicated in Fig.2(a), and a new square network
of tensors A, tilted 45◦ with respect to the original, is
formed by contracting groups of the resulting tensors to-
gether as indicated Fig.2(b-c).

In step (ii) the network of tensors A is then coarse-
grained in the Euclidean time direction using standard
techniques, i.e. by combining pairs of rows together and
then truncating the resulting squared bond index similar
to the HOTRG8 method [see Appendix A for details],
until the network is sufficiently isotropic in terms of its
correlations. One way to examine how close the network
is to being isotropic is to compute the spectra of the
transfer matrices formed by tracing out the horizontal or
vertical indices of a single A tensor, whose decay should
match as closely as possible.

III. COARSE-GRAINING TENSOR
NETWORKS

Consider a tensor network G consisting of copies of
four index tensors Aijkl that we assume are arranged in
an L × L square-lattice network with periodic bound-
ary conditions. Our goal is to contract this network, or
perhaps this network with single or multiple impurity
tensors, to evaluate the scalar, denoted ⟨G⟩, associated
to network. As an exact contraction of the network G is
exponentially expensive in system size L one must rely
on approximations in order to evaluate a large network.
In this section we first describe the generic concept of
local approximations that could be employed to approx-
imate such a contraction, then discuss the class of local
approximation used in TRG, namely the truncated sin-
gular value decomposition (SVD), before introducing the
particular class of local approximation that the TNR al-
gorithm is based on, which we call projective truncations.

1. 1

|�0i ⇠ lim
�!1

e��H |�anyi

1

This	talk
• Computation	of	tensor	networks
• New	approach:	tensor	network	skeletonization (TNS)
• An	exercise	to	understand	what	physicists	have	done	
and	try	to	improve	on	them	

• Example:	2D	statistical	Ising model
• Critical	behavior	at	𝛽A = 1/𝑇B

• Main	theme:	renormalization	or	upscaling

Overview

tensor network + renormalization group = tensor network renormalization

fully isotropic coarse-graining

boundary MPS

Overview

tensor network + renormalization group = tensor network renormalization

fully isotropic coarse-graining

boundary MPS

Overview

tensor network + renormalization group = tensor network renormalization

fully isotropic coarse-graining

boundary MPS

Overview

tensor network + renormalization group = tensor network renormalization

fully isotropic coarse-graining

boundary MPS

TENSOR NETWORK SKELETONIZATION 3

which essentially contracts the four S1/2 tensors adjacent to the vertex i (see Figure 1(c)).
Finally, the partition function ZN (�) can be written as

ZN (�) = trE

 O
i2V

T i

!
(see Figure 1(d)).

Figure 1. Representing the partition function ZN (�) of 2D statistical Ising
model using a tensor network. (a) The vertices and edges of the tensor
network. (b) The 2-tensor S associated with each edge. (c) Introducing
S1/2 splits S into the product of two 2-tensors. (d) Contracting the four
2-tensors adjacent to a vertex i forms the 4-tensor T i.

1.2. Previous work. One of the main computational tasks is how to evaluate tensor net-
works accurately and e�ciently. The naive tensor contraction following the definition (1)
is computationally prohibitive since its running time grows exponentially with the number
of vertices.

In recent years, there has been a lot of work devoted to e�cient algorithms for evaluating
tensor networks. In [7], Levin and Nave introduced the tensor renormalization group (TRG)
as probably the first practical algorithm for this task. When applied to the 2D statistical
Ising models, this method utilizes an alternating sequence of tensor contractions and singular
value decompositions. However, one problem with TRG is the accumulation of short-range
correlation, which increases the bond dimensions and computational costs dramatically as
the method proceeds.

In a series of papers [12, 13, 15], Xiang et al introduced the higher order tensor renor-
malization group (HOTRG) as an extension of TRG to address 3D classical spin systems.
The same group has also introduced the second renormalization group (SRG) based on the
idea of approximating the environment of a local tensor before performing reductions. SRG
typically gives more accurate results. However, the computation time of SRG tends to grow
significantly with the size of the local environment and it is also not clear how to generalize
this technique to systems that are not translationally invariant.

In [5], Gu and Wen introduced the method of tensor entanglement filtering renormal-
ization (TEFR) as an improvement of TRG for 2D systems. Comparing with TRG, this
method makes an extra e↵ort in removing short-range correlations and hence produces more
accurate and e�cient computations.

Basic	tool
• Local	replacements

4 LEXING YING

More recently in [3, 4], Evenbly and Vidal proposed the tensor network renormalization
(TNR). The key step of TNR is to apply the disentanglers to remove short-range corre-
lation. These disentanglers appeared earlier in the work of the multiscale entanglement
renormalization ansatz (MERA) [11]. For a fixed bond dimension, TNR gives significantly
more accurate results compared to TRG, but at the cost of increasing the computational
complexity. However, it is not clear how to extend the approach of TNR to systems in
higher dimensions.

These approaches have significantly improved the e�ciency and accuracy of the compu-
tation of tensor networks. From a computational point of view, it would be great to have
a general algorithm that have the following three properties:

• removing the short-range correlation e�ciently in order to keep bond dimension and
computational cost under control, and

• extending to 3D and 4D tensor networks, and
• extending to systems that are not translationally invariant, such as disordered sys-
tems.

However, as far as we know, none of these methods achieves all three properties simultane-
ously.

1.3. Contribution and outline. Building on top of the previous work in the physics
literature, we introduce a new coarse-graining approach, called the tensor network skele-
tonization (TNS), as a first step towards building such a general algorithm. At the heart
of this approach is a new procedure called the structure-preserving skeletonization, which
removes short-range correlation e�ciently while maintaining the structure of a local tensor
network. This allows us to generalize TNS quite straightforwardly to spin systems of higher
dimensions. In addition, we also provide a simple and e�cient algorithm for performing the
structure-preserving skeletonization. This allows for applying TNS e�ciently to systems
that are not translationally invariant.

The rest of this paper is organized as follows. Section 1 summarizes the basic tools used by
the usual tensor network algorithms and introduces the structure-preserving skeletonization.
Section 3 is the main part of the paper and explains TNS for 2D statistical Ising model.
Section 4 extends the algorithm to 3D statistical Ising model. Section 5 discusses how to
build e�cient representations of the ground states of 1D and 2D quantum Ising models
using TNS. Finally, Section 6 discusses some future work.

2. Basic tools

2.1. Local replacement. The basic building blocks of all tensor network algorithms are lo-
cal replacements. Suppose that vertex V and edge set E of a tensor network (V,E, {T i}i2V)
are partitioned as follows

V = V1 [V2, E = E1 [E2 [E12,

where E1 and E2 are the sets of interior edges of V1 and V2, respectively, and E12 is the set
of edges that link across V1 and V2. Such a partition immediately gives an identity

(3) trE

 O
i2V

T i

!
= trE2[E12

0@0@O
i2V2

T i

1AO trE1

0@O
i2V1

T i

1A1A .

4 LEXING YING

More recently in [3, 4], Evenbly and Vidal proposed the tensor network renormalization
(TNR). The key step of TNR is to apply the disentanglers to remove short-range corre-
lation. These disentanglers appeared earlier in the work of the multiscale entanglement
renormalization ansatz (MERA) [11]. For a fixed bond dimension, TNR gives significantly
more accurate results compared to TRG, but at the cost of increasing the computational
complexity. However, it is not clear how to extend the approach of TNR to systems in
higher dimensions.

These approaches have significantly improved the e�ciency and accuracy of the compu-
tation of tensor networks. From a computational point of view, it would be great to have
a general algorithm that have the following three properties:

• removing the short-range correlation e�ciently in order to keep bond dimension and
computational cost under control, and

• extending to 3D and 4D tensor networks, and
• extending to systems that are not translationally invariant, such as disordered sys-
tems.

However, as far as we know, none of these methods achieves all three properties simultane-
ously.

1.3. Contribution and outline. Building on top of the previous work in the physics
literature, we introduce a new coarse-graining approach, called the tensor network skele-
tonization (TNS), as a first step towards building such a general algorithm. At the heart
of this approach is a new procedure called the structure-preserving skeletonization, which
removes short-range correlation e�ciently while maintaining the structure of a local tensor
network. This allows us to generalize TNS quite straightforwardly to spin systems of higher
dimensions. In addition, we also provide a simple and e�cient algorithm for performing the
structure-preserving skeletonization. This allows for applying TNS e�ciently to systems
that are not translationally invariant.

The rest of this paper is organized as follows. Section 1 summarizes the basic tools used by
the usual tensor network algorithms and introduces the structure-preserving skeletonization.
Section 3 is the main part of the paper and explains TNS for 2D statistical Ising model.
Section 4 extends the algorithm to 3D statistical Ising model. Section 5 discusses how to
build e�cient representations of the ground states of 1D and 2D quantum Ising models
using TNS. Finally, Section 6 discusses some future work.

2. Basic tools

2.1. Local replacement. The basic building blocks of all tensor network algorithms are lo-
cal replacements. Suppose that vertex V and edge set E of a tensor network (V,E, {T i}i2V)
are partitioned as follows

V = V1 [V2, E = E1 [E2 [E12,

where E1 and E2 are the sets of interior edges of V1 and V2, respectively, and E12 is the set
of edges that link across V1 and V2. Such a partition immediately gives an identity

(3) trE

 O
i2V

T i

!
= trE2[E12

0@0@O
i2V2

T i

1AO trE1

0@O
i2V1

T i

1A1A .
TENSOR NETWORK SKELETONIZATION 5

Assume now that there exists another tensor network B for which the following approxi-
mation holds

B ⇡ trE1

0@O
i2V1

T i

1A
(see Figure 2(a)). Typically B is much simpler in terms of the number of the vertices and/or
the bond dimensions of the edges. A local replacement refers to replacing trE1

�N
i2V1

T i
�

in (3) with B to get a simplified approximation

trE

 O
i2V

T i

!
⇡ trE2[E12

0@0@O
i2V2

T i

1AOB

1A
(see Figure 2(b)). Most algorithms for tensor networks apply di↵erent types of local re-
placements successively until the tensor network is simplified to a scalar or left with only
boundary edges.

Figure 2. Local replacement. (a) Part of the tensor network associated
with vertices in V1 is approximated by a simplified tensor network B. (b)
Locally replacing V1 with B results in a approximation of the whole tensor
network.

The simplest instance of local replacement is the tensor contraction and it simply com-
bines two adjacent tensors into a single one. For example, let P be a 2-tensor adjacent to
edges a and c and Q be another 2-tensor adjacent to edges c and b (see Figure 3(a)). The
resulting 2-tensor T obtained from contracting P and Q is simply the product of P and Q,
i.e.,

Tab =
X
c

PacQcb,

(see Figure 3(a)). Often when the contraction is applied, the edges a and b typically come
from grouping a set of multiple edges.

A second instance is called the projection. Typically it is carried out by performing a
singular value decomposition of T followed by thresholding small singular value, i.e.,

T ⇡ USV 0, Tab ⇡
X
cd

UacScdVbd

TENSOR NETWORK SKELETONIZATION 5

Assume now that there exists another tensor network B for which the following approxi-
mation holds

B ⇡ trE1

0@O
i2V1

T i

1A
(see Figure 2(a)). Typically B is much simpler in terms of the number of the vertices and/or
the bond dimensions of the edges. A local replacement refers to replacing trE1

�N
i2V1

T i
�

in (3) with B to get a simplified approximation

trE

 O
i2V

T i

!
⇡ trE2[E12

0@0@O
i2V2

T i

1AOB

1A
(see Figure 2(b)). Most algorithms for tensor networks apply di↵erent types of local re-
placements successively until the tensor network is simplified to a scalar or left with only
boundary edges.

Figure 2. Local replacement. (a) Part of the tensor network associated
with vertices in V1 is approximated by a simplified tensor network B. (b)
Locally replacing V1 with B results in a approximation of the whole tensor
network.

The simplest instance of local replacement is the tensor contraction and it simply com-
bines two adjacent tensors into a single one. For example, let P be a 2-tensor adjacent to
edges a and c and Q be another 2-tensor adjacent to edges c and b (see Figure 3(a)). The
resulting 2-tensor T obtained from contracting P and Q is simply the product of P and Q,
i.e.,

Tab =
X
c

PacQcb,

(see Figure 3(a)). Often when the contraction is applied, the edges a and b typically come
from grouping a set of multiple edges.

A second instance is called the projection. Typically it is carried out by performing a
singular value decomposition of T followed by thresholding small singular value, i.e.,

T ⇡ USV 0, Tab ⇡
X
cd

UacScdVbd

TENSOR NETWORK SKELETONIZATION 5

Assume now that there exists another tensor network B for which the following approxi-
mation holds

B ⇡ trE1

0@O
i2V1

T i

1A
(see Figure 2(a)). Typically B is much simpler in terms of the number of the vertices and/or
the bond dimensions of the edges. A local replacement refers to replacing trE1

�N
i2V1

T i
�

in (3) with B to get a simplified approximation

trE

 O
i2V

T i

!
⇡ trE2[E12

0@0@O
i2V2

T i

1AOB

1A
(see Figure 2(b)). Most algorithms for tensor networks apply di↵erent types of local re-
placements successively until the tensor network is simplified to a scalar or left with only
boundary edges.

Figure 2. Local replacement. (a) Part of the tensor network associated
with vertices in V1 is approximated by a simplified tensor network B. (b)
Locally replacing V1 with B results in a approximation of the whole tensor
network.

The simplest instance of local replacement is the tensor contraction and it simply com-
bines two adjacent tensors into a single one. For example, let P be a 2-tensor adjacent to
edges a and c and Q be another 2-tensor adjacent to edges c and b (see Figure 3(a)). The
resulting 2-tensor T obtained from contracting P and Q is simply the product of P and Q,
i.e.,

Tab =
X
c

PacQcb,

(see Figure 3(a)). Often when the contraction is applied, the edges a and b typically come
from grouping a set of multiple edges.

A second instance is called the projection. Typically it is carried out by performing a
singular value decomposition of T followed by thresholding small singular value, i.e.,

T ⇡ USV 0, Tab ⇡
X
cd

UacScdVbd

TENSOR NETWORK SKELETONIZATION 5

Assume now that there exists another tensor network B for which the following approxi-
mation holds

B ⇡ trE1

0@O
i2V1

T i

1A
(see Figure 2(a)). Typically B is much simpler in terms of the number of the vertices and/or
the bond dimensions of the edges. A local replacement refers to replacing trE1

�N
i2V1

T i
�

in (3) with B to get a simplified approximation

trE

 O
i2V

T i

!
⇡ trE2[E12

0@0@O
i2V2

T i

1AOB

1A
(see Figure 2(b)). Most algorithms for tensor networks apply di↵erent types of local re-
placements successively until the tensor network is simplified to a scalar or left with only
boundary edges.

Figure 2. Local replacement. (a) Part of the tensor network associated
with vertices in V1 is approximated by a simplified tensor network B. (b)
Locally replacing V1 with B results in a approximation of the whole tensor
network.

The simplest instance of local replacement is the tensor contraction and it simply com-
bines two adjacent tensors into a single one. For example, let P be a 2-tensor adjacent to
edges a and c and Q be another 2-tensor adjacent to edges c and b (see Figure 3(a)). The
resulting 2-tensor T obtained from contracting P and Q is simply the product of P and Q,
i.e.,

Tab =
X
c

PacQcb,

(see Figure 3(a)). Often when the contraction is applied, the edges a and b typically come
from grouping a set of multiple edges.

A second instance is called the projection. Typically it is carried out by performing a
singular value decomposition of T followed by thresholding small singular value, i.e.,

T ⇡ USV 0, Tab ⇡
X
cd

UacScdVbd

TENSOR NETWORK SKELETONIZATION 5

Assume now that there exists another tensor network B for which the following approxi-
mation holds

B ⇡ trE1

0@O
i2V1

T i

1A
(see Figure 2(a)). Typically B is much simpler in terms of the number of the vertices and/or
the bond dimensions of the edges. A local replacement refers to replacing trE1

�N
i2V1

T i
�

in (3) with B to get a simplified approximation

trE

 O
i2V

T i

!
⇡ trE2[E12

0@0@O
i2V2

T i

1AOB

1A
(see Figure 2(b)). Most algorithms for tensor networks apply di↵erent types of local re-
placements successively until the tensor network is simplified to a scalar or left with only
boundary edges.

Figure 2. Local replacement. (a) Part of the tensor network associated
with vertices in V1 is approximated by a simplified tensor network B. (b)
Locally replacing V1 with B results in a approximation of the whole tensor
network.

The simplest instance of local replacement is the tensor contraction and it simply com-
bines two adjacent tensors into a single one. For example, let P be a 2-tensor adjacent to
edges a and c and Q be another 2-tensor adjacent to edges c and b (see Figure 3(a)). The
resulting 2-tensor T obtained from contracting P and Q is simply the product of P and Q,
i.e.,

Tab =
X
c

PacQcb,

(see Figure 3(a)). Often when the contraction is applied, the edges a and b typically come
from grouping a set of multiple edges.

A second instance is called the projection. Typically it is carried out by performing a
singular value decomposition of T followed by thresholding small singular value, i.e.,

T ⇡ USV 0, Tab ⇡
X
cd

UacScdVbd

TENSOR NETWORK SKELETONIZATION 5

Assume now that there exists another tensor network B for which the following approxi-
mation holds

B ⇡ trE1

0@O
i2V1

T i

1A
(see Figure 2(a)). Typically B is much simpler in terms of the number of the vertices and/or
the bond dimensions of the edges. A local replacement refers to replacing trE1

�N
i2V1

T i
�

in (3) with B to get a simplified approximation

trE

 O
i2V

T i

!
⇡ trE2[E12

0@0@O
i2V2

T i

1AOB

1A
(see Figure 2(b)). Most algorithms for tensor networks apply di↵erent types of local re-
placements successively until the tensor network is simplified to a scalar or left with only
boundary edges.

Figure 2. Local replacement. (a) Part of the tensor network associated
with vertices in V1 is approximated by a simplified tensor network B. (b)
Locally replacing V1 with B results in a approximation of the whole tensor
network.

The simplest instance of local replacement is the tensor contraction and it simply com-
bines two adjacent tensors into a single one. For example, let P be a 2-tensor adjacent to
edges a and c and Q be another 2-tensor adjacent to edges c and b (see Figure 3(a)). The
resulting 2-tensor T obtained from contracting P and Q is simply the product of P and Q,
i.e.,

Tab =
X
c

PacQcb,

(see Figure 3(a)). Often when the contraction is applied, the edges a and b typically come
from grouping a set of multiple edges.

A second instance is called the projection. Typically it is carried out by performing a
singular value decomposition of T followed by thresholding small singular value, i.e.,

T ⇡ USV 0, Tab ⇡
X
cd

UacScdVbd

TENSOR NETWORK SKELETONIZATION 5

Assume now that there exists another tensor network B for which the following approxi-
mation holds

B ⇡ trE1

0@O
i2V1

T i

1A
(see Figure 2(a)). Typically B is much simpler in terms of the number of the vertices and/or
the bond dimensions of the edges. A local replacement refers to replacing trE1

�N
i2V1

T i
�

in (3) with B to get a simplified approximation

trE

 O
i2V

T i

!
⇡ trE2[E12

0@0@O
i2V2

T i

1AOB

1A
(see Figure 2(b)). Most algorithms for tensor networks apply di↵erent types of local re-
placements successively until the tensor network is simplified to a scalar or left with only
boundary edges.

Figure 2. Local replacement. (a) Part of the tensor network associated
with vertices in V1 is approximated by a simplified tensor network B. (b)
Locally replacing V1 with B results in a approximation of the whole tensor
network.

The simplest instance of local replacement is the tensor contraction and it simply com-
bines two adjacent tensors into a single one. For example, let P be a 2-tensor adjacent to
edges a and c and Q be another 2-tensor adjacent to edges c and b (see Figure 3(a)). The
resulting 2-tensor T obtained from contracting P and Q is simply the product of P and Q,
i.e.,

Tab =
X
c

PacQcb,

(see Figure 3(a)). Often when the contraction is applied, the edges a and b typically come
from grouping a set of multiple edges.

A second instance is called the projection. Typically it is carried out by performing a
singular value decomposition of T followed by thresholding small singular value, i.e.,

T ⇡ USV 0, Tab ⇡
X
cd

UacScdVbd

6 LEXING YING

(see Figure 3(b)). Here U and V are both orthogonal matrices and S is a diagonal matrix.
Due to the truncation of small singular values, the bond dimensions at edges c and d can
be significantly smaller compared to the ones of a and b. Throughout this paper, each
orthogonal matrix shall be denoted by a diamond in the figures. As with the contraction,
each of the indices a and b often comes from grouping a set of multiple edges. The SVD-
based projection can also be modified slightly to a few equivalent forms (see Figure 3(b))

T ⇡ UU 0T, Tab ⇡
X
ce

UacUecTeb

T ⇡ UR, R = U 0T, Tab ⇡
X
c

UacRcb.

In the rest of this paper, we refer to the first one as the UU 0T -projection and the second
one as the UR-projection.

Figure 3. Instances of local replacements. (a) Contraction. (b) Projection.
(c) Structure-preserving skeletonization.

Another instance of local replacements uses the disentanglers introduced in [11] and it
plays a key role in the work of tensor network renormalization (TNR) [3] as mentioned above.
Since the tensor network skeletonization (TNS) approach of this paper does not depend on
the disentanglers, we refer to the references [2, 3, 10] for more detailed discussions of them.

2.2. Structure-preserving skeletonization. At the center of the TNS approach is a
new type of local replacement called the structure-preserving skeletonization. The overall
goal is to reduce the bond dimensions of the interior edges of a loopy local tensor network
without changing its topology. In the simplest setting, consider a 3-tensor T with two of
its components marked with a same edge e (and thus to be contracted). The structure-
preserving skeletonization seeks two 2-tensors X and Y (see Figure 3(c)) such that

(4) tre T ⇡ trabc(X ⌦ T ⌦ Y),
X
e

Teef ⇡
X
abc

XacTabfYbc,

and also the bond dimension of edge c should be significantly smaller compared to the bond
dimension of edge e. This is possible because there might exists short-range correlations

Local	replacements
• Tensor	contraction

• Projection

• Structure-preserving	skeletonization
• Loop	simplification
• Key	to	TNS

6 LEXING YING

(see Figure 3(b)). Here U and V are both orthogonal matrices and S is a diagonal matrix.
Due to the truncation of small singular values, the bond dimensions at edges c and d can
be significantly smaller compared to the ones of a and b. Throughout this paper, each
orthogonal matrix shall be denoted by a diamond in the figures. As with the contraction,
each of the indices a and b often comes from grouping a set of multiple edges. The SVD-
based projection can also be modified slightly to a few equivalent forms (see Figure 3(b))

T ⇡ UU 0T, Tab ⇡
X
ce

UacUecTeb

T ⇡ UR, R = U 0T, Tab ⇡
X
c

UacRcb.

In the rest of this paper, we refer to the first one as the UU 0T -projection and the second
one as the UR-projection.

Figure 3. Instances of local replacements. (a) Contraction. (b) Projection.
(c) Structure-preserving skeletonization.

Another instance of local replacements uses the disentanglers introduced in [11] and it
plays a key role in the work of tensor network renormalization (TNR) [3] as mentioned above.
Since the tensor network skeletonization (TNS) approach of this paper does not depend on
the disentanglers, we refer to the references [2, 3, 10] for more detailed discussions of them.

2.2. Structure-preserving skeletonization. At the center of the TNS approach is a
new type of local replacement called the structure-preserving skeletonization. The overall
goal is to reduce the bond dimensions of the interior edges of a loopy local tensor network
without changing its topology. In the simplest setting, consider a 3-tensor T with two of
its components marked with a same edge e (and thus to be contracted). The structure-
preserving skeletonization seeks two 2-tensors X and Y (see Figure 3(c)) such that

(4) tre T ⇡ trabc(X ⌦ T ⌦ Y),
X
e

Teef ⇡
X
abc

XacTabfYbc,

and also the bond dimension of edge c should be significantly smaller compared to the bond
dimension of edge e. This is possible because there might exists short-range correlations

6 LEXING YING

(see Figure 3(b)). Here U and V are both orthogonal matrices and S is a diagonal matrix.
Due to the truncation of small singular values, the bond dimensions at edges c and d can
be significantly smaller compared to the ones of a and b. Throughout this paper, each
orthogonal matrix shall be denoted by a diamond in the figures. As with the contraction,
each of the indices a and b often comes from grouping a set of multiple edges. The SVD-
based projection can also be modified slightly to a few equivalent forms (see Figure 3(b))

T ⇡ UU 0T, Tab ⇡
X
ce

UacUecTeb

T ⇡ UR, R = U 0T, Tab ⇡
X
c

UacRcb.

In the rest of this paper, we refer to the first one as the UU 0T -projection and the second
one as the UR-projection.

Figure 3. Instances of local replacements. (a) Contraction. (b) Projection.
(c) Structure-preserving skeletonization.

Another instance of local replacements uses the disentanglers introduced in [11] and it
plays a key role in the work of tensor network renormalization (TNR) [3] as mentioned above.
Since the tensor network skeletonization (TNS) approach of this paper does not depend on
the disentanglers, we refer to the references [2, 3, 10] for more detailed discussions of them.

2.2. Structure-preserving skeletonization. At the center of the TNS approach is a
new type of local replacement called the structure-preserving skeletonization. The overall
goal is to reduce the bond dimensions of the interior edges of a loopy local tensor network
without changing its topology. In the simplest setting, consider a 3-tensor T with two of
its components marked with a same edge e (and thus to be contracted). The structure-
preserving skeletonization seeks two 2-tensors X and Y (see Figure 3(c)) such that

(4) tre T ⇡ trabc(X ⌦ T ⌦ Y),
X
e

Teef ⇡
X
abc

XacTabfYbc,

and also the bond dimension of edge c should be significantly smaller compared to the bond
dimension of edge e. This is possible because there might exists short-range correlations

TENSOR NETWORK SKELETONIZATION 5

Assume now that there exists another tensor network B for which the following approxi-
mation holds

B ⇡ trE1

0@O
i2V1

T i

1A
(see Figure 2(a)). Typically B is much simpler in terms of the number of the vertices and/or
the bond dimensions of the edges. A local replacement refers to replacing trE1

�N
i2V1

T i
�

in (3) with B to get a simplified approximation

trE

 O
i2V

T i

!
⇡ trE2[E12

0@0@O
i2V2

T i

1AOB

1A
(see Figure 2(b)). Most algorithms for tensor networks apply di↵erent types of local re-
placements successively until the tensor network is simplified to a scalar or left with only
boundary edges.

Figure 2. Local replacement. (a) Part of the tensor network associated
with vertices in V1 is approximated by a simplified tensor network B. (b)
Locally replacing V1 with B results in a approximation of the whole tensor
network.

The simplest instance of local replacement is the tensor contraction and it simply com-
bines two adjacent tensors into a single one. For example, let P be a 2-tensor adjacent to
edges a and c and Q be another 2-tensor adjacent to edges c and b (see Figure 3(a)). The
resulting 2-tensor T obtained from contracting P and Q is simply the product of P and Q,
i.e.,

Tab =
X
c

PacQcb,

(see Figure 3(a)). Often when the contraction is applied, the edges a and b typically come
from grouping a set of multiple edges.

A second instance is called the projection. Typically it is carried out by performing a
singular value decomposition of T followed by thresholding small singular value, i.e.,

T ⇡ USV 0, Tab ⇡
X
cd

UacScdVbd

TENSOR NETWORK SKELETONIZATION 5

Assume now that there exists another tensor network B for which the following approxi-
mation holds

B ⇡ trE1

0@O
i2V1

T i

1A
(see Figure 2(a)). Typically B is much simpler in terms of the number of the vertices and/or
the bond dimensions of the edges. A local replacement refers to replacing trE1

�N
i2V1

T i
�

in (3) with B to get a simplified approximation

trE

 O
i2V

T i

!
⇡ trE2[E12

0@0@O
i2V2

T i

1AOB

1A
(see Figure 2(b)). Most algorithms for tensor networks apply di↵erent types of local re-
placements successively until the tensor network is simplified to a scalar or left with only
boundary edges.

Figure 2. Local replacement. (a) Part of the tensor network associated
with vertices in V1 is approximated by a simplified tensor network B. (b)
Locally replacing V1 with B results in a approximation of the whole tensor
network.

The simplest instance of local replacement is the tensor contraction and it simply com-
bines two adjacent tensors into a single one. For example, let P be a 2-tensor adjacent to
edges a and c and Q be another 2-tensor adjacent to edges c and b (see Figure 3(a)). The
resulting 2-tensor T obtained from contracting P and Q is simply the product of P and Q,
i.e.,

Tab =
X
c

PacQcb,

(see Figure 3(a)). Often when the contraction is applied, the edges a and b typically come
from grouping a set of multiple edges.

A second instance is called the projection. Typically it is carried out by performing a
singular value decomposition of T followed by thresholding small singular value, i.e.,

T ⇡ USV 0, Tab ⇡
X
cd

UacScdVbd

TENSOR NETWORK SKELETONIZATION 5

Assume now that there exists another tensor network B for which the following approxi-
mation holds

B ⇡ trE1

0@O
i2V1

T i

1A
(see Figure 2(a)). Typically B is much simpler in terms of the number of the vertices and/or
the bond dimensions of the edges. A local replacement refers to replacing trE1

�N
i2V1

T i
�

in (3) with B to get a simplified approximation

trE

 O
i2V

T i

!
⇡ trE2[E12

0@0@O
i2V2

T i

1AOB

1A
(see Figure 2(b)). Most algorithms for tensor networks apply di↵erent types of local re-
placements successively until the tensor network is simplified to a scalar or left with only
boundary edges.

Figure 2. Local replacement. (a) Part of the tensor network associated
with vertices in V1 is approximated by a simplified tensor network B. (b)
Locally replacing V1 with B results in a approximation of the whole tensor
network.

The simplest instance of local replacement is the tensor contraction and it simply com-
bines two adjacent tensors into a single one. For example, let P be a 2-tensor adjacent to
edges a and c and Q be another 2-tensor adjacent to edges c and b (see Figure 3(a)). The
resulting 2-tensor T obtained from contracting P and Q is simply the product of P and Q,
i.e.,

Tab =
X
c

PacQcb,

(see Figure 3(a)). Often when the contraction is applied, the edges a and b typically come
from grouping a set of multiple edges.

A second instance is called the projection. Typically it is carried out by performing a
singular value decomposition of T followed by thresholding small singular value, i.e.,

T ⇡ USV 0, Tab ⇡
X
cd

UacScdVbd

Structure-preserving	skeletonization (SPS)

• Key	to	removing	short-range	correlation	in	a	loop
• In	matrix	notation:

• Solve	a	regularized	problem	

• Use	alternating	least	square	algorithm	with	reasonable	initial	guess	(W.	Yin)

6 LEXING YING

(see Figure 3(b)). Here U and V are both orthogonal matrices and S is a diagonal matrix.
Due to the truncation of small singular values, the bond dimensions at edges c and d can
be significantly smaller compared to the ones of a and b. Throughout this paper, each
orthogonal matrix shall be denoted by a diamond in the figures. As with the contraction,
each of the indices a and b often comes from grouping a set of multiple edges. The SVD-
based projection can also be modified slightly to a few equivalent forms (see Figure 3(b))

T ⇡ UU 0T, Tab ⇡
X
ce

UacUecTeb

T ⇡ UR, R = U 0T, Tab ⇡
X
c

UacRcb.

In the rest of this paper, we refer to the first one as the UU 0T -projection and the second
one as the UR-projection.

Figure 3. Instances of local replacements. (a) Contraction. (b) Projection.
(c) Structure-preserving skeletonization.

Another instance of local replacements uses the disentanglers introduced in [11] and it
plays a key role in the work of tensor network renormalization (TNR) [3] as mentioned above.
Since the tensor network skeletonization (TNS) approach of this paper does not depend on
the disentanglers, we refer to the references [2, 3, 10] for more detailed discussions of them.

2.2. Structure-preserving skeletonization. At the center of the TNS approach is a
new type of local replacement called the structure-preserving skeletonization. The overall
goal is to reduce the bond dimensions of the interior edges of a loopy local tensor network
without changing its topology. In the simplest setting, consider a 3-tensor T with two of
its components marked with a same edge e (and thus to be contracted). The structure-
preserving skeletonization seeks two 2-tensors X and Y (see Figure 3(c)) such that

(4) tre T ⇡ trabc(X ⌦ T ⌦ Y),
X
e

Teef ⇡
X
abc

XacTabfYbc,

and also the bond dimension of edge c should be significantly smaller compared to the bond
dimension of edge e. This is possible because there might exists short-range correlations

6 LEXING YING

(see Figure 3(b)). Here U and V are both orthogonal matrices and S is a diagonal matrix.
Due to the truncation of small singular values, the bond dimensions at edges c and d can
be significantly smaller compared to the ones of a and b. Throughout this paper, each
orthogonal matrix shall be denoted by a diamond in the figures. As with the contraction,
each of the indices a and b often comes from grouping a set of multiple edges. The SVD-
based projection can also be modified slightly to a few equivalent forms (see Figure 3(b))

T ⇡ UU 0T, Tab ⇡
X
ce

UacUecTeb

T ⇡ UR, R = U 0T, Tab ⇡
X
c

UacRcb.

In the rest of this paper, we refer to the first one as the UU 0T -projection and the second
one as the UR-projection.

Figure 3. Instances of local replacements. (a) Contraction. (b) Projection.
(c) Structure-preserving skeletonization.

Another instance of local replacements uses the disentanglers introduced in [11] and it
plays a key role in the work of tensor network renormalization (TNR) [3] as mentioned above.
Since the tensor network skeletonization (TNS) approach of this paper does not depend on
the disentanglers, we refer to the references [2, 3, 10] for more detailed discussions of them.

2.2. Structure-preserving skeletonization. At the center of the TNS approach is a
new type of local replacement called the structure-preserving skeletonization. The overall
goal is to reduce the bond dimensions of the interior edges of a loopy local tensor network
without changing its topology. In the simplest setting, consider a 3-tensor T with two of
its components marked with a same edge e (and thus to be contracted). The structure-
preserving skeletonization seeks two 2-tensors X and Y (see Figure 3(c)) such that

(4) tre T ⇡ trabc(X ⌦ T ⌦ Y),
X
e

Teef ⇡
X
abc

XacTabfYbc,

and also the bond dimension of edge c should be significantly smaller compared to the bond
dimension of edge e. This is possible because there might exists short-range correlations

TENSOR NETWORK SKELETONIZATION 7

within the loop that can be removed from the viewpoint of the exterior of this local tensor
network.

A convenient way to reformulate the problem is to view T as a �e ⇥�e matrix with each
entry Tab equal to a �f -dimensional vector and view X and Y as matrices. Then one can
rewrite the condition in (4) as

(5) tre T ⇡ trc(X
⇤TY)

where the products between X, T , and Y are understood as matrix multiplications.
As far as we know, there does not exist a simple and robust numerical linear algebra

routine that solve this approximation problem directly. Instead, we propose to solve the
following regularized optimization problem

min
X,Y

k tre T � trc(X
⇤TY)k22 + ↵(kXk2F + kY k2F),

where the constant ↵ is a regularization parameter and is typically chosen to be su�ciently
small. This optimization problem is non-convex, however it can be solved e↵ectively in
practice using the alternating least square algorithm once a good initial guess is available.
More precisely, given a initial guess for X(0) and Y (0), one alternates the following two steps
for n = 0, 1, . . . until convergence

X(n+1) = argminX k tre T � trc(X
⇤TY (n))k22 + ↵kXk2F

Y (n+1) = argminY k tre T � trc((X
(n+1))⇤TY)k22 + ↵kY k2F .

Since each of the two steps is a least square problem in X or Y , they can be solved e�ciently
with standard numerical linear algebra routines. The numerical experience shows that, when
starting from well-chosen initial guesses, this alternating least square algorithm converges
after a small number of iterations to near optimal solutions.

3. TNS for 2D statistical Ising models

We start with a 2D statistical Ising model on an n⇥n lattice with the periodic boundary
condition. Following the discussion in Section 1, we set the vertex set V0 to be an n ⇥ n
Cartesian grid. Each vertex i is identified with a tuple (i1, i2) with i1, i2 2 [n] = {0, 1, . . . , n�
1}. The edge set E0 consists of the edges between horizontal and vertical neighbors of the
Cartesian grid modulus periodicity. This setup also gives rise to an n⇥n array of plaquettes.
If a plaquette has vertex i = (i1, i2) at its lower-left corner, then we shall index this plaquette
with i = (i1, i2) as well. Here N = n2 is the total number of spins and we assume without
loss of generality that n = 2L.

3.1. Partition function. Following the discussion in Section 1, the partition function
ZN (�) can be represented using a tensor network (V 0, E0, {T i}i2V0) where T i are given in
(2). Let � be a predetermined upper bound for the bond dimension of the edges of the
tensor network. One can assume without loss of generality that the bond dimension �e for
the edge e 2 E0 is close to this constant �. When � is significantly larger than 2, this can be
achieved by contracting each 2 neighborhood of tensors into a single tensor. For example,
when � = 4, one round of such contractions brings �e = � = 4.

TENSOR NETWORK SKELETONIZATION 7

within the loop that can be removed from the viewpoint of the exterior of this local tensor
network.

A convenient way to reformulate the problem is to view T as a �e ⇥�e matrix with each
entry Tab equal to a �f -dimensional vector and view X and Y as matrices. Then one can
rewrite the condition in (4) as

(5) tre T ⇡ trc(X
⇤TY)

where the products between X, T , and Y are understood as matrix multiplications.
As far as we know, there does not exist a simple and robust numerical linear algebra

routine that solve this approximation problem directly. Instead, we propose to solve the
following regularized optimization problem

min
X,Y

k tre T � trc(X
⇤TY)k22 + ↵(kXk2F + kY k2F),

where the constant ↵ is a regularization parameter and is typically chosen to be su�ciently
small. This optimization problem is non-convex, however it can be solved e↵ectively in
practice using the alternating least square algorithm once a good initial guess is available.
More precisely, given a initial guess for X(0) and Y (0), one alternates the following two steps
for n = 0, 1, . . . until convergence

X(n+1) = argminX k tre T � trc(X
⇤TY (n))k22 + ↵kXk2F

Y (n+1) = argminY k tre T � trc((X
(n+1))⇤TY)k22 + ↵kY k2F .

Since each of the two steps is a least square problem in X or Y , they can be solved e�ciently
with standard numerical linear algebra routines. The numerical experience shows that, when
starting from well-chosen initial guesses, this alternating least square algorithm converges
after a small number of iterations to near optimal solutions.

3. TNS for 2D statistical Ising models

We start with a 2D statistical Ising model on an n⇥n lattice with the periodic boundary
condition. Following the discussion in Section 1, we set the vertex set V0 to be an n ⇥ n
Cartesian grid. Each vertex i is identified with a tuple (i1, i2) with i1, i2 2 [n] = {0, 1, . . . , n�
1}. The edge set E0 consists of the edges between horizontal and vertical neighbors of the
Cartesian grid modulus periodicity. This setup also gives rise to an n⇥n array of plaquettes.
If a plaquette has vertex i = (i1, i2) at its lower-left corner, then we shall index this plaquette
with i = (i1, i2) as well. Here N = n2 is the total number of spins and we assume without
loss of generality that n = 2L.

3.1. Partition function. Following the discussion in Section 1, the partition function
ZN (�) can be represented using a tensor network (V 0, E0, {T i}i2V0) where T i are given in
(2). Let � be a predetermined upper bound for the bond dimension of the edges of the
tensor network. One can assume without loss of generality that the bond dimension �e for
the edge e 2 E0 is close to this constant �. When � is significantly larger than 2, this can be
achieved by contracting each 2 neighborhood of tensors into a single tensor. For example,
when � = 4, one round of such contractions brings �e = � = 4.

TENSOR NETWORK SKELETONIZATION 7

within the loop that can be removed from the viewpoint of the exterior of this local tensor
network.

A convenient way to reformulate the problem is to view T as a �e ⇥�e matrix with each
entry Tab equal to a �f -dimensional vector and view X and Y as matrices. Then one can
rewrite the condition in (4) as

(5) tre T ⇡ trc(X
⇤TY)

where the products between X, T , and Y are understood as matrix multiplications.
As far as we know, there does not exist a simple and robust numerical linear algebra

routine that solve this approximation problem directly. Instead, we propose to solve the
following regularized optimization problem

min
X,Y

k tre T � trc(X
⇤TY)k22 + ↵(kXk2F + kY k2F),

where the constant ↵ is a regularization parameter and is typically chosen to be su�ciently
small. This optimization problem is non-convex, however it can be solved e↵ectively in
practice using the alternating least square algorithm once a good initial guess is available.
More precisely, given a initial guess for X(0) and Y (0), one alternates the following two steps
for n = 0, 1, . . . until convergence

X(n+1) = argminX k tre T � trc(X
⇤TY (n))k22 + ↵kXk2F

Y (n+1) = argminY k tre T � trc((X
(n+1))⇤TY)k22 + ↵kY k2F .

Since each of the two steps is a least square problem in X or Y , they can be solved e�ciently
with standard numerical linear algebra routines. The numerical experience shows that, when
starting from well-chosen initial guesses, this alternating least square algorithm converges
after a small number of iterations to near optimal solutions.

3. TNS for 2D statistical Ising models

We start with a 2D statistical Ising model on an n⇥n lattice with the periodic boundary
condition. Following the discussion in Section 1, we set the vertex set V0 to be an n ⇥ n
Cartesian grid. Each vertex i is identified with a tuple (i1, i2) with i1, i2 2 [n] = {0, 1, . . . , n�
1}. The edge set E0 consists of the edges between horizontal and vertical neighbors of the
Cartesian grid modulus periodicity. This setup also gives rise to an n⇥n array of plaquettes.
If a plaquette has vertex i = (i1, i2) at its lower-left corner, then we shall index this plaquette
with i = (i1, i2) as well. Here N = n2 is the total number of spins and we assume without
loss of generality that n = 2L.

3.1. Partition function. Following the discussion in Section 1, the partition function
ZN (�) can be represented using a tensor network (V 0, E0, {T i}i2V0) where T i are given in
(2). Let � be a predetermined upper bound for the bond dimension of the edges of the
tensor network. One can assume without loss of generality that the bond dimension �e for
the edge e 2 E0 is close to this constant �. When � is significantly larger than 2, this can be
achieved by contracting each 2 neighborhood of tensors into a single tensor. For example,
when � = 4, one round of such contractions brings �e = � = 4.

𝑋’ 𝑇
𝑌

Previous	work

Previous	work:	Tensor	renormalization	group	(TRG)
• Levin	&	Nave	(2007)
• Arguably	the	first	practical	
algorithm	for	(>1D)	tensor	
networks

• Rotate	by	45	degrees

• Cannot	remove	corner-
double-line	(CDL)	tensors

• Cannot	remove	short-range	
correlation

Previous	work
• Second	renormalization	group
• Xie et	al	(2009),	Xiang’s	group	at	
CAS
• Considers	environment	effect	
when	performing	projection
• Extends	to	3D	models

• Tensor-entanglement-filtering	
renormalization	(TEFR)
• Gu &	Wen	(2009)
• Points	out	the	importance	of	
removing	correlation	in	loops
• Simple	iterative	algorithms	
• 2D	systems,	rotate	45	degrees

To optimize the partition function globally, one needs to
consider the renormalization effect of the environment to M.
In Ref. 5, this is called the second renormalization method of
tensor-network model !SRG". This SRG method, as demon-
strated in Ref. 5, can incorporate efficiently the renormaliza-
tion effect of environment and improve significantly the
TRG method.

The difference between TRG and SRG is similar
to the difference between the conventional Wilson-block
renormalization-group method38 and the DMRG.10 In the
conventional block renormalization-group method, it is the
block Hamiltonian that is optimized without considering the
interaction between different blocks. However, in the
DMRG, the basis states of the system block are optimized by
fully considering the interplay between system and environ-
ment blocks via the reduced density matrix. The singular
values in the DMRG are the coefficients of the Schmidt de-
composition of the density matrix. They measure the en-
tanglement between system and environment blocks.

This can be understood more clearly by expressing the
partition function as a product of M and its corresponding
environment matrix Me

Z = Tr MMe, !36"

where Me is defined by contracting over all bond indices in
the environment lattice. From this formula, it is clear that to
reduce the error in Z, one needs to minimize the truncation
error of MMe, not just that of M.

We will discuss how to determine the values of Me later.
Once Me is known, its renormalization to M can be done in
the following steps. !1" To take a singular-value decomposi-
tion for Me

Mjk,li
e = #

n
Ujk,n

e !n
eVli,n

e , !37"

where Ue and Ve are two unitary matrices and !e is a semi-
positive diagonal matrix. This step is taken to ensure that the
renormalization effect of Me to M can be more symmetri-
cally treated and the truncation error of the partition function
is minimized.

!2" From the above decomposition, one can define a new
matrix

M̃n1,n2
= #

lijk
!!n1

e "1/2Vli,n1

e Mli,jkUjk,n2

e !!n2

e "1/2. !38"

And represents the partition function as

Z = Tr M̃ . !39"

This equation means that the error of the partition is mini-
mized if the truncation error of M̃ is minimized. Now we
perform a singular-value decomposition for M̃

M̃n1,n2
= #

n
Ũn1,n!̃nṼn2,n !40"

again. Ũ and Ṽ are two unitary matrices and !̃ is a semiposi-
tive diagonal matrix. According to the least-square principle,
the truncation error of M̃ is minimized if the Dcut largest
singular values of !̃ are retained in the truncation.

!3" By substituting the truncated M̃ back to Eq. !38", one
can represent M as

Mli,jk = #
n1n2

Vli,n1

e !!n1

e "−1/2M̃n1,n2
!!n2

e "−1/2Ujk,n2

e . !41"

It can be further expressed as a product of two tensors

Mli,jk $ #
n=1

Dcut

Sn,li
a Sn,jk

b , !42"

where

Sn,li
a = #

n1

Vli,n1

e !!n1

e "−1/2Ũn1,n!!̃n"1/2, !43"

Sn,jk
b = #

n2

Ujk,n2

e !!n2

e "−1/2Ṽn2,n!!̃n"1/2 !44"

are the two tensors defined in the rewired lattice.
Then one can follow the steps of TRG to update tensors

Ta and Tb in the squeezed lattice by taking the coarse-grain
decimation of Sa and Sb. This completes a full cycle of SRG
iteration. By repeating this procedure, one can finally obtain
the value of partition function in the thermodynamic limit.

C. Determination of the environment tensor Me

In the DMRG calculation, a superblock can be separated
into a system block and an environment block by cutting one
bond. Thus the environment can be readily identified and
integrated out. However, in the TRG method, it is highly
nontrivial to handle the environment. To separate the envi-
ronment from the system block, one needs to cut four bonds.
The system contains only two sites and the environment con-
tains all rest of sites. In this case, it is even more difficult to
evaluate the contribution of the environment than the parti-
tion function itself in the TRG.

The key step in the SRG is to calculate the environment
tensor Me. In this respect, two approaches can be used. One
is to take a mean-field approximation !or cavity approxima-
tion" to account for the environment contribution.5 This is a
cheap but less accurate approach. It is based on an intuitive

li

j k

(b)

li

j k

(a)

FIG. 7. !Color online" !a" Configuration of a system and !b" its
corresponding environment lattice.

RENORMALIZATION OF TENSOR-NETWORK STATES PHYSICAL REVIEW B 81, 174411 !2010"

174411-7

7

3

S’ S’

2S’S’

1

3

1

S2S

S4 S 4

FIG. 8: (Color online) A tensor trace of a product of four
rank-three tensors S1, S2, S3, S4 give rise to one rank-four ten-
sor. Such a rank-four tensor can also be produced (approxi-
mately) by a different set of rank-three tensors S′

1, S
′

2, S
′

3, S
′

4.
We may choose S′

i trying to minimize the dimension of the
index on the dashed links. Or we may choose S′

i trying to
optimize some other quantities.

(b)(a)

4
S’ S"

S"
1

3

1
3 24S’

2S’
S"
S"

S’

FIG. 9: (Color online) The SVD method is used to implement
the above two transformations.

with a lower dimension as shown in Fig. 10(b). (For de-
tails, see Appendix 1.) We then use the SVD (see Fig.
9) to deform the lattice in Fig. 7(c) to that in Fig. 7(d).
Last we trace out the indices on the small squares in Fig.
7(d) to produce new tensor network on a coarse grained
square lattice [see 7(e)] with a new tensor T ′. The ten-
sor T ′ will have a lower local entanglement than T . In
fact, when T is a CDL tensor, the combined procedures
described in Fig. 4 and Fig. 7 (see also Fig. 10 and
11) can reduce T to a dimension-one tensor. Appendix
1 contains a more detailed description of TEFR method.

V. EXAMPLES

In the section, we will apply the TEFR method to
study several simple well known statistical and quantum
systems to test the TEFR approach. We will calculate
the free energy (for statistical systems) or the ground-
state energy (for quantum systems). The singularities in
free-energy/ground-state-energy in the large system limit
will indicate the presence of phase transitions. We can

(b)(a)

T 3

S1 S2

S4 S3

1S’ 2S’

4S’ 3S’

S1
S

FIG. 10: TEFR transformation of a CDL tensor. Here the
index on a dash-line has a dimension one.

(d)

(a) (b) (c)

(e)

FIG. 11: A tensor network of CDL tensor can be reduced to
a tensor network of dimension-one tensor. (a) → (b) uses the
transformation in Fig. 10(a). (b) → (c) uses the transforma-
tion in Fig. 10(b). (c) → (d) uses the transformation in Fig.
9. (d) → (e) uses the transformation in Fig. 4(b)→(c). Here
the index on a dash-line has a dimension one.

F"
F

T

−1.4

 2 2.2 2.4 2.6 2.8

−1.2

−1

−0.8

−0.6

−0.4

−0.2−1

−1.2

 1.8

FIG. 12: (Color online) The temperature dependence of free

energy F (T) and F ′′ = ∂2F
∂T2 for the 2D statistical Ising model.

A phase transition can be seen around the temperature T ≈

2.3. The vertical line marks the exact Tc = 2.26919.

also calculate the fixed-point tensors under the TEFR
flow for each phase. The fixed-point tensors will allow
us to identify those phases as symmetry breaking and/or
topological phases. If we find a continuous phase transi-
tion in the above calculation, we can also use the fixed-
point tensor at the critical point to calculate the spec-
trum of the scaling dimensions hi and the central charge
c for the critical point (see Appendix 2).

A. 2D statistical Ising model

Our first example is the 2D statistical Ising model on
square lattice described by

H = −
∑

⟨i,j ⟩

σiσj , σi = ±1 (12)

Recent	work:	Tensor	network	renormalization	(TNR)
• Evenbly &	Vidal	(2015)
• Apply	disentangler to	remove	
short-range	correlation	in	loops
• 2D	systems:	rotate	by	45	degrees
• Related	with	MERA,	
AdS/CFT correspondence,	
holograph	principle

3

To gain some insight into how TNR operates, let us
consider first an oversimplified scenario where the par-
tition function Z only contains short-range correlations
(technically, this corresponds to a so-called CDL tensor
[21]). If we set the disentanglers to be trivial, u = I⊗2,
then the coarse-graining transformation reduces to TRG
and fails to remove the short-range correlations. How-
ever, with a judicious choice of disentanglers u these cor-
relations are removed and an uncorrelated, trivial tensor
Atriv is produced [21, 22]. Therefore the role of disentan-
glers is to remove short-range correlations. Their action
will be particularly important at criticality, where corre-
lations are present at all length scales.
Example: Partition function of the 2D classical Ising

model.— We consider the partition function

Z =
∑

{σ}

e−H({σ})/T , H ({σ}) = −
∑

⟨i,j⟩

σiσj (4)

on the square lattice, where σk ∈ {+1,−1} is an Ising
spin on site k and T denotes the temperature. Recall

FIG. 2. Steps (a)-(d) of a TNR transformation to produce
tensor A(s+1) from tensor A(s). In step (a), the insertion of
disentanglers u and isometries v and w is made according to
Fig. 1(b). Insets (e)-(g) contain the definition of the auxiliary
tensors B(s) and C(s) and the coarse-grained tensor A(s+1).

FIG. 3. Benchmark results for the square lattice Ising model
on a lattice with 239 spins. (a) Relative error in the free energy
per site δf at the critical temperature Tc, comparing TRG and
TNR over a range of bond dimensions χ. The TRG errors fit
δf ∝ χ−3.02 (the inset displays them using log-log axes), while
TNR errors fit δf ∝ exp(−0.305χ). Extrapolation suggests
that TRG would require bond dimension χ ≈ 750 to match
the accuracy of the χ = 42 TNR result. (b) Spontaneous
magnetization M(T) obtained with TNR with χ = 6 [23].
Even very close to the critical temperature, T = 0.9994 Tc, the
magnetization M ≈ 0.48 is reproduced to within 1% accuracy.

that this model has a global Z2 symmetry: it is invariant
under the simultaneous flip σk → −σk of all the spins.
We obtained an exact representation for the tensor A in
Eq. 1 in terms of four Boltzmann weights eσiσj/T ,

Aijkl = e(σiσj+σjσk+σkσl+σlσi)/T , (5)

which corresponds to having one tensor A for every two
spins, and a tensor network with a 45 degree tilt with
respect to the spin lattice, see Fig. 1(a,b). We actu-
ally built our starting tensor A(0), with bond dimension
χ = 4, by joining a square block of four tensors A to-
gether. We then applied up to 18 TNR transformations
to a system made of N = 218×218 tensors A(0), or equiv-
alently 2× 4×N Ising spins.
Fig. 3(a) shows the relative error δf in the free en-

ergy per site f ≡ log(Z)/(8N), at the critical temper-
ature Tc ≡ 2/ ln(1 +

√
2) ≈ 2.269, for both TRG and

TNR as a function of the bond dimensions χ [24]. The
TRG error decays polynomially, while the TNR error is
reduced exponentially, showing a qualitatively different
behaviour and implying that significantly more accurate
results can be obtained with TNR. Figure 3(b) shows the
spontaneous magnetization M(T) as a function of tem-
perature T obtained with TNR for χ = 6. Even close
to T = Tc, we see remarkable agreement with the exact
solution.
However, the most significant feature of TNR is re-

vealed in Fig. 4, which shows, as a function of the scale

3

To gain some insight into how TNR operates, let us
consider first an oversimplified scenario where the par-
tition function Z only contains short-range correlations
(technically, this corresponds to a so-called CDL tensor
[21]). If we set the disentanglers to be trivial, u = I⊗2,
then the coarse-graining transformation reduces to TRG
and fails to remove the short-range correlations. How-
ever, with a judicious choice of disentanglers u these cor-
relations are removed and an uncorrelated, trivial tensor
Atriv is produced [21, 22]. Therefore the role of disentan-
glers is to remove short-range correlations. Their action
will be particularly important at criticality, where corre-
lations are present at all length scales.
Example: Partition function of the 2D classical Ising

model.— We consider the partition function

Z =
∑

{σ}

e−H({σ})/T , H ({σ}) = −
∑

⟨i,j⟩

σiσj (4)

on the square lattice, where σk ∈ {+1,−1} is an Ising
spin on site k and T denotes the temperature. Recall

FIG. 2. Steps (a)-(d) of a TNR transformation to produce
tensor A(s+1) from tensor A(s). In step (a), the insertion of
disentanglers u and isometries v and w is made according to
Fig. 1(b). Insets (e)-(g) contain the definition of the auxiliary
tensors B(s) and C(s) and the coarse-grained tensor A(s+1).

FIG. 3. Benchmark results for the square lattice Ising model
on a lattice with 239 spins. (a) Relative error in the free energy
per site δf at the critical temperature Tc, comparing TRG and
TNR over a range of bond dimensions χ. The TRG errors fit
δf ∝ χ−3.02 (the inset displays them using log-log axes), while
TNR errors fit δf ∝ exp(−0.305χ). Extrapolation suggests
that TRG would require bond dimension χ ≈ 750 to match
the accuracy of the χ = 42 TNR result. (b) Spontaneous
magnetization M(T) obtained with TNR with χ = 6 [23].
Even very close to the critical temperature, T = 0.9994 Tc, the
magnetization M ≈ 0.48 is reproduced to within 1% accuracy.

that this model has a global Z2 symmetry: it is invariant
under the simultaneous flip σk → −σk of all the spins.
We obtained an exact representation for the tensor A in
Eq. 1 in terms of four Boltzmann weights eσiσj/T ,

Aijkl = e(σiσj+σjσk+σkσl+σlσi)/T , (5)

which corresponds to having one tensor A for every two
spins, and a tensor network with a 45 degree tilt with
respect to the spin lattice, see Fig. 1(a,b). We actu-
ally built our starting tensor A(0), with bond dimension
χ = 4, by joining a square block of four tensors A to-
gether. We then applied up to 18 TNR transformations
to a system made of N = 218×218 tensors A(0), or equiv-
alently 2× 4×N Ising spins.
Fig. 3(a) shows the relative error δf in the free en-

ergy per site f ≡ log(Z)/(8N), at the critical temper-
ature Tc ≡ 2/ ln(1 +

√
2) ≈ 2.269, for both TRG and

TNR as a function of the bond dimensions χ [24]. The
TRG error decays polynomially, while the TNR error is
reduced exponentially, showing a qualitatively different
behaviour and implying that significantly more accurate
results can be obtained with TNR. Figure 3(b) shows the
spontaneous magnetization M(T) as a function of tem-
perature T obtained with TNR for χ = 6. Even close
to T = Tc, we see remarkable agreement with the exact
solution.
However, the most significant feature of TNR is re-

vealed in Fig. 4, which shows, as a function of the scale

3

To gain some insight into how TNR operates, let us
consider first an oversimplified scenario where the par-
tition function Z only contains short-range correlations
(technically, this corresponds to a so-called CDL tensor
[21]). If we set the disentanglers to be trivial, u = I⊗2,
then the coarse-graining transformation reduces to TRG
and fails to remove the short-range correlations. How-
ever, with a judicious choice of disentanglers u these cor-
relations are removed and an uncorrelated, trivial tensor
Atriv is produced [21, 22]. Therefore the role of disentan-
glers is to remove short-range correlations. Their action
will be particularly important at criticality, where corre-
lations are present at all length scales.
Example: Partition function of the 2D classical Ising

model.— We consider the partition function

Z =
∑

{σ}

e−H({σ})/T , H ({σ}) = −
∑

⟨i,j⟩

σiσj (4)

on the square lattice, where σk ∈ {+1,−1} is an Ising
spin on site k and T denotes the temperature. Recall

FIG. 2. Steps (a)-(d) of a TNR transformation to produce
tensor A(s+1) from tensor A(s). In step (a), the insertion of
disentanglers u and isometries v and w is made according to
Fig. 1(b). Insets (e)-(g) contain the definition of the auxiliary
tensors B(s) and C(s) and the coarse-grained tensor A(s+1).

FIG. 3. Benchmark results for the square lattice Ising model
on a lattice with 239 spins. (a) Relative error in the free energy
per site δf at the critical temperature Tc, comparing TRG and
TNR over a range of bond dimensions χ. The TRG errors fit
δf ∝ χ−3.02 (the inset displays them using log-log axes), while
TNR errors fit δf ∝ exp(−0.305χ). Extrapolation suggests
that TRG would require bond dimension χ ≈ 750 to match
the accuracy of the χ = 42 TNR result. (b) Spontaneous
magnetization M(T) obtained with TNR with χ = 6 [23].
Even very close to the critical temperature, T = 0.9994 Tc, the
magnetization M ≈ 0.48 is reproduced to within 1% accuracy.

that this model has a global Z2 symmetry: it is invariant
under the simultaneous flip σk → −σk of all the spins.
We obtained an exact representation for the tensor A in
Eq. 1 in terms of four Boltzmann weights eσiσj/T ,

Aijkl = e(σiσj+σjσk+σkσl+σlσi)/T , (5)

which corresponds to having one tensor A for every two
spins, and a tensor network with a 45 degree tilt with
respect to the spin lattice, see Fig. 1(a,b). We actu-
ally built our starting tensor A(0), with bond dimension
χ = 4, by joining a square block of four tensors A to-
gether. We then applied up to 18 TNR transformations
to a system made of N = 218×218 tensors A(0), or equiv-
alently 2× 4×N Ising spins.
Fig. 3(a) shows the relative error δf in the free en-

ergy per site f ≡ log(Z)/(8N), at the critical temper-
ature Tc ≡ 2/ ln(1 +

√
2) ≈ 2.269, for both TRG and

TNR as a function of the bond dimensions χ [24]. The
TRG error decays polynomially, while the TNR error is
reduced exponentially, showing a qualitatively different
behaviour and implying that significantly more accurate
results can be obtained with TNR. Figure 3(b) shows the
spontaneous magnetization M(T) as a function of tem-
perature T obtained with TNR for χ = 6. Even close
to T = Tc, we see remarkable agreement with the exact
solution.
However, the most significant feature of TNR is re-

vealed in Fig. 4, which shows, as a function of the scale

3

To gain some insight into how TNR operates, let us
consider first an oversimplified scenario where the par-
tition function Z only contains short-range correlations
(technically, this corresponds to a so-called CDL tensor
[21]). If we set the disentanglers to be trivial, u = I⊗2,
then the coarse-graining transformation reduces to TRG
and fails to remove the short-range correlations. How-
ever, with a judicious choice of disentanglers u these cor-
relations are removed and an uncorrelated, trivial tensor
Atriv is produced [21, 22]. Therefore the role of disentan-
glers is to remove short-range correlations. Their action
will be particularly important at criticality, where corre-
lations are present at all length scales.
Example: Partition function of the 2D classical Ising

model.— We consider the partition function

Z =
∑

{σ}

e−H({σ})/T , H ({σ}) = −
∑

⟨i,j⟩

σiσj (4)

on the square lattice, where σk ∈ {+1,−1} is an Ising
spin on site k and T denotes the temperature. Recall

FIG. 2. Steps (a)-(d) of a TNR transformation to produce
tensor A(s+1) from tensor A(s). In step (a), the insertion of
disentanglers u and isometries v and w is made according to
Fig. 1(b). Insets (e)-(g) contain the definition of the auxiliary
tensors B(s) and C(s) and the coarse-grained tensor A(s+1).

FIG. 3. Benchmark results for the square lattice Ising model
on a lattice with 239 spins. (a) Relative error in the free energy
per site δf at the critical temperature Tc, comparing TRG and
TNR over a range of bond dimensions χ. The TRG errors fit
δf ∝ χ−3.02 (the inset displays them using log-log axes), while
TNR errors fit δf ∝ exp(−0.305χ). Extrapolation suggests
that TRG would require bond dimension χ ≈ 750 to match
the accuracy of the χ = 42 TNR result. (b) Spontaneous
magnetization M(T) obtained with TNR with χ = 6 [23].
Even very close to the critical temperature, T = 0.9994 Tc, the
magnetization M ≈ 0.48 is reproduced to within 1% accuracy.

that this model has a global Z2 symmetry: it is invariant
under the simultaneous flip σk → −σk of all the spins.
We obtained an exact representation for the tensor A in
Eq. 1 in terms of four Boltzmann weights eσiσj/T ,

Aijkl = e(σiσj+σjσk+σkσl+σlσi)/T , (5)

which corresponds to having one tensor A for every two
spins, and a tensor network with a 45 degree tilt with
respect to the spin lattice, see Fig. 1(a,b). We actu-
ally built our starting tensor A(0), with bond dimension
χ = 4, by joining a square block of four tensors A to-
gether. We then applied up to 18 TNR transformations
to a system made of N = 218×218 tensors A(0), or equiv-
alently 2× 4×N Ising spins.
Fig. 3(a) shows the relative error δf in the free en-

ergy per site f ≡ log(Z)/(8N), at the critical temper-
ature Tc ≡ 2/ ln(1 +

√
2) ≈ 2.269, for both TRG and

TNR as a function of the bond dimensions χ [24]. The
TRG error decays polynomially, while the TNR error is
reduced exponentially, showing a qualitatively different
behaviour and implying that significantly more accurate
results can be obtained with TNR. Figure 3(b) shows the
spontaneous magnetization M(T) as a function of tem-
perature T obtained with TNR for χ = 6. Even close
to T = Tc, we see remarkable agreement with the exact
solution.
However, the most significant feature of TNR is re-

vealed in Fig. 4, which shows, as a function of the scale

3

To gain some insight into how TNR operates, let us
consider first an oversimplified scenario where the par-
tition function Z only contains short-range correlations
(technically, this corresponds to a so-called CDL tensor
[21]). If we set the disentanglers to be trivial, u = I⊗2,
then the coarse-graining transformation reduces to TRG
and fails to remove the short-range correlations. How-
ever, with a judicious choice of disentanglers u these cor-
relations are removed and an uncorrelated, trivial tensor
Atriv is produced [21, 22]. Therefore the role of disentan-
glers is to remove short-range correlations. Their action
will be particularly important at criticality, where corre-
lations are present at all length scales.
Example: Partition function of the 2D classical Ising

model.— We consider the partition function

Z =
∑

{σ}

e−H({σ})/T , H ({σ}) = −
∑

⟨i,j⟩

σiσj (4)

on the square lattice, where σk ∈ {+1,−1} is an Ising
spin on site k and T denotes the temperature. Recall

FIG. 2. Steps (a)-(d) of a TNR transformation to produce
tensor A(s+1) from tensor A(s). In step (a), the insertion of
disentanglers u and isometries v and w is made according to
Fig. 1(b). Insets (e)-(g) contain the definition of the auxiliary
tensors B(s) and C(s) and the coarse-grained tensor A(s+1).

FIG. 3. Benchmark results for the square lattice Ising model
on a lattice with 239 spins. (a) Relative error in the free energy
per site δf at the critical temperature Tc, comparing TRG and
TNR over a range of bond dimensions χ. The TRG errors fit
δf ∝ χ−3.02 (the inset displays them using log-log axes), while
TNR errors fit δf ∝ exp(−0.305χ). Extrapolation suggests
that TRG would require bond dimension χ ≈ 750 to match
the accuracy of the χ = 42 TNR result. (b) Spontaneous
magnetization M(T) obtained with TNR with χ = 6 [23].
Even very close to the critical temperature, T = 0.9994 Tc, the
magnetization M ≈ 0.48 is reproduced to within 1% accuracy.

that this model has a global Z2 symmetry: it is invariant
under the simultaneous flip σk → −σk of all the spins.
We obtained an exact representation for the tensor A in
Eq. 1 in terms of four Boltzmann weights eσiσj/T ,

Aijkl = e(σiσj+σjσk+σkσl+σlσi)/T , (5)

which corresponds to having one tensor A for every two
spins, and a tensor network with a 45 degree tilt with
respect to the spin lattice, see Fig. 1(a,b). We actu-
ally built our starting tensor A(0), with bond dimension
χ = 4, by joining a square block of four tensors A to-
gether. We then applied up to 18 TNR transformations
to a system made of N = 218×218 tensors A(0), or equiv-
alently 2× 4×N Ising spins.
Fig. 3(a) shows the relative error δf in the free en-

ergy per site f ≡ log(Z)/(8N), at the critical temper-
ature Tc ≡ 2/ ln(1 +

√
2) ≈ 2.269, for both TRG and

TNR as a function of the bond dimensions χ [24]. The
TRG error decays polynomially, while the TNR error is
reduced exponentially, showing a qualitatively different
behaviour and implying that significantly more accurate
results can be obtained with TNR. Figure 3(b) shows the
spontaneous magnetization M(T) as a function of tem-
perature T obtained with TNR for χ = 6. Even close
to T = Tc, we see remarkable agreement with the exact
solution.
However, the most significant feature of TNR is re-

vealed in Fig. 4, which shows, as a function of the scale

2

(see Eq. 5 and Fig. 1(a,b) for an explicit example),

Z =
∑

ijk···

AijklAmnojAkrstAopqr · · · ≡ tTr
(

⊗N
x=1A

)

. (1)

Here each index hosts a χ-level local degree of freedom
(e.g. i = 1, 2, · · · ,χ), the tensor components Aijkl are
local weights, and the tensor trace tTr denotes a sum
over configurations of all the indices ijk · · · .
Our goal is to produce an effective tensor A(1), roughly

accounting for four copies of the original tensor A(0) ≡ A,
such that Z can be approximately expressed as a coarser
tensor network made of just N/4 copies of A(1), Z ≈
tTr

(

⊗N/4
x=1A

(1)
)

. By iteration, a sequence of tensors

A(0) → A(1) → A(2) → · · · (2)

will be produced such that, for any length scale s,

Z ≈ tTr
(

⊗Ns

x=1A
(s)
)

, Ns ≡ N/4s. (3)

Thus, after s̃ ≡ log4(N) iterations [assuming N = 4s̃ for
some integer s̃ > 0], the partition function Z becomes

the trace of a single tensor A(s̃), Z ≈
∑

ij A
(s̃)
ijij , which

we can finally evaluate [16]. On the other hand, in the
thermodynamic limit N → ∞, we can study the flow in
the space of tensors given by Eq. 2. The fixed-point
tensors of this flow will capture the universal properties
of the phases and phase transitions of the system.
Tensor Network Renormalization.— Our coarse-

graining transformation for the partition function Z in
Eq. 1 is based on locally inserting (exact or approxi-
mate) resolutions of the identity into the tensor network.
The goal is to reorganize the local degrees of freedom, so
as to be able to identify and remove those that are only
correlated at short distances.
Let us regard each index of the network as hosting a

χ-dimensional complex vector space V ≡ Cχ. We con-
sider two types of insertions, see Fig. 1(c). The first type
is implemented by a pair uu† = I⊗2 of unitary transfor-
mations u, or disentanglers, acting on two neighboring
indices, u : V⊗ V → V⊗ V. The disentanglers u will be
used to remove short-range correlations [17]. Notice that
inserting a pair of disentanglers uu† does not change the
partition function Z represented by the tensor network.
The second type of insertion is implemented by a pro-

jector vv† (or ww†), where the isometry v (or w) com-
bines two indices into a single one, v : V → V ⊗ V, with
v†v = I. Since vv† is not the identity but a χ-dimensional
projector acting on the χ2-dimensional space V⊗ V, in-
serting it into the tensor network introduces a truncation
error into the representation of the partition function Z.
This error can be estimated by the norm ∥δ∥ of the differ-
ence operator δ defined in Fig. 1(d). If, somehow, only a
small truncation error ∥δ∥ is introduced, then the result-
ing tensor network will still be a good approximation to
the partition function Z.

FIG. 1. (a) As an example, we consider a square lattice
(slanted 45◦) of classical spins, where σk ∈ {+1,−1} is an
Ising spin on site k. (b) Graphical representation of a part
of the tensor network, where each circle denotes a tensor A,
for the partition function Z of the classical spin model, see
Eq. 1. Here tensor Aijkl encodes the Boltzmann weights of
the spins {σi,σj ,σk,σl} according to the Hamiltonian func-
tion H , see Eq. 5. (c) Insertion of a pair of disentanglers
uu† between four tensors, where tensors Ã are obtained from
tensors A through a gauge transformation on their horizontal
indices [18], followed by an insertion of four projectors of the
form vv† (or ww†). These projectors introduce a truncation
error. (d) Tensor δ, whose norm ∥δ∥ measures the truncation
error introduced by the isometries v and w. Disentanglers
and isometries are chosen so as to minimize ∥δ∥.

Fig. 2 shows graphically the proposed TNR transfor-
mation. In step (a), disentanglers and isometries are in-
serted between blocks of 2×2 tensorsA(s). In step (b) two
types of auxiliary tensors, B(s) and C(s), are produced
by contracting indices. In step (c) tensors B and C are
split using a singular value decomposition, as it is done in
TRG [19]. Finally, in step (d) the coarse-grained tensor
A(s+1) at scale s+1 is obtained by further contraction of
indices. The disentanglers and isometries introduced in
step (a) are chosen so as to minimize the truncation error
∥δ∥ in Fig. 1(d), using well-established, iterative opti-
mization methods for unitary and isometric tensors [13],
which are further detailed in Ref.[20]. The overall com-
putational cost of computing tensor A(s+1) from tensor
A(s) scales as O(χ7), although this cost can be reduced
to O(χ6) through introducing controlled approximations
[20].

Very	recent	work:	Loop-TNR
• Yang,	Gu,	&	Wen	(2016)
• Built	on	top	of	TEFR

• Remove	short-range	correlation	in	loop	
more	effectively

• Use	iterative	QR	algorithms	and	MPS	
algorithms	for	optimization

2

(a) (b)

(e) (d)

(c)(f)

�
2

�

2

=

(h)

(g)
TATB

TA TB

T

0
B T

0
A

T

0
A T

0
B

T1

T2T3

T4
1

2

3
45

6

7

8

�

�
�

��

�

�

��

� �

FIG. 1. (Color online) Three key steps of the Loop-TNR algo-
rithm. (a): The entanglement filtering step. We insert some
projectors to eliminate the local entanglement on the squares
labeled by grey circles. (see (g) for details) (c): The loop
optimization step. We deform each shaded square to a oc-
tagon made up by 8 rank-3 tensors with bond dimensions no
more than �. The best approximation is found by minimizing
the cost function in (h). (e): The same coarse graining step
as in the usual LN-TNR algorithm. (h): The cost function
of the loop optimization can be regarded as the distance be-
tween two MPS wave functions. We apply the well-developed
variational MPS method to minimize the cost function.

that such an absolutely invariant tensor does not exist,
unless the bond dimension is infinite.

Loop-TNR algorithm The Loop-TNR algorithm
shares the same motivation of GW-TNR [8], aiming at
eliminating local entanglement on a loop and revealing
the correct structures of fixed point tensors. However, it
dramatically improves the numerical stability and accu-
racy of the renormalization group (RG) flow, especially
for critical systems. In the following, we will illustrate the
three main steps of the loop-TNR algorithm. The first
and last steps are exact, and the second is approximate.
We will explain the method on a square lattice, although
the generalizations to other lattices are straightforward.

We start with an entanglement filtering step [Fig. 1(a)
and (g)] with two important features: It provides a
canonical gauge for every tensor, and filters out the local
entanglement for o↵-critical systems. More specifically,
we insert two projectors on each bond shown in Fig. 1(g).
These projectors are found in an iterative way based on
QR decompositions [54]. After that, we redefine the ten-

sors by combining the original tensors with the nearest
projectors [see Fig. 1(g)] and complete the filtering step.
In Supplemental Materials we show our approach can
completely remove the CDL tensors. Thus for o↵-critical
systems containing CDL tensors (up to a gauge transfor-
mation), our method can simplify the tensors and reduce
the bond dimensions. For critical systems, although there
is no bond reduction, the canonical gauge it provides can
enhance the performance of the next step. This step is
quite e�cient since the overall computational cost scales
as O(�3), where � is the bond dimension of the tensor.

Next, similar to the LN-TNR algorithm, we need to
deform the tensor network from a square lattice to a
square-octagon lattice [see Fig. 1(c)]. However, to avoid
the increasing bond dimensions on the octagons, approx-
imations must be made. In the LN-TNR algorithm, this
is done by minimizing the following single-site cost func-
tions:

,
LN-TNR:

2

�

||TA � S1 · S2||2
1

2

�
�

�
�

�

2

�

||TB � S3 · S4||2
3

4
�

�

�
�

�

.

The optimal S are found using SVD and keeping only the
largest � singular values. Here “·” means tracing over the
indices for connected bonds.

In the loop-TNR algorithm, we use an alternative
method to reduce the bond dimensions. We define a cost
function on a small patch shown in Fig. 1(h), i.e.,

f = ||T1 ·T2 ·T3 ·T4�S1 ·S2 ·S3 ·S4 ·S5 ·S6 ·S7 ·S8||2. (1)

where the shaded square is deformed to an octagon. Since
now the cost function is defined on a loop, we can further
remove the short-range entanglement inside the loop and
significantly improve the accuracy, especially for critical
systems. Moreover, there is an e�cient way to find the
optimal S tensors. This is because we can view each
patch as a wave function made up by matrix product
states (MPS) with a periodic boundary condition. The
eight dotted lines are the physical legs of the MPS, and
the solid lines are the virtual legs of the MPS. Then
minimizing the cost function is equivalent to minimiz-
ing the distance between two MPS. This means we can
optimize S tensors using the well developed variational
MPS method [2, 24, 54]. The computational cost for this
step scales as O(�6).

The final step is the same as the LN-TNR algorithm.
As shown in Fig. 1(e), we obtain a coarse-grained square
lattice by contracting over the inner indices within the
circles. We would like to emphasize that the overall
computational cost for all steps only scales as O(�6),
which is much more e�cient than other improved LN-
TNR methods, such as SRG/HOSRG algorithms [40–42]
(O(�7) ⇠ O(�10)) and EV-TNR algorithms [50] (O(�7)).
Below we demonstrate the advantage of the loop-TNR

Comparison

Off-critical Critical Higher	dimensions

TRG ✔

SRG ✔ ✔

TEFR ✔

TNR ✔ ✔

Loop-TNR ✔ ✔ ?

TNS ✔ ✔ ✔

Tensor	network	skeletonization

Tensor	network	skeletonization (TNS)
• A	renormalization/upscaling	approach

• Structure-preserving	skeletonization for	removing	short-range	correlation	in	loops

• Preserve	the	Cartesian	structure	(hence	the	name	”skeletonization”)

• Extends	easily	to	high	dimensional	models

8 LEXING YING

Figure 4. A single iteration of the tensor network skeletonization algo-
rithm. The starting point is a tensor network with bond dimension � and
short-range correlation removed in the (0, 0)2 and (1, 1)2 plaquettes. The
final point is a coarse-grained tensor-network with 1/4 vertices (or tensors).
This coarse-grained tensor also has bond dimensions equal to � and has
short-range correlation removed for the (larger) (0, 0)2 and (1, 1)2 plaque-
ttes. The bold lines stand for edges with bond dimensions equal to O(�2).

3.1.1. Algorithm. The TNS algorithm consists of a sequence of coarse-graining iterations.
At the beginning of the `-th iteration, one holds a tensor network (V `, E`, {T i}i2V`) at level
` with (n/2`) ⇥ (n/2`) vertices. With the exception of the 0-th iteration, we require that
the following iteration invariance to hold:

• for each plaquette with index equal to (0, 0) or (1, 1) modulus 2, the short-range
correlation within this plaquette has already been eliminated (see Figure 4(a)).

In what follows, we refer to those plaquettes with index equal to (0, 0) modulus 2 as (0, 0)2
plaquettes and similarly those with index equal to (1, 1) modulus 2 as (1, 1)2 plaquettes.

8 LEXING YING

Figure 4. A single iteration of the tensor network skeletonization algo-
rithm. The starting point is a tensor network with bond dimension � and
short-range correlation removed in the (0, 0)2 and (1, 1)2 plaquettes. The
final point is a coarse-grained tensor-network with 1/4 vertices (or tensors).
This coarse-grained tensor also has bond dimensions equal to � and has
short-range correlation removed for the (larger) (0, 0)2 and (1, 1)2 plaque-
ttes. The bold lines stand for edges with bond dimensions equal to O(�2).

3.1.1. Algorithm. The TNS algorithm consists of a sequence of coarse-graining iterations.
At the beginning of the `-th iteration, one holds a tensor network (V `, E`, {T i}i2V`) at level
` with (n/2`) ⇥ (n/2`) vertices. With the exception of the 0-th iteration, we require that
the following iteration invariance to hold:

• for each plaquette with index equal to (0, 0) or (1, 1) modulus 2, the short-range
correlation within this plaquette has already been eliminated (see Figure 4(a)).

In what follows, we refer to those plaquettes with index equal to (0, 0) modulus 2 as (0, 0)2
plaquettes and similarly those with index equal to (1, 1) modulus 2 as (1, 1)2 plaquettes.

8 LEXING YING

Figure 4. A single iteration of the tensor network skeletonization algo-
rithm. The starting point is a tensor network with bond dimension � and
short-range correlation removed in the (0, 0)2 and (1, 1)2 plaquettes. The
final point is a coarse-grained tensor-network with 1/4 vertices (or tensors).
This coarse-grained tensor also has bond dimensions equal to � and has
short-range correlation removed for the (larger) (0, 0)2 and (1, 1)2 plaque-
ttes. The bold lines stand for edges with bond dimensions equal to O(�2).

3.1.1. Algorithm. The TNS algorithm consists of a sequence of coarse-graining iterations.
At the beginning of the `-th iteration, one holds a tensor network (V `, E`, {T i}i2V`) at level
` with (n/2`) ⇥ (n/2`) vertices. With the exception of the 0-th iteration, we require that
the following iteration invariance to hold:

• for each plaquette with index equal to (0, 0) or (1, 1) modulus 2, the short-range
correlation within this plaquette has already been eliminated (see Figure 4(a)).

In what follows, we refer to those plaquettes with index equal to (0, 0) modulus 2 as (0, 0)2
plaquettes and similarly those with index equal to (1, 1) modulus 2 as (1, 1)2 plaquettes.

8 LEXING YING

Figure 4. A single iteration of the tensor network skeletonization algo-
rithm. The starting point is a tensor network with bond dimension � and
short-range correlation removed in the (0, 0)2 and (1, 1)2 plaquettes. The
final point is a coarse-grained tensor-network with 1/4 vertices (or tensors).
This coarse-grained tensor also has bond dimensions equal to � and has
short-range correlation removed for the (larger) (0, 0)2 and (1, 1)2 plaque-
ttes. The bold lines stand for edges with bond dimensions equal to O(�2).

3.1.1. Algorithm. The TNS algorithm consists of a sequence of coarse-graining iterations.
At the beginning of the `-th iteration, one holds a tensor network (V `, E`, {T i}i2V`) at level
` with (n/2`) ⇥ (n/2`) vertices. With the exception of the 0-th iteration, we require that
the following iteration invariance to hold:

• for each plaquette with index equal to (0, 0) or (1, 1) modulus 2, the short-range
correlation within this plaquette has already been eliminated (see Figure 4(a)).

In what follows, we refer to those plaquettes with index equal to (0, 0) modulus 2 as (0, 0)2
plaquettes and similarly those with index equal to (1, 1) modulus 2 as (1, 1)2 plaquettes.

8 LEXING YING

Figure 4. A single iteration of the tensor network skeletonization algo-
rithm. The starting point is a tensor network with bond dimension � and
short-range correlation removed in the (0, 0)2 and (1, 1)2 plaquettes. The
final point is a coarse-grained tensor-network with 1/4 vertices (or tensors).
This coarse-grained tensor also has bond dimensions equal to � and has
short-range correlation removed for the (larger) (0, 0)2 and (1, 1)2 plaque-
ttes. The bold lines stand for edges with bond dimensions equal to O(�2).

3.1.1. Algorithm. The TNS algorithm consists of a sequence of coarse-graining iterations.
At the beginning of the `-th iteration, one holds a tensor network (V `, E`, {T i}i2V`) at level
` with (n/2`) ⇥ (n/2`) vertices. With the exception of the 0-th iteration, we require that
the following iteration invariance to hold:

• for each plaquette with index equal to (0, 0) or (1, 1) modulus 2, the short-range
correlation within this plaquette has already been eliminated (see Figure 4(a)).

In what follows, we refer to those plaquettes with index equal to (0, 0) modulus 2 as (0, 0)2
plaquettes and similarly those with index equal to (1, 1) modulus 2 as (1, 1)2 plaquettes.

8 LEXING YING

Figure 4. A single iteration of the tensor network skeletonization algo-
rithm. The starting point is a tensor network with bond dimension � and
short-range correlation removed in the (0, 0)2 and (1, 1)2 plaquettes. The
final point is a coarse-grained tensor-network with 1/4 vertices (or tensors).
This coarse-grained tensor also has bond dimensions equal to � and has
short-range correlation removed for the (larger) (0, 0)2 and (1, 1)2 plaque-
ttes. The bold lines stand for edges with bond dimensions equal to O(�2).

3.1.1. Algorithm. The TNS algorithm consists of a sequence of coarse-graining iterations.
At the beginning of the `-th iteration, one holds a tensor network (V `, E`, {T i}i2V`) at level
` with (n/2`) ⇥ (n/2`) vertices. With the exception of the 0-th iteration, we require that
the following iteration invariance to hold:

• for each plaquette with index equal to (0, 0) or (1, 1) modulus 2, the short-range
correlation within this plaquette has already been eliminated (see Figure 4(a)).

In what follows, we refer to those plaquettes with index equal to (0, 0) modulus 2 as (0, 0)2
plaquettes and similarly those with index equal to (1, 1) modulus 2 as (1, 1)2 plaquettes.

TNS	for	2D	statistical	Ising model
level	ℓ level	ℓ + 1 new	correlation

8 LEXING YING

Figure 4. A single iteration of the tensor network skeletonization algo-
rithm. The starting point is a tensor network with bond dimension � and
short-range correlation removed in the (0, 0)2 and (1, 1)2 plaquettes. The
final point is a coarse-grained tensor-network with 1/4 vertices (or tensors).
This coarse-grained tensor also has bond dimensions equal to � and has
short-range correlation removed for the (larger) (0, 0)2 and (1, 1)2 plaque-
ttes. The bold lines stand for edges with bond dimensions equal to O(�2).

3.1.1. Algorithm. The TNS algorithm consists of a sequence of coarse-graining iterations.
At the beginning of the `-th iteration, one holds a tensor network (V `, E`, {T i}i2V`) at level
` with (n/2`) ⇥ (n/2`) vertices. With the exception of the 0-th iteration, we require that
the following iteration invariance to hold:

• for each plaquette with index equal to (0, 0) or (1, 1) modulus 2, the short-range
correlation within this plaquette has already been eliminated (see Figure 4(a)).

In what follows, we refer to those plaquettes with index equal to (0, 0) modulus 2 as (0, 0)2
plaquettes and similarly those with index equal to (1, 1) modulus 2 as (1, 1)2 plaquettes.

8 LEXING YING

Figure 4. A single iteration of the tensor network skeletonization algo-
rithm. The starting point is a tensor network with bond dimension � and
short-range correlation removed in the (0, 0)2 and (1, 1)2 plaquettes. The
final point is a coarse-grained tensor-network with 1/4 vertices (or tensors).
This coarse-grained tensor also has bond dimensions equal to � and has
short-range correlation removed for the (larger) (0, 0)2 and (1, 1)2 plaque-
ttes. The bold lines stand for edges with bond dimensions equal to O(�2).

3.1.1. Algorithm. The TNS algorithm consists of a sequence of coarse-graining iterations.
At the beginning of the `-th iteration, one holds a tensor network (V `, E`, {T i}i2V`) at level
` with (n/2`) ⇥ (n/2`) vertices. With the exception of the 0-th iteration, we require that
the following iteration invariance to hold:

• for each plaquette with index equal to (0, 0) or (1, 1) modulus 2, the short-range
correlation within this plaquette has already been eliminated (see Figure 4(a)).

In what follows, we refer to those plaquettes with index equal to (0, 0) modulus 2 as (0, 0)2
plaquettes and similarly those with index equal to (1, 1) modulus 2 as (1, 1)2 plaquettes.

structure-preserving	skel.

SPS	for	short-range	correlation	removal
• For	a	loop	strucutre
• Consider	edges	one	by	one
• For	each	edge,	insert	two	tensors	
on	the	edge	and	reduce	bond	
dimension

10 LEXING YING

correlation removed in both (0, 0)2 and (1, 1)2 plaquettes. In addition, the bond
dimension of the edges is reduced back to � from �2.

This finishes the `-th iteration. At this point, one obtains a new tensor network denoted by
(V `+1, E`+1, {T i}i2V`+1) that is a self-similar and coarse-grained version of (V `, E`, {T i}i2V`).
Since the short-range correlations in both (0, 0)2 and (1, 1)2 plaquettes are removed, this
new tensor network satisfies the iteration invariance and it can serve as the starting point
of the (`+ 1)-th iteration.

Following this process, the TNS algorithm constructs a sequence of tensor networks

(V `, E`, {T i}i2V`), ` = 0, 1, 2, . . . , L.

The last one is a single 4-tensor with the left and right edges identified and similarly with
the bottom and top edges identified. Contracting this final tensor gives a scalar value for
the partition function ZN (�).

3.1.2. Structure-preserving skeletonization. In the description of the algorithm in Section
3.1.1, the missing piece is how to carry out the structure-preserving skeletonization in order
to remove the short-range correlation of a (1, 1)2 plaquette and reduce the bond dimension
of its four surrounding edges (from Figure 4(e) to Figure 4(f)).

Figure 5. The structure-preserving skeletonization procedure removes the
short-range correlation within a (1, 1)2 (or (0, 0)2) plaquette. The bold lines
stand for edges with bond dimensions � �2.

This procedure is illustrated in Figure 5 with the four corner tensors denoted by P 00, P 10,
P 01, and P 11. Instead of replacing the four corner 3-tensors simultaneously, this procedure
considers the 4 interior edges one by one and insert for each edge two tensors of size �2⇥�.

(1) Starting from the bottom edge, we seek two 2-tensors A0 and A1 of size �2 ⇥ �
under the condition that the 4-tensor represented by the new (1, 1)2-plaquette (after
inserting A0 and A1) approximates the 4-tensor represented by the original plaquette
(see Figure 5(a)).

10 LEXING YING

correlation removed in both (0, 0)2 and (1, 1)2 plaquettes. In addition, the bond
dimension of the edges is reduced back to � from �2.

This finishes the `-th iteration. At this point, one obtains a new tensor network denoted by
(V `+1, E`+1, {T i}i2V`+1) that is a self-similar and coarse-grained version of (V `, E`, {T i}i2V`).
Since the short-range correlations in both (0, 0)2 and (1, 1)2 plaquettes are removed, this
new tensor network satisfies the iteration invariance and it can serve as the starting point
of the (`+ 1)-th iteration.

Following this process, the TNS algorithm constructs a sequence of tensor networks

(V `, E`, {T i}i2V`), ` = 0, 1, 2, . . . , L.

The last one is a single 4-tensor with the left and right edges identified and similarly with
the bottom and top edges identified. Contracting this final tensor gives a scalar value for
the partition function ZN (�).

3.1.2. Structure-preserving skeletonization. In the description of the algorithm in Section
3.1.1, the missing piece is how to carry out the structure-preserving skeletonization in order
to remove the short-range correlation of a (1, 1)2 plaquette and reduce the bond dimension
of its four surrounding edges (from Figure 4(e) to Figure 4(f)).

Figure 5. The structure-preserving skeletonization procedure removes the
short-range correlation within a (1, 1)2 (or (0, 0)2) plaquette. The bold lines
stand for edges with bond dimensions � �2.

This procedure is illustrated in Figure 5 with the four corner tensors denoted by P 00, P 10,
P 01, and P 11. Instead of replacing the four corner 3-tensors simultaneously, this procedure
considers the 4 interior edges one by one and insert for each edge two tensors of size �2⇥�.

(1) Starting from the bottom edge, we seek two 2-tensors A0 and A1 of size �2 ⇥ �
under the condition that the 4-tensor represented by the new (1, 1)2-plaquette (after
inserting A0 and A1) approximates the 4-tensor represented by the original plaquette
(see Figure 5(a)).

Use	structure-preserving	skeletonization

10 LEXING YING

correlation removed in both (0, 0)2 and (1, 1)2 plaquettes. In addition, the bond
dimension of the edges is reduced back to � from �2.

This finishes the `-th iteration. At this point, one obtains a new tensor network denoted by
(V `+1, E`+1, {T i}i2V`+1) that is a self-similar and coarse-grained version of (V `, E`, {T i}i2V`).
Since the short-range correlations in both (0, 0)2 and (1, 1)2 plaquettes are removed, this
new tensor network satisfies the iteration invariance and it can serve as the starting point
of the (`+ 1)-th iteration.

Following this process, the TNS algorithm constructs a sequence of tensor networks

(V `, E`, {T i}i2V`), ` = 0, 1, 2, . . . , L.

The last one is a single 4-tensor with the left and right edges identified and similarly with
the bottom and top edges identified. Contracting this final tensor gives a scalar value for
the partition function ZN (�).

3.1.2. Structure-preserving skeletonization. In the description of the algorithm in Section
3.1.1, the missing piece is how to carry out the structure-preserving skeletonization in order
to remove the short-range correlation of a (1, 1)2 plaquette and reduce the bond dimension
of its four surrounding edges (from Figure 4(e) to Figure 4(f)).

Figure 5. The structure-preserving skeletonization procedure removes the
short-range correlation within a (1, 1)2 (or (0, 0)2) plaquette. The bold lines
stand for edges with bond dimensions � �2.

This procedure is illustrated in Figure 5 with the four corner tensors denoted by P 00, P 10,
P 01, and P 11. Instead of replacing the four corner 3-tensors simultaneously, this procedure
considers the 4 interior edges one by one and insert for each edge two tensors of size �2⇥�.

(1) Starting from the bottom edge, we seek two 2-tensors A0 and A1 of size �2 ⇥ �
under the condition that the 4-tensor represented by the new (1, 1)2-plaquette (after
inserting A0 and A1) approximates the 4-tensor represented by the original plaquette
(see Figure 5(a)).

12 LEXING YING

Figure 6. A single iteration of the modified tensor network skeletonization
algorithm. The starting point is a tensor network with short-range cor-
relation removed in (1, 1)2 plaquettes. The final point is a coarse-grained
tensor-network with 1/4 vertices (tensors). This coarse-grained tensor also
has bond dimensions equal to � around the (1, 1)2 plaquettes and �2 around
the (0, 0)2 plaquettes. The short-range correlation is removed for the (larger)
(1, 1)2 plaquettes. The bold lines stand for edges with bond dimensions �2.

is applied immediately to these (0, 0)2 plaquettes so that the high bond dimensions
do not a↵ect subsequent computations.

• From Figure 6(e) to Figure 6(f), the structure-preserving skeletonization is only
applied to the (1, 1)2 plaquettes.

• In Figure 6(g), the resulting tensor network at level `+1 satisfies the new iteration
invariance and hence it can serve as the starting point of the next iteration.

As we shall see in Section 3.2.1, this modified algorithm also has the benefit of incurring
minimum modification when evaluating observables using the impurity method.

3.1.4. Numerical results. Let us denote by Z̃N (�) the numerical approximation of the par-
tition function ZN (�) obtained via TNS. The exact free energy per site fN (�) and the
approximate free energy per site f̃N (�) are defined by

fN (�) =

✓
� 1

�
logZN (�)

◆
/N, f̃N (�) =

✓
� 1

�
log Z̃N (�)

◆
/N.

For an infinite 2D statistical Ising system, the free energy per site

f(�) = lim
N!1

fN (�, N)

12 LEXING YING

Figure 6. A single iteration of the modified tensor network skeletonization
algorithm. The starting point is a tensor network with short-range cor-
relation removed in (1, 1)2 plaquettes. The final point is a coarse-grained
tensor-network with 1/4 vertices (tensors). This coarse-grained tensor also
has bond dimensions equal to � around the (1, 1)2 plaquettes and �2 around
the (0, 0)2 plaquettes. The short-range correlation is removed for the (larger)
(1, 1)2 plaquettes. The bold lines stand for edges with bond dimensions �2.

is applied immediately to these (0, 0)2 plaquettes so that the high bond dimensions
do not a↵ect subsequent computations.

• From Figure 6(e) to Figure 6(f), the structure-preserving skeletonization is only
applied to the (1, 1)2 plaquettes.

• In Figure 6(g), the resulting tensor network at level `+1 satisfies the new iteration
invariance and hence it can serve as the starting point of the next iteration.

As we shall see in Section 3.2.1, this modified algorithm also has the benefit of incurring
minimum modification when evaluating observables using the impurity method.

3.1.4. Numerical results. Let us denote by Z̃N (�) the numerical approximation of the par-
tition function ZN (�) obtained via TNS. The exact free energy per site fN (�) and the
approximate free energy per site f̃N (�) are defined by

fN (�) =

✓
� 1

�
logZN (�)

◆
/N, f̃N (�) =

✓
� 1

�
log Z̃N (�)

◆
/N.

For an infinite 2D statistical Ising system, the free energy per site

f(�) = lim
N!1

fN (�, N)

12 LEXING YING

Figure 6. A single iteration of the modified tensor network skeletonization
algorithm. The starting point is a tensor network with short-range cor-
relation removed in (1, 1)2 plaquettes. The final point is a coarse-grained
tensor-network with 1/4 vertices (tensors). This coarse-grained tensor also
has bond dimensions equal to � around the (1, 1)2 plaquettes and �2 around
the (0, 0)2 plaquettes. The short-range correlation is removed for the (larger)
(1, 1)2 plaquettes. The bold lines stand for edges with bond dimensions �2.

is applied immediately to these (0, 0)2 plaquettes so that the high bond dimensions
do not a↵ect subsequent computations.

• From Figure 6(e) to Figure 6(f), the structure-preserving skeletonization is only
applied to the (1, 1)2 plaquettes.

• In Figure 6(g), the resulting tensor network at level `+1 satisfies the new iteration
invariance and hence it can serve as the starting point of the next iteration.

As we shall see in Section 3.2.1, this modified algorithm also has the benefit of incurring
minimum modification when evaluating observables using the impurity method.

3.1.4. Numerical results. Let us denote by Z̃N (�) the numerical approximation of the par-
tition function ZN (�) obtained via TNS. The exact free energy per site fN (�) and the
approximate free energy per site f̃N (�) are defined by

fN (�) =

✓
� 1

�
logZN (�)

◆
/N, f̃N (�) =

✓
� 1

�
log Z̃N (�)

◆
/N.

For an infinite 2D statistical Ising system, the free energy per site

f(�) = lim
N!1

fN (�, N)

12 LEXING YING

Figure 6. A single iteration of the modified tensor network skeletonization
algorithm. The starting point is a tensor network with short-range cor-
relation removed in (1, 1)2 plaquettes. The final point is a coarse-grained
tensor-network with 1/4 vertices (tensors). This coarse-grained tensor also
has bond dimensions equal to � around the (1, 1)2 plaquettes and �2 around
the (0, 0)2 plaquettes. The short-range correlation is removed for the (larger)
(1, 1)2 plaquettes. The bold lines stand for edges with bond dimensions �2.

is applied immediately to these (0, 0)2 plaquettes so that the high bond dimensions
do not a↵ect subsequent computations.

• From Figure 6(e) to Figure 6(f), the structure-preserving skeletonization is only
applied to the (1, 1)2 plaquettes.

• In Figure 6(g), the resulting tensor network at level `+1 satisfies the new iteration
invariance and hence it can serve as the starting point of the next iteration.

As we shall see in Section 3.2.1, this modified algorithm also has the benefit of incurring
minimum modification when evaluating observables using the impurity method.

3.1.4. Numerical results. Let us denote by Z̃N (�) the numerical approximation of the par-
tition function ZN (�) obtained via TNS. The exact free energy per site fN (�) and the
approximate free energy per site f̃N (�) are defined by

fN (�) =

✓
� 1

�
logZN (�)

◆
/N, f̃N (�) =

✓
� 1

�
log Z̃N (�)

◆
/N.

For an infinite 2D statistical Ising system, the free energy per site

f(�) = lim
N!1

fN (�, N)

12 LEXING YING

Figure 6. A single iteration of the modified tensor network skeletonization
algorithm. The starting point is a tensor network with short-range cor-
relation removed in (1, 1)2 plaquettes. The final point is a coarse-grained
tensor-network with 1/4 vertices (tensors). This coarse-grained tensor also
has bond dimensions equal to � around the (1, 1)2 plaquettes and �2 around
the (0, 0)2 plaquettes. The short-range correlation is removed for the (larger)
(1, 1)2 plaquettes. The bold lines stand for edges with bond dimensions �2.

is applied immediately to these (0, 0)2 plaquettes so that the high bond dimensions
do not a↵ect subsequent computations.

• From Figure 6(e) to Figure 6(f), the structure-preserving skeletonization is only
applied to the (1, 1)2 plaquettes.

• In Figure 6(g), the resulting tensor network at level `+1 satisfies the new iteration
invariance and hence it can serve as the starting point of the next iteration.

As we shall see in Section 3.2.1, this modified algorithm also has the benefit of incurring
minimum modification when evaluating observables using the impurity method.

3.1.4. Numerical results. Let us denote by Z̃N (�) the numerical approximation of the par-
tition function ZN (�) obtained via TNS. The exact free energy per site fN (�) and the
approximate free energy per site f̃N (�) are defined by

fN (�) =

✓
� 1

�
logZN (�)

◆
/N, f̃N (�) =

✓
� 1

�
log Z̃N (�)

◆
/N.

For an infinite 2D statistical Ising system, the free energy per site

f(�) = lim
N!1

fN (�, N)

A	modified	version
• When	we	only	care	about	evaluating	
the	partition	function

• Simpler	and	sometimes	faster

level	ℓ level	ℓ + 1
new	correlation

Partition	function	(2D	statistical	Ising model)	
• 𝑁 = 𝑛×𝑛 periodic	Cartesian	lattice,	up	to	𝑛 = 28H

• Free	energy	per	site

12 LEXING YING

Figure 6. A single iteration of the modified tensor network skeletoniza-
tion algorithm. The starting point is a tensor network with short-range
correlation removed in (1, 1)2 plaquettes. The final point is a coarse-grained
tensor-network with 1/4 vertices (tensors). This coarse-grained tensor also
has bond dimensions equal to � around the (1, 1)2 plaquettes and �2 around
the (0, 0)2 plaquettes. The short-range correlation is removed for the (larger)
(1, 1)2 plaquettes. The bold lines stand for edges with bond dimensions �2.

is applied immediately to these (0, 0)2 plaquettes so that the high bond dimensions
do not a↵ect subsequent computations.

• From Figure 6(e) to Figure 6(f), the structure-preserving skeletonization is only
applied to the (1, 1)2 plaquettes.

• In Figure 6(g), the resulting tensor network at level `+1 satisfies the new iteration
invariance and hence it can serve as the starting point of the next iteration.

As we shall see in Section 3.2.1, this modified algorithm also has the benefit of incurring
minimum modification when evaluating observables using the impurity method.

3.1.4. Numerical results. Let us denote by Z̃N (�) the numerical approximation of the par-
tition function ZN (�) obtained via TNS. The exact free energy per site fN (�) and the
approximate free energy per site f̃N (�) are defined by

fN (�) =

✓
� 1

�
logZN (�)

◆
/N, f̃N (�) =

✓
� 1

�
log Z̃N (�)

◆
/N.

For an infinite 2D statistical Ising system, the free energy per site

f(�) = lim
N!1

fN (�, N)

TENSOR NETWORK SKELETONIZATION 13

can be derived analytically [6]. Therefore, for su�ciently large N , fN (�, N) is well ap-
proximated by f(�). In order to measure the accuracy of TNS for computing the partition
function, we define the relative error

�fN (�) ⌘ |f̃N (�)� f(�)|
|f(�)| ⇡ |f̃N (�)� fN (�)|

|fN (�)| .

The critical temperature of the 2D statistical Ising model is Tc = 1/ ln(1 +
p
2). For a

periodic statistical Ising model on a 215 ⇥ 215 lattice, Figure 7 plots the relative error (left)
and the running time per iteration (right) for � = 2, 4 at di↵erent temperatures near the
critical temperature Tc.

2.1 2.2 2.3 2.4
−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

T

lo
g

1
0
δf

χ=2

χ=4

2.1 2.2 2.3 2.4

0.01

0.02

0.03

0.04

0.05

T

ti
m

e
(s

e
c
)

χ=2

χ=4

(a) (b)

Figure 7. Results of free energy calculation. (a) The relative error �fN (�)
of the free energy per site at temperatures around Tc for � = 2, 4. (b) The
running time per iteration of TNS for the same T and � values.

From the plots in Figure 7 one can make the following observations.

• First, TNS removes the short-range correlation quite e↵ectively. With � = 4, it
achieves 5-6 digits of accuracy for the relative free energy per site. Even with � = 2,
one obtains 3-4 digits of accuracy.

• Second, TNS is quite e�ciently. For � = 4, each iteration of the TNS takes about
0.05 seconds. The running time tends to grow a bit when T approaches the critical
temperature Tc.

• Most surprisingly, for a fixed � value, TNS gives more accurate results when the
temperature is close to Tc. For example with � = 4 and at T = Tc, the relative error
is on the order of 10�8. This is drastically di↵erent from most of the TRG-type
algorithms where the accuracy deteriorates significantly near Tc.

3.2. Observables. The TNS algorithm described in Section 3.1 for computing the partition
function (and equivalently the free energy) can be extended to compute observables such
as the average magnetization and the internal energy per site.

relative	error time	per	iteration

TENSOR NETWORK SKELETONIZATION 13

can be derived analytically [6]. Therefore, for su�ciently large N , fN (�, N) is well ap-
proximated by f(�). In order to measure the accuracy of TNS for computing the partition
function, we define the relative error

�fN (�) ⌘ |f̃N (�)� f(�)|
|f(�)| ⇡ |f̃N (�)� fN (�)|

|fN (�)| .

The critical temperature of the 2D statistical Ising model is Tc = 2/ ln(1 +
p
2). For a

periodic statistical Ising model on a 215 ⇥ 215 lattice, Figure 7 plots the relative error (left)
and the running time per iteration (right) for � = 2, 4 at di↵erent temperatures near the
critical temperature Tc.

2.1 2.2 2.3 2.4
−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

T

lo
g

1
0
δf

χ=2

χ=4

2.1 2.2 2.3 2.4

0.01

0.02

0.03

0.04

0.05

T

tim
e

(s
e

c)

χ=2

χ=4

(a) (b)

Figure 7. Results of free energy calculation. (a) The relative error �fN (�)
of the free energy per site at temperatures around Tc for � = 2, 4. (b) The
running time per iteration of TNS for the same T and � values.

From the plots in Figure 7 one can make the following observations.

• First, TNS removes the short-range correlation quite e↵ectively. With � = 4, it
achieves 5-6 digits of accuracy for the relative free energy per site. Even with � = 2,
one obtains 3-4 digits of accuracy.

• Second, TNS is quite e�ciently. For � = 4, each iteration of the TNS takes about
0.05 seconds. The running time tends to grow a bit when T approaches the critical
temperature Tc.

• Most surprisingly, for a fixed � value, TNS gives more accurate results when the
temperature is close to Tc. For example with � = 4 and at T = Tc, the relative error
is on the order of 10�8. This is drastically di↵erent from most of the TRG-type
algorithms where the accuracy deteriorates significantly near Tc.

3.2. Observables. The TNS algorithm described in Section 3.1 for computing the partition
function (and equivalently the free energy) can be extended to compute observables such
as the average magnetization and the internal energy per site.

Observables
• Average	magnetization

• Internal	energy	per	site

• Requires	computation	of

• Impurity	tensor	method
• Modified	1	or	2	tensors	in	network

14 LEXING YING

The internal energy UN (�) of the whole system and the internal energy per site uN (�)
are defined as

UN (�) = @�(� logZN (�)) = �
@�ZN (�)

ZN (�)
, uN (�) =

UN (�)

N
.

A direct calculation shows that

@�ZN (�) =
X
�

e��HN (�)(�HN (�)) =
X
�

(
X
(ij)

�i�j)e
��HN (�) = Ne

X
�

(�i�j)e
��HN (�)

where in the last formula (i, j) can be any edge due to the translational invariance of the
system and Ne = 2N . This gives the following formula for the internal energy per site

(6) uN (�) =
UN (�)

N
=

Ne

N
·
P

�(�i�j)e
��HN (�)P

� e
��HN (�)

= 2

P
�(�i�j)e

��HN (�)P
� e

��HN (�)
.

To define the average magnetization, one introduces a small external magnetic field B
and defines the partition function of the this perturbed system

ZN,B(�) =
X
�

e��HN,B(�), HN,B(�) = �

0@X
(ij)

�i�j +B
X
i

�i

1A .

The magnetization at a single site i is equal to

(7) h�iiN,B (�) =

P
� �ie

��HN,B(�)P
� e

��HN,B(�)
,

and the average magnetization mN,B(�) is equal to the same quantity since

mN,B(�) =
1

N

X
i

h�iiN,B (�) = h�iiN,B (�),

where in the last formulation i can be any site in the periodic Ising model due to the
translational invariance of the system.

3.2.1. Algorithm. The computation of the quantities mentioned above requires the evalua-
tion of the following sums:

(8)
X
�

(�i�j)e
��HN (�),

X
�

�ie
��HN,B(�),

where i is any site in the first formula while (i, j) is any bond in the second. Both sums
can also be represented using tensor networks using the so-called impurity tensor method.

Recall that the 2D periodic statistical Ising model considered here is of size n⇥ n where
n = 2L. Without loss of generality, one can assume that the sites i and j in (8) are located
inside the 2 ⇥ 2 sub-lattice at the center of the whole computation domain. Following the
same reasoning in Section 1, one can represent

P
�(�i�j)e

��HN (�) and
P

� �ie
��HN,B(�) as

tensor networks. The only di↵erence between them and the tensor network of ZN (�) is a
single tensor located inside this 2⇥ 2 sub-lattice at the center.

The algorithm for computing these new tensor networks are quite similar and it becomes
particularly simple when the modified TNS algorithm in Section 3.1.3 is used. The whole
algorithm is illustrated in Figure 8 and here we highlight the main di↵erences.

14 LEXING YING

The internal energy UN (�) of the whole system and the internal energy per site uN (�)
are defined as

UN (�) = @�(� logZN (�)) = �
@�ZN (�)

ZN (�)
, uN (�) =

UN (�)

N
.

A direct calculation shows that

@�ZN (�) =
X
�

e��HN (�)(�HN (�)) =
X
�

(
X
(ij)

�i�j)e
��HN (�) = Ne

X
�

(�i�j)e
��HN (�)

where in the last formula (i, j) can be any edge due to the translational invariance of the
system and Ne = 2N . This gives the following formula for the internal energy per site

(6) uN (�) =
UN (�)

N
=

Ne

N
·
P

�(�i�j)e
��HN (�)P

� e
��HN (�)

= 2

P
�(�i�j)e

��HN (�)P
� e

��HN (�)
.

To define the average magnetization, one introduces a small external magnetic field B
and defines the partition function of the this perturbed system

ZN,B(�) =
X
�

e��HN,B(�), HN,B(�) = �

0@X
(ij)

�i�j +B
X
i

�i

1A .

The magnetization at a single site i is equal to

(7) h�iiN,B (�) =

P
� �ie

��HN,B(�)P
� e

��HN,B(�)
,

and the average magnetization mN,B(�) is equal to the same quantity since

mN,B(�) =
1

N

X
i

h�iiN,B (�) = h�iiN,B (�),

where in the last formulation i can be any site in the periodic Ising model due to the
translational invariance of the system.

3.2.1. Algorithm. The computation of the quantities mentioned above requires the evalua-
tion of the following sums:

(8)
X
�

(�i�j)e
��HN (�),

X
�

�ie
��HN,B(�),

where i is any site in the first formula while (i, j) is any bond in the second. Both sums
can also be represented using tensor networks using the so-called impurity tensor method.

Recall that the 2D periodic statistical Ising model considered here is of size n⇥ n where
n = 2L. Without loss of generality, one can assume that the sites i and j in (8) are located
inside the 2 ⇥ 2 sub-lattice at the center of the whole computation domain. Following the
same reasoning in Section 1, one can represent

P
�(�i�j)e

��HN (�) and
P

� �ie
��HN,B(�) as

tensor networks. The only di↵erence between them and the tensor network of ZN (�) is a
single tensor located inside this 2⇥ 2 sub-lattice at the center.

The algorithm for computing these new tensor networks are quite similar and it becomes
particularly simple when the modified TNS algorithm in Section 3.1.3 is used. The whole
algorithm is illustrated in Figure 8 and here we highlight the main di↵erences.

14 LEXING YING

The internal energy UN (�) of the whole system and the internal energy per site uN (�)
are defined as

UN (�) = @�(� logZN (�)) = �
@�ZN (�)

ZN (�)
, uN (�) =

UN (�)

N
.

A direct calculation shows that

@�ZN (�) =
X
�

e��HN (�)(�HN (�)) =
X
�

(
X
(ij)

�i�j)e
��HN (�) = Ne

X
�

(�i�j)e
��HN (�)

where in the last formula (i, j) can be any edge due to the translational invariance of the
system and Ne = 2N . This gives the following formula for the internal energy per site

(6) uN (�) =
UN (�)

N
=

Ne

N
·
P

�(�i�j)e
��HN (�)P

� e
��HN (�)

= 2

P
�(�i�j)e

��HN (�)P
� e

��HN (�)
.

To define the average magnetization, one introduces a small external magnetic field B
and defines the partition function of the this perturbed system

ZN,B(�) =
X
�

e��HN,B(�), HN,B(�) = �

0@X
(ij)

�i�j +B
X
i

�i

1A .

The magnetization at a single site i is equal to

(7) h�iiN,B (�) =

P
� �ie

��HN,B(�)P
� e

��HN,B(�)
,

and the average magnetization mN,B(�) is equal to the same quantity since

mN,B(�) =
1

N

X
i

h�iiN,B (�) = h�iiN,B (�),

where in the last formulation i can be any site in the periodic Ising model due to the
translational invariance of the system.

3.2.1. Algorithm. The computation of the quantities mentioned above requires the evalua-
tion of the following sums:

(8)
X
�

(�i�j)e
��HN (�),

X
�

�ie
��HN,B(�),

where i is any site in the first formula while (i, j) is any bond in the second. Both sums
can also be represented using tensor networks using the so-called impurity tensor method.

Recall that the 2D periodic statistical Ising model considered here is of size n⇥ n where
n = 2L. Without loss of generality, one can assume that the sites i and j in (8) are located
inside the 2 ⇥ 2 sub-lattice at the center of the whole computation domain. Following the
same reasoning in Section 1, one can represent

P
�(�i�j)e

��HN (�) and
P

� �ie
��HN,B(�) as

tensor networks. The only di↵erence between them and the tensor network of ZN (�) is a
single tensor located inside this 2⇥ 2 sub-lattice at the center.

The algorithm for computing these new tensor networks are quite similar and it becomes
particularly simple when the modified TNS algorithm in Section 3.1.3 is used. The whole
algorithm is illustrated in Figure 8 and here we highlight the main di↵erences.

14 LEXING YING

The internal energy UN (�) of the whole system and the internal energy per site uN (�)
are defined as

UN (�) = @�(� logZN (�)) = �
@�ZN (�)

ZN (�)
, uN (�) =

UN (�)

N
.

A direct calculation shows that

@�ZN (�) =
X
�

e��HN (�)(�HN (�)) =
X
�

(
X
(ij)

�i�j)e
��HN (�) = Ne

X
�

(�i�j)e
��HN (�)

where in the last formula (i, j) can be any edge due to the translational invariance of the
system and Ne = 2N . This gives the following formula for the internal energy per site

(6) uN (�) =
UN (�)

N
=

Ne

N
·
P

�(�i�j)e
��HN (�)P

� e
��HN (�)

= 2

P
�(�i�j)e

��HN (�)P
� e

��HN (�)
.

To define the average magnetization, one introduces a small external magnetic field B
and defines the partition function of the this perturbed system

ZN,B(�) =
X
�

e��HN,B(�), HN,B(�) = �

0@X
(ij)

�i�j +B
X
i

�i

1A .

The magnetization at a single site i is equal to

(7) h�iiN,B (�) =

P
� �ie

��HN,B(�)P
� e

��HN,B(�)
,

and the average magnetization mN,B(�) is equal to the same quantity since

mN,B(�) =
1

N

X
i

h�iiN,B (�) = h�iiN,B (�),

where in the last formulation i can be any site in the periodic Ising model due to the
translational invariance of the system.

3.2.1. Algorithm. The computation of the quantities mentioned above requires the evalua-
tion of the following sums:

(8)
X
�

(�i�j)e
��HN (�),

X
�

�ie
��HN,B(�),

where i is any site in the first formula while (i, j) is any bond in the second. Both sums
can also be represented using tensor networks using the so-called impurity tensor method.

Recall that the 2D periodic statistical Ising model considered here is of size n⇥ n where
n = 2L. Without loss of generality, one can assume that the sites i and j in (8) are located
inside the 2 ⇥ 2 sub-lattice at the center of the whole computation domain. Following the
same reasoning in Section 1, one can represent

P
�(�i�j)e

��HN (�) and
P

� �ie
��HN,B(�) as

tensor networks. The only di↵erence between them and the tensor network of ZN (�) is a
single tensor located inside this 2⇥ 2 sub-lattice at the center.

The algorithm for computing these new tensor networks are quite similar and it becomes
particularly simple when the modified TNS algorithm in Section 3.1.3 is used. The whole
algorithm is illustrated in Figure 8 and here we highlight the main di↵erences.

Impurity	tensor	method
• The	modified	version	works	with	
minimal	changes

• White	tensors	exactly	the	same
• Only	gray	ones	are	modified

14 LEXING YING

The internal energy UN (�) of the whole system and the internal energy per site uN (�)
are defined as

UN (�) = @�(� logZN (�)) = �
@�ZN (�)

ZN (�)
, uN (�) =

UN (�)

N
.

A direct calculation shows that

@�ZN (�) =
X
�

e��HN (�)(�HN (�)) =
X
�

(
X
(ij)

�i�j)e
��HN (�) = Ne

X
�

(�i�j)e
��HN (�)

where in the last formula (i, j) can be any edge due to the translational invariance of the
system and Ne = 2N . This gives the following formula for the internal energy per site

(6) uN (�) =
UN (�)

N
=

Ne

N
·
P

�(�i�j)e
��HN (�)P

� e
��HN (�)

= 2

P
�(�i�j)e

��HN (�)P
� e

��HN (�)
.

To define the average magnetization, one introduces a small external magnetic field B
and defines the partition function of the this perturbed system

ZN,B(�) =
X
�

e��HN,B(�), HN,B(�) = �

0@X
(ij)

�i�j +B
X
i

�i

1A .

The magnetization at a single site i is equal to

(7) h�iiN,B (�) =

P
� �ie

��HN,B(�)P
� e

��HN,B(�)
,

and the average magnetization mN,B(�) is equal to the same quantity since

mN,B(�) =
1

N

X
i

h�iiN,B (�) = h�iiN,B (�),

where in the last formulation i can be any site in the periodic Ising model due to the
translational invariance of the system.

3.2.1. Algorithm. The computation of the quantities mentioned above requires the evalua-
tion of the following sums:

(8)
X
�

(�i�j)e
��HN (�),

X
�

�ie
��HN,B(�),

where i is any site in the first formula while (i, j) is any bond in the second. Both sums
can also be represented using tensor networks using the so-called impurity tensor method.

Recall that the 2D periodic statistical Ising model considered here is of size n⇥ n where
n = 2L. Without loss of generality, one can assume that the sites i and j in (8) are located
inside the 2 ⇥ 2 sub-lattice at the center of the whole computation domain. Following the
same reasoning in Section 1, one can represent

P
�(�i�j)e

��HN (�) and
P

� �ie
��HN,B(�) as

tensor networks. The only di↵erence between them and the tensor network of ZN (�) is a
single tensor located inside this 2⇥ 2 sub-lattice at the center.

The algorithm for computing these new tensor networks are quite similar and it becomes
particularly simple when the modified TNS algorithm in Section 3.1.3 is used. The whole
algorithm is illustrated in Figure 8 and here we highlight the main di↵erences.

TENSOR NETWORK SKELETONIZATION 15

Figure 8. Impurity method for computing the spontaneous magnetization
and the internal energy per site. The iteration invariance also requires that
at the beginning of each iteration only the four tensors near the center can
be di↵erent from the ones used in ZN (�). These four special tensors are
marked in gray. At the end of each iteration, one obtains an coarse-grained
tensor network that also satisfies this condition.

• In addition to the iteration invariance of the modified algorithm in Section 3.1.3,
one also requires that only the four tensors at the center (marked in gray in Figure
8(a)) can be di↵erent from the ones used for ZN (�).

• Because the four special tensors are at the center at the tensor network at level `,
after contraction there are exactly four special tensors at the center of the tensor
network at level `+1 (marked in gray in Figure 8(b)). The rest are identical to the
ones used for ZN (�).

• From Figure 8(b) to Figure 8(c), the UU 0T -projections at the four surrounding edges
of the center plaquette are computed from the four special corner tensors. The re-
sulting orthogonal U matrices are marked in gray as well. The UU 0T -projection at
all other edges are inherited from the algorithm for the partition function ZN (�).
When contracting the tensor at each vertex with its four adjacent orthogonal (di-
amond) matrices (see Figure 8(c) to Figure 8(d)), this ensures that only the four
tensors at the center are di↵erent from the ones used for ZN (�).

• In the structure-preserving skeletonization step for the (1, 1)2 plaquettes (see Figure
8(e) and (f)), only the center (1, 1)2 plaquette is di↵erent from the one appeared in
ZN (�). Therefore, this is the only one that requires an extra structure-preserving
skeletonization computation.

TENSOR NETWORK SKELETONIZATION 15

Figure 8. Impurity method for computing the spontaneous magnetization
and the internal energy per site. The iteration invariance also requires that
at the beginning of each iteration only the four tensors near the center can
be di↵erent from the ones used in ZN (�). These four special tensors are
marked in gray. At the end of each iteration, one obtains an coarse-grained
tensor network that also satisfies this condition.

• In addition to the iteration invariance of the modified algorithm in Section 3.1.3,
one also requires that only the four tensors at the center (marked in gray in Figure
8(a)) can be di↵erent from the ones used for ZN (�).

• Because the four special tensors are at the center at the tensor network at level `,
after contraction there are exactly four special tensors at the center of the tensor
network at level `+1 (marked in gray in Figure 8(b)). The rest are identical to the
ones used for ZN (�).

• From Figure 8(b) to Figure 8(c), the UU 0T -projections at the four surrounding edges
of the center plaquette are computed from the four special corner tensors. The re-
sulting orthogonal U matrices are marked in gray as well. The UU 0T -projection at
all other edges are inherited from the algorithm for the partition function ZN (�).
When contracting the tensor at each vertex with its four adjacent orthogonal (di-
amond) matrices (see Figure 8(c) to Figure 8(d)), this ensures that only the four
tensors at the center are di↵erent from the ones used for ZN (�).

• In the structure-preserving skeletonization step for the (1, 1)2 plaquettes (see Figure
8(e) and (f)), only the center (1, 1)2 plaquette is di↵erent from the one appeared in
ZN (�). Therefore, this is the only one that requires an extra structure-preserving
skeletonization computation.

level	ℓ level	ℓ + 1
new	correlation

Average	magnetization	and	internal	energy
• 𝑁 = 𝑛×𝑛 periodic	Cartesian	lattice,	up	to	𝑛 = 28H

16 LEXING YING

• When contracting the tensors at the corners of the (1, 1)2 plaquettes to get back
the 4-tensors in Figure 8(g), again only the four tensors at the center (marked in
gray) are di↵erent. This ensures that the tensor network at the beginning of the
next iteration satisfies the iteration invariance mentioned above.

At each iteration of the in this impurity method, the algorithm performs a constant number
of extra UU 0T -projection and one extra structure-preserving skeletonization for the (1, 1)2
plaquette at the center. When � is fixed, all these computation takes a constant number of
steps. As a result,the extra computational cost for the impurity method is proportional to
O(L) = O(logN) once the evaluation of ZN (�) is ready.

3.2.2. Numerical results. For the internal energy uN (�), we denote by ũN (�) its TNS ap-
proximation. When N approaches infinity, the limit

u(�) = lim
N!1

uN (�)

can be derived analytically [6]. Therefore for N su�ciently large, u(�) serves as a good
benchmark for measuring the accuracy of the TNS algorithm.

For the averaged magnetization, let us denote by m̃N,B(�) the TNS approximation of
mN,B(�). For the 2D statistical Ising model, the spontaneous magnetization m+(�) is
defined as

m+(�) = lim
B!0+

lim
N!1

mN,B(�)

and this can be written down analytically as well [6, 14]. When B is a small positive
number, by setting N to be su�ciently large, one can treat m+(�) as a good approximation
of mN,B(�) and use it as a benchmark for measuring the accuracy of m̃N,B(�).

2.1 2.2 2.3 2.4

−1.6

−1.5

−1.4

−1.3

−1.2

T

u

χ=2

χ=4

2.1 2.2 2.3 2.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T

m

χ=2

χ=4

(a) (b)

Figure 9. Numerical results for computing the observables using the im-
purity method for � = 2, 4. (a) Internal energy. (a) Average magnetization.

Figure 9(a) shows the computed internal energy per site ũN (�) along with u(�) for
� = 2, 4. On the right, Figure 9(b) gives the computed average magnetization m̃N,B(�)
along with the spontaneous magnetization m+(�). Though the computation with � = 2
has a significant error, it does exhibit the phase-transition clearly. Once � is increased to
4, the numerical results and the exact curves match very well.

internal	energy	per	site average	magnetization

18 LEXING YING

Figure 10. A single iteration of the tensor network skeletonization algo-
rithm. The starting point is a tensor network with bond dimension � and
short-range correlation removed in (0, 0, 0)2 and (1, 1, 1)2 cubes. The final
point is a coarse-grained tensor-network with 1/8 vertices (tensors). This
coarse-grained tensor also has bond dimensions equal to � and has short-
range correlation removed for the (larger) (0, 0, 0)2 and (1, 1, 1)2 cubes.

4.1.1. Algorithm. The TNS algorithm consists of a sequence of coarse-graining iterations.
At the beginning of each iteration (except the 0-th iteration), we require the following
iteration invariance to hold:

• for each of the (0, 0, 0)2 and (1, 1, 1)2 cubes, the short-range correlation has already
been eliminated.

18 LEXING YING

Figure 10. A single iteration of the tensor network skeletonization algo-
rithm. The starting point is a tensor network with bond dimension � and
short-range correlation removed in (0, 0, 0)2 and (1, 1, 1)2 cubes. The final
point is a coarse-grained tensor-network with 1/8 vertices (tensors). This
coarse-grained tensor also has bond dimensions equal to � and has short-
range correlation removed for the (larger) (0, 0, 0)2 and (1, 1, 1)2 cubes.

4.1.1. Algorithm. The TNS algorithm consists of a sequence of coarse-graining iterations.
At the beginning of each iteration (except the 0-th iteration), we require the following
iteration invariance to hold:

• for each of the (0, 0, 0)2 and (1, 1, 1)2 cubes, the short-range correlation has already
been eliminated.

18 LEXING YING

Figure 10. A single iteration of the tensor network skeletonization algo-
rithm. The starting point is a tensor network with bond dimension � and
short-range correlation removed in (0, 0, 0)2 and (1, 1, 1)2 cubes. The final
point is a coarse-grained tensor-network with 1/8 vertices (tensors). This
coarse-grained tensor also has bond dimensions equal to � and has short-
range correlation removed for the (larger) (0, 0, 0)2 and (1, 1, 1)2 cubes.

4.1.1. Algorithm. The TNS algorithm consists of a sequence of coarse-graining iterations.
At the beginning of each iteration (except the 0-th iteration), we require the following
iteration invariance to hold:

• for each of the (0, 0, 0)2 and (1, 1, 1)2 cubes, the short-range correlation has already
been eliminated.

18 LEXING YING

Figure 10. A single iteration of the tensor network skeletonization algo-
rithm. The starting point is a tensor network with bond dimension � and
short-range correlation removed in (0, 0, 0)2 and (1, 1, 1)2 cubes. The final
point is a coarse-grained tensor-network with 1/8 vertices (tensors). This
coarse-grained tensor also has bond dimensions equal to � and has short-
range correlation removed for the (larger) (0, 0, 0)2 and (1, 1, 1)2 cubes.

4.1.1. Algorithm. The TNS algorithm consists of a sequence of coarse-graining iterations.
At the beginning of each iteration (except the 0-th iteration), we require the following
iteration invariance to hold:

• for each of the (0, 0, 0)2 and (1, 1, 1)2 cubes, the short-range correlation has already
been eliminated.

18 LEXING YING

Figure 10. A single iteration of the tensor network skeletonization algo-
rithm. The starting point is a tensor network with bond dimension � and
short-range correlation removed in (0, 0, 0)2 and (1, 1, 1)2 cubes. The final
point is a coarse-grained tensor-network with 1/8 vertices (tensors). This
coarse-grained tensor also has bond dimensions equal to � and has short-
range correlation removed for the (larger) (0, 0, 0)2 and (1, 1, 1)2 cubes.

4.1.1. Algorithm. The TNS algorithm consists of a sequence of coarse-graining iterations.
At the beginning of each iteration (except the 0-th iteration), we require the following
iteration invariance to hold:

• for each of the (0, 0, 0)2 and (1, 1, 1)2 cubes, the short-range correlation has already
been eliminated.

18 LEXING YING

Figure 10. A single iteration of the tensor network skeletonization algo-
rithm. The starting point is a tensor network with bond dimension � and
short-range correlation removed in (0, 0, 0)2 and (1, 1, 1)2 cubes. The final
point is a coarse-grained tensor-network with 1/8 vertices (tensors). This
coarse-grained tensor also has bond dimensions equal to � and has short-
range correlation removed for the (larger) (0, 0, 0)2 and (1, 1, 1)2 cubes.

4.1.1. Algorithm. The TNS algorithm consists of a sequence of coarse-graining iterations.
At the beginning of each iteration (except the 0-th iteration), we require the following
iteration invariance to hold:

• for each of the (0, 0, 0)2 and (1, 1, 1)2 cubes, the short-range correlation has already
been eliminated.

TNS	for	3D	statistical	Ising model

18 LEXING YING

Figure 10. A single iteration of the tensor network skeletonization algo-
rithm. The starting point is a tensor network with bond dimension � and
short-range correlation removed in (0, 0, 0)2 and (1, 1, 1)2 cubes. The final
point is a coarse-grained tensor-network with 1/8 vertices (tensors). This
coarse-grained tensor also has bond dimensions equal to � and has short-
range correlation removed for the (larger) (0, 0, 0)2 and (1, 1, 1)2 cubes.

4.1.1. Algorithm. The TNS algorithm consists of a sequence of coarse-graining iterations.
At the beginning of each iteration (except the 0-th iteration), we require the following
iteration invariance to hold:

• for each of the (0, 0, 0)2 and (1, 1, 1)2 cubes, the short-range correlation has already
been eliminated.

level	ℓ
18 LEXING YING

Figure 10. A single iteration of the tensor network skeletonization algo-
rithm. The starting point is a tensor network with bond dimension � and
short-range correlation removed in (0, 0, 0)2 and (1, 1, 1)2 cubes. The final
point is a coarse-grained tensor-network with 1/8 vertices (tensors). This
coarse-grained tensor also has bond dimensions equal to � and has short-
range correlation removed for the (larger) (0, 0, 0)2 and (1, 1, 1)2 cubes.

4.1.1. Algorithm. The TNS algorithm consists of a sequence of coarse-graining iterations.
At the beginning of each iteration (except the 0-th iteration), we require the following
iteration invariance to hold:

• for each of the (0, 0, 0)2 and (1, 1, 1)2 cubes, the short-range correlation has already
been eliminated.

level	ℓ + 1

SPS	for	short-range	correlation	removal	(3D)
• Consider	12	edges	one	by	one

20 LEXING YING

4.1.2. Structure-Preserving skeletonization. The structure-preserving skeletonization pro-
cedure for the 3D cubes is similar to the one introduced for 2D plaquette in Section 3.1.2.
This procedure is illustrated in Figure 11 with the eight corner 4-tensors denoted by P 000,
P 100, P 010, P 110, P 001, P 101, P 011, and P 111.

Figure 11. The structure-preserving skeletonization removes the short-
range correlation within a (1, 1, 1)2 or (0, 0, 0)2 cube.

Instead of replacing the eight corner 4-tensors of the gray cube simultaneously, this
procedure considers the 12 interior edges one by one and inserts within each edge two
tensors of size �4 ⇥ �.

(1) Starting from the bottom front edge, the procedure seeks two 2-tensors A0 and A1

of size �4 ⇥ � with the condition that the 8-tensor of the new (1, 1, 1)2 cube after
the insertion approximates the original 8-tensors (see Figure 11(a)).

(2) Merge the two left tensors P 000, P 001, P 010, and P 011 into a 5-tensor P 0 and merge
the four right tensors into a 5-tensor P 1. After that, the condition is equivalent to
the one given in Figure 11(b) with the two boundary edges have bond dimension
equal to (�3)4 = �12.

(3) Since the bond dimensions of the two edges between P 0 and P 1 are to be reduced to
�, this implies that the bond dimensions of the two boundary edges can be reduced

20 LEXING YING

4.1.2. Structure-Preserving skeletonization. The structure-preserving skeletonization pro-
cedure for the 3D cubes is similar to the one introduced for 2D plaquette in Section 3.1.2.
This procedure is illustrated in Figure 11 with the eight corner 4-tensors denoted by P 000,
P 100, P 010, P 110, P 001, P 101, P 011, and P 111.

Figure 11. The structure-preserving skeletonization removes the short-
range correlation within a (1, 1, 1)2 or (0, 0, 0)2 cube.

Instead of replacing the eight corner 4-tensors of the gray cube simultaneously, this
procedure considers the 12 interior edges one by one and inserts within each edge two
tensors of size �4 ⇥ �.

(1) Starting from the bottom front edge, the procedure seeks two 2-tensors A0 and A1

of size �4 ⇥ � with the condition that the 8-tensor of the new (1, 1, 1)2 cube after
the insertion approximates the original 8-tensors (see Figure 11(a)).

(2) Merge the two left tensors P 000, P 001, P 010, and P 011 into a 5-tensor P 0 and merge
the four right tensors into a 5-tensor P 1. After that, the condition is equivalent to
the one given in Figure 11(b) with the two boundary edges have bond dimension
equal to (�3)4 = �12.

(3) Since the bond dimensions of the two edges between P 0 and P 1 are to be reduced to
�, this implies that the bond dimensions of the two boundary edges can be reduced

20 LEXING YING

4.1.2. Structure-Preserving skeletonization. The structure-preserving skeletonization pro-
cedure for the 3D cubes is similar to the one introduced for 2D plaquette in Section 3.1.2.
This procedure is illustrated in Figure 11 with the eight corner 4-tensors denoted by P 000,
P 100, P 010, P 110, P 001, P 101, P 011, and P 111.

Figure 11. The structure-preserving skeletonization removes the short-
range correlation within a (1, 1, 1)2 or (0, 0, 0)2 cube.

Instead of replacing the eight corner 4-tensors of the gray cube simultaneously, this
procedure considers the 12 interior edges one by one and inserts within each edge two
tensors of size �4 ⇥ �.

(1) Starting from the bottom front edge, the procedure seeks two 2-tensors A0 and A1

of size �4 ⇥ � with the condition that the 8-tensor of the new (1, 1, 1)2 cube after
the insertion approximates the original 8-tensors (see Figure 11(a)).

(2) Merge the two left tensors P 000, P 001, P 010, and P 011 into a 5-tensor P 0 and merge
the four right tensors into a 5-tensor P 1. After that, the condition is equivalent to
the one given in Figure 11(b) with the two boundary edges have bond dimension
equal to (�3)4 = �12.

(3) Since the bond dimensions of the two edges between P 0 and P 1 are to be reduced to
�, this implies that the bond dimensions of the two boundary edges can be reduced

Use	structure-preserving	skeletonization

Representing	ground	states

Ground	state	of	1D	quantum	Ising model
• 1D	Ising chain
• Hamiltonian	𝐻 is	local

• Ground	states

• Suzuki-Trotter	decomposition

Overview

tensor network + renormalization group = tensor network renormalization

!
Partition function of
classical statistical system
!
!
!
Euclidean path integral of
1D quantum system
!
!
!
Physical properties of 2D
quantum system

Z =

X

{�}

exp(�
X

hiji

�i�j)

e�⌧h

Overview

tensor network + renormalization group = tensor network renormalization

!
Partition function of
classical statistical system
!
!
!
Euclidean path integral of
1D quantum system
!
!
!
Physical properties of 2D
quantum system

Z =

X

{�}

exp(�
X

hiji

�i�j)

e�⌧h

Overview

tensor network + renormalization group = tensor network renormalization

!
Partition function of
classical statistical system
!
!
!
Euclidean path integral of
1D quantum system
!
!
!
Physical properties of 2D
quantum system

Z =

X

{�}

exp(�
X

hiji

�i�j)

e�⌧h

3

B. Quantum many-body systems

Here we describe how, given a local Hamiltonian H
for a 1D quantum system, an arbitrarily precise tensor
network representation of the Euclidean time evolution
operator e−βH can be obtained using a Suzuki-Trotter
decomposition25. We assume, for simplicity, that Hamil-
tonian H is a sum of identical nearest-neighbor terms
h,

H =
∑

r

hr,r+1. (5)

We begin by expanding the time evolution operator as a
product of evolutions over some small time step τ ,

e−βH =
(

e−τH
)(β/τ)

. (6)

The evolution e−τH over small time step τ may then be
approximated,

e−τH ≈ e−τHodde−τHeven (7)

where Hodd and Heven represent the contribution to H
given from sites r odd or r even respectively, and an
error of order O(τ) has been introduced. [Note that one
can obtain an error O(τn), n > 1, by using a higher
order Suzuki-Trotter decomposition26]. Since Hodd is a
sum of terms that act on different sites and therefore
commute, e−τHodd is simply a product of two-site gates,
and similarly for e−τHeven ,

e−τHodd =
∏

odd r

e−τhr,r+1,

e−τHeven =
∏

even r

e−τhr,r+1. (8)

Thus, if one regards each two-site gate e−τh as a four
index tensor and Eqs.8 and 7 are substituted into Eq.6,
a representation of the Euclidean path integral e−βH as
a square-lattice tensor network is obtained, see also Fig.
2(a). Note that this representation of e−βH has incurred
an error of orderO(βτ), which can be diminished through
use of a smaller time step τ .
While this network could potentially serve as the start-

ing point for the TNR approach [or other algorithm for
the renormalization of a tensor network] it is desirable
to perform some preliminary manipulations before em-
ploying TNR. This initial manipulation involves (i) a
transformation that maps to a new square-lattice net-
work tilted 45◦ with respect to the initial network, fol-
lowed by (ii) coarse-graining in the Euclidean time di-
rection. Given that the initial tensor network is highly
anisotropic for small time step τ , as the operator e−τh

is very close to the identity, step (ii) is useful to obtain
a tensor network representation of e−βH that is closer
to being isotropic [and thus more suitable as a starting
point for TNR].

Step (i) is accomplished by performing a modified step
of the TRG algorithm as follows. The singular value
decomposition (SVD) is taken across a vertical partition
of the gate e−τh,

e−τh =
(

u
√
s
) (√

sv†
)

, (9)

where the root of the singular weights s has been ab-
sorbed into each of the unitary matrices u and v, and
likewise the eigen-decomposition is taken across a hori-
zontal partition of the gate e−τh,

e−τh =
(

w
√
d
)(√

dw†
)

, (10)

see Fig.2(d). Here w is a unitary matrix, which follows
from e−τh being Hermitian, and d are the eigenvalues
[which can be argued to be strictly positive for sufficiently
small time step τ]. The SVD and eigen-decompositions
are performed throughout the network according to the
pattern indicated in Fig.2(a), and a new square network
of tensors A, tilted 45◦ with respect to the original, is
formed by contracting groups of the resulting tensors to-
gether as indicated Fig.2(b-c).

In step (ii) the network of tensors A is then coarse-
grained in the Euclidean time direction using standard
techniques, i.e. by combining pairs of rows together and
then truncating the resulting squared bond index similar
to the HOTRG8 method [see Appendix A for details],
until the network is sufficiently isotropic in terms of its
correlations. One way to examine how close the network
is to being isotropic is to compute the spectra of the
transfer matrices formed by tracing out the horizontal or
vertical indices of a single A tensor, whose decay should
match as closely as possible.

III. COARSE-GRAINING TENSOR
NETWORKS

Consider a tensor network G consisting of copies of
four index tensors Aijkl that we assume are arranged in
an L × L square-lattice network with periodic bound-
ary conditions. Our goal is to contract this network, or
perhaps this network with single or multiple impurity
tensors, to evaluate the scalar, denoted ⟨G⟩, associated
to network. As an exact contraction of the network G is
exponentially expensive in system size L one must rely
on approximations in order to evaluate a large network.
In this section we first describe the generic concept of
local approximations that could be employed to approx-
imate such a contraction, then discuss the class of local
approximation used in TRG, namely the truncated sin-
gular value decomposition (SVD), before introducing the
particular class of local approximation that the TNR al-
gorithm is based on, which we call projective truncations.

3

B. Quantum many-body systems

Here we describe how, given a local Hamiltonian H
for a 1D quantum system, an arbitrarily precise tensor
network representation of the Euclidean time evolution
operator e−βH can be obtained using a Suzuki-Trotter
decomposition25. We assume, for simplicity, that Hamil-
tonian H is a sum of identical nearest-neighbor terms
h,

H =
∑

r

hr,r+1. (5)

We begin by expanding the time evolution operator as a
product of evolutions over some small time step τ ,

e−βH =
(

e−τH
)(β/τ)

. (6)

The evolution e−τH over small time step τ may then be
approximated,

e−τH ≈ e−τHodde−τHeven (7)

where Hodd and Heven represent the contribution to H
given from sites r odd or r even respectively, and an
error of order O(τ) has been introduced. [Note that one
can obtain an error O(τn), n > 1, by using a higher
order Suzuki-Trotter decomposition26]. Since Hodd is a
sum of terms that act on different sites and therefore
commute, e−τHodd is simply a product of two-site gates,
and similarly for e−τHeven ,

e−τHodd =
∏

odd r

e−τhr,r+1,

e−τHeven =
∏

even r

e−τhr,r+1. (8)

Thus, if one regards each two-site gate e−τh as a four
index tensor and Eqs.8 and 7 are substituted into Eq.6,
a representation of the Euclidean path integral e−βH as
a square-lattice tensor network is obtained, see also Fig.
2(a). Note that this representation of e−βH has incurred
an error of orderO(βτ), which can be diminished through
use of a smaller time step τ .
While this network could potentially serve as the start-

ing point for the TNR approach [or other algorithm for
the renormalization of a tensor network] it is desirable
to perform some preliminary manipulations before em-
ploying TNR. This initial manipulation involves (i) a
transformation that maps to a new square-lattice net-
work tilted 45◦ with respect to the initial network, fol-
lowed by (ii) coarse-graining in the Euclidean time di-
rection. Given that the initial tensor network is highly
anisotropic for small time step τ , as the operator e−τh

is very close to the identity, step (ii) is useful to obtain
a tensor network representation of e−βH that is closer
to being isotropic [and thus more suitable as a starting
point for TNR].

Step (i) is accomplished by performing a modified step
of the TRG algorithm as follows. The singular value
decomposition (SVD) is taken across a vertical partition
of the gate e−τh,

e−τh =
(

u
√
s
) (√

sv†
)

, (9)

where the root of the singular weights s has been ab-
sorbed into each of the unitary matrices u and v, and
likewise the eigen-decomposition is taken across a hori-
zontal partition of the gate e−τh,

e−τh =
(

w
√
d
)(√

dw†
)

, (10)

see Fig.2(d). Here w is a unitary matrix, which follows
from e−τh being Hermitian, and d are the eigenvalues
[which can be argued to be strictly positive for sufficiently
small time step τ]. The SVD and eigen-decompositions
are performed throughout the network according to the
pattern indicated in Fig.2(a), and a new square network
of tensors A, tilted 45◦ with respect to the original, is
formed by contracting groups of the resulting tensors to-
gether as indicated Fig.2(b-c).

In step (ii) the network of tensors A is then coarse-
grained in the Euclidean time direction using standard
techniques, i.e. by combining pairs of rows together and
then truncating the resulting squared bond index similar
to the HOTRG8 method [see Appendix A for details],
until the network is sufficiently isotropic in terms of its
correlations. One way to examine how close the network
is to being isotropic is to compute the spectra of the
transfer matrices formed by tracing out the horizontal or
vertical indices of a single A tensor, whose decay should
match as closely as possible.

III. COARSE-GRAINING TENSOR
NETWORKS

Consider a tensor network G consisting of copies of
four index tensors Aijkl that we assume are arranged in
an L × L square-lattice network with periodic bound-
ary conditions. Our goal is to contract this network, or
perhaps this network with single or multiple impurity
tensors, to evaluate the scalar, denoted ⟨G⟩, associated
to network. As an exact contraction of the network G is
exponentially expensive in system size L one must rely
on approximations in order to evaluate a large network.
In this section we first describe the generic concept of
local approximations that could be employed to approx-
imate such a contraction, then discuss the class of local
approximation used in TRG, namely the truncated sin-
gular value decomposition (SVD), before introducing the
particular class of local approximation that the TNR al-
gorithm is based on, which we call projective truncations.

3

B. Quantum many-body systems

Here we describe how, given a local Hamiltonian H
for a 1D quantum system, an arbitrarily precise tensor
network representation of the Euclidean time evolution
operator e−βH can be obtained using a Suzuki-Trotter
decomposition25. We assume, for simplicity, that Hamil-
tonian H is a sum of identical nearest-neighbor terms
h,

H =
∑

r

hr,r+1. (5)

We begin by expanding the time evolution operator as a
product of evolutions over some small time step τ ,

e−βH =
(

e−τH
)(β/τ)

. (6)

The evolution e−τH over small time step τ may then be
approximated,

e−τH ≈ e−τHodde−τHeven (7)

where Hodd and Heven represent the contribution to H
given from sites r odd or r even respectively, and an
error of order O(τ) has been introduced. [Note that one
can obtain an error O(τn), n > 1, by using a higher
order Suzuki-Trotter decomposition26]. Since Hodd is a
sum of terms that act on different sites and therefore
commute, e−τHodd is simply a product of two-site gates,
and similarly for e−τHeven ,

e−τHodd =
∏

odd r

e−τhr,r+1,

e−τHeven =
∏

even r

e−τhr,r+1. (8)

Thus, if one regards each two-site gate e−τh as a four
index tensor and Eqs.8 and 7 are substituted into Eq.6,
a representation of the Euclidean path integral e−βH as
a square-lattice tensor network is obtained, see also Fig.
2(a). Note that this representation of e−βH has incurred
an error of orderO(βτ), which can be diminished through
use of a smaller time step τ .
While this network could potentially serve as the start-

ing point for the TNR approach [or other algorithm for
the renormalization of a tensor network] it is desirable
to perform some preliminary manipulations before em-
ploying TNR. This initial manipulation involves (i) a
transformation that maps to a new square-lattice net-
work tilted 45◦ with respect to the initial network, fol-
lowed by (ii) coarse-graining in the Euclidean time di-
rection. Given that the initial tensor network is highly
anisotropic for small time step τ , as the operator e−τh

is very close to the identity, step (ii) is useful to obtain
a tensor network representation of e−βH that is closer
to being isotropic [and thus more suitable as a starting
point for TNR].

Step (i) is accomplished by performing a modified step
of the TRG algorithm as follows. The singular value
decomposition (SVD) is taken across a vertical partition
of the gate e−τh,

e−τh =
(

u
√
s
) (√

sv†
)

, (9)

where the root of the singular weights s has been ab-
sorbed into each of the unitary matrices u and v, and
likewise the eigen-decomposition is taken across a hori-
zontal partition of the gate e−τh,

e−τh =
(

w
√
d
)(√

dw†
)

, (10)

see Fig.2(d). Here w is a unitary matrix, which follows
from e−τh being Hermitian, and d are the eigenvalues
[which can be argued to be strictly positive for sufficiently
small time step τ]. The SVD and eigen-decompositions
are performed throughout the network according to the
pattern indicated in Fig.2(a), and a new square network
of tensors A, tilted 45◦ with respect to the original, is
formed by contracting groups of the resulting tensors to-
gether as indicated Fig.2(b-c).

In step (ii) the network of tensors A is then coarse-
grained in the Euclidean time direction using standard
techniques, i.e. by combining pairs of rows together and
then truncating the resulting squared bond index similar
to the HOTRG8 method [see Appendix A for details],
until the network is sufficiently isotropic in terms of its
correlations. One way to examine how close the network
is to being isotropic is to compute the spectra of the
transfer matrices formed by tracing out the horizontal or
vertical indices of a single A tensor, whose decay should
match as closely as possible.

III. COARSE-GRAINING TENSOR
NETWORKS

Consider a tensor network G consisting of copies of
four index tensors Aijkl that we assume are arranged in
an L × L square-lattice network with periodic bound-
ary conditions. Our goal is to contract this network, or
perhaps this network with single or multiple impurity
tensors, to evaluate the scalar, denoted ⟨G⟩, associated
to network. As an exact contraction of the network G is
exponentially expensive in system size L one must rely
on approximations in order to evaluate a large network.
In this section we first describe the generic concept of
local approximations that could be employed to approx-
imate such a contraction, then discuss the class of local
approximation used in TRG, namely the truncated sin-
gular value decomposition (SVD), before introducing the
particular class of local approximation that the TNR al-
gorithm is based on, which we call projective truncations.

3

B. Quantum many-body systems

Here we describe how, given a local Hamiltonian H
for a 1D quantum system, an arbitrarily precise tensor
network representation of the Euclidean time evolution
operator e−βH can be obtained using a Suzuki-Trotter
decomposition25. We assume, for simplicity, that Hamil-
tonian H is a sum of identical nearest-neighbor terms
h,

H =
∑

r

hr,r+1. (5)

We begin by expanding the time evolution operator as a
product of evolutions over some small time step τ ,

e−βH =
(

e−τH
)(β/τ)

. (6)

The evolution e−τH over small time step τ may then be
approximated,

e−τH ≈ e−τHodde−τHeven (7)

where Hodd and Heven represent the contribution to H
given from sites r odd or r even respectively, and an
error of order O(τ) has been introduced. [Note that one
can obtain an error O(τn), n > 1, by using a higher
order Suzuki-Trotter decomposition26]. Since Hodd is a
sum of terms that act on different sites and therefore
commute, e−τHodd is simply a product of two-site gates,
and similarly for e−τHeven ,

e−τHodd =
∏

odd r

e−τhr,r+1,

e−τHeven =
∏

even r

e−τhr,r+1. (8)

Thus, if one regards each two-site gate e−τh as a four
index tensor and Eqs.8 and 7 are substituted into Eq.6,
a representation of the Euclidean path integral e−βH as
a square-lattice tensor network is obtained, see also Fig.
2(a). Note that this representation of e−βH has incurred
an error of orderO(βτ), which can be diminished through
use of a smaller time step τ .
While this network could potentially serve as the start-

ing point for the TNR approach [or other algorithm for
the renormalization of a tensor network] it is desirable
to perform some preliminary manipulations before em-
ploying TNR. This initial manipulation involves (i) a
transformation that maps to a new square-lattice net-
work tilted 45◦ with respect to the initial network, fol-
lowed by (ii) coarse-graining in the Euclidean time di-
rection. Given that the initial tensor network is highly
anisotropic for small time step τ , as the operator e−τh

is very close to the identity, step (ii) is useful to obtain
a tensor network representation of e−βH that is closer
to being isotropic [and thus more suitable as a starting
point for TNR].

Step (i) is accomplished by performing a modified step
of the TRG algorithm as follows. The singular value
decomposition (SVD) is taken across a vertical partition
of the gate e−τh,

e−τh =
(

u
√
s
) (√

sv†
)

, (9)

where the root of the singular weights s has been ab-
sorbed into each of the unitary matrices u and v, and
likewise the eigen-decomposition is taken across a hori-
zontal partition of the gate e−τh,

e−τh =
(

w
√
d
)(√

dw†
)

, (10)

see Fig.2(d). Here w is a unitary matrix, which follows
from e−τh being Hermitian, and d are the eigenvalues
[which can be argued to be strictly positive for sufficiently
small time step τ]. The SVD and eigen-decompositions
are performed throughout the network according to the
pattern indicated in Fig.2(a), and a new square network
of tensors A, tilted 45◦ with respect to the original, is
formed by contracting groups of the resulting tensors to-
gether as indicated Fig.2(b-c).

In step (ii) the network of tensors A is then coarse-
grained in the Euclidean time direction using standard
techniques, i.e. by combining pairs of rows together and
then truncating the resulting squared bond index similar
to the HOTRG8 method [see Appendix A for details],
until the network is sufficiently isotropic in terms of its
correlations. One way to examine how close the network
is to being isotropic is to compute the spectra of the
transfer matrices formed by tracing out the horizontal or
vertical indices of a single A tensor, whose decay should
match as closely as possible.

III. COARSE-GRAINING TENSOR
NETWORKS

Consider a tensor network G consisting of copies of
four index tensors Aijkl that we assume are arranged in
an L × L square-lattice network with periodic bound-
ary conditions. Our goal is to contract this network, or
perhaps this network with single or multiple impurity
tensors, to evaluate the scalar, denoted ⟨G⟩, associated
to network. As an exact contraction of the network G is
exponentially expensive in system size L one must rely
on approximations in order to evaluate a large network.
In this section we first describe the generic concept of
local approximations that could be employed to approx-
imate such a contraction, then discuss the class of local
approximation used in TRG, namely the truncated sin-
gular value decomposition (SVD), before introducing the
particular class of local approximation that the TNR al-
gorithm is based on, which we call projective truncations.

1. 1

|�0i ⇠ lim
�!1

e��H |�anyi

1

TENSOR NETWORK SKELETONIZATION 23

Figure 13. When applied to a Euclidean path integral formulation, TNS
yields a new representation of the ground state of 1D quantum Ising model.

adopted here works quite well in practice. However, it would be interesting to understand
why and also to consider other alternatives without using the somewhat artificial regular-
ization parameter.

Most TNS algorithms introduced here are presented in their simplest forms in order
to illustrate the main ideas. This means that they are not necessarily the most e�cient
implementations in practice. For example in the TNS algorithm for partition functions, one
performs the contractions over all directions first and then applies the UU 0T -projections to
these directions. However in practice, it is much more e�cient to iterate over the directions
and, for each direction, apply a UU 0T -projection right after the contraction of this direction.

TENSOR NETWORK SKELETONIZATION 23

Figure 13. When applied to a Euclidean path integral formulation, TNS
yields a new representation of the ground state of 1D quantum Ising model.

adopted here works quite well in practice. However, it would be interesting to understand
why and also to consider other alternatives without using the somewhat artificial regular-
ization parameter.

Most TNS algorithms introduced here are presented in their simplest forms in order
to illustrate the main ideas. This means that they are not necessarily the most e�cient
implementations in practice. For example in the TNS algorithm for partition functions, one
performs the contractions over all directions first and then applies the UU 0T -projections to
these directions. However in practice, it is much more e�cient to iterate over the directions
and, for each direction, apply a UU 0T -projection right after the contraction of this direction.

Ground	state	through	TNS

TENSOR NETWORK SKELETONIZATION 23

Figure 13. When applied to a Euclidean path integral formulation, TNS
yields a new representation of the ground state of 1D quantum Ising model.

adopted here works quite well in practice. However, it would be interesting to understand
why and also to consider other alternatives without using the somewhat artificial regular-
ization parameter.

Most TNS algorithms introduced here are presented in their simplest forms in order
to illustrate the main ideas. This means that they are not necessarily the most e�cient
implementations in practice. For example in the TNS algorithm for partition functions, one
performs the contractions over all directions first and then applies the UU 0T -projections to
these directions. However in practice, it is much more e�cient to iterate over the directions
and, for each direction, apply a UU 0T -projection right after the contraction of this direction.

TENSOR NETWORK SKELETONIZATION 23

Figure 13. When applied to a Euclidean path integral formulation, TNS
yields a new representation of the ground state of 1D quantum Ising model.

adopted here works quite well in practice. However, it would be interesting to understand
why and also to consider other alternatives without using the somewhat artificial regular-
ization parameter.

Most TNS algorithms introduced here are presented in their simplest forms in order
to illustrate the main ideas. This means that they are not necessarily the most e�cient
implementations in practice. For example in the TNS algorithm for partition functions, one
performs the contractions over all directions first and then applies the UU 0T -projections to
these directions. However in practice, it is much more e�cient to iterate over the directions
and, for each direction, apply a UU 0T -projection right after the contraction of this direction.

Similar	to	how	TNR	produces	MERA

TENSOR NETWORK SKELETONIZATION 23

Figure 13. When applied to a Euclidean path integral formulation, TNS
yields a new representation of the ground state of 1D quantum Ising model.

adopted here works quite well in practice. However, it would be interesting to understand
why and also to consider other alternatives without using the somewhat artificial regular-
ization parameter.

Most TNS algorithms introduced here are presented in their simplest forms in order
to illustrate the main ideas. This means that they are not necessarily the most e�cient
implementations in practice. For example in the TNS algorithm for partition functions, one
performs the contractions over all directions first and then applies the UU 0T -projections to
these directions. However in practice, it is much more e�cient to iterate over the directions
and, for each direction, apply a UU 0T -projection right after the contraction of this direction.

TENSOR NETWORK SKELETONIZATION 23

Figure 13. When applied to a Euclidean path integral formulation, TNS
yields a new representation of the ground state of 1D quantum Ising model.

adopted here works quite well in practice. However, it would be interesting to understand
why and also to consider other alternatives without using the somewhat artificial regular-
ization parameter.

Most TNS algorithms introduced here are presented in their simplest forms in order
to illustrate the main ideas. This means that they are not necessarily the most e�cient
implementations in practice. For example in the TNS algorithm for partition functions, one
performs the contractions over all directions first and then applies the UU 0T -projections to
these directions. However in practice, it is much more e�cient to iterate over the directions
and, for each direction, apply a UU 0T -projection right after the contraction of this direction.

Ground	state	for	2D	quantum	Ising model
24 LEXING YING

Figure 14. When applied to a Euclidean path integral formulation, TNS
yields a new representation of the ground state of 2D quantum Ising model.

We also plan to improve on the current implementations for the disordered systems and
the ground state computations as well.

References

[1] G. Evenbly, Algorithms for tensor network renormalization, ArXiv e-prints (September 2015), available
at 1509.07484.

[2] G. Evenbly and G. Vidal, Algorithms for entanglement renormalization, Phys. Rev. B 79 (2009Apr),
144108.

[3] , Tensor network renormalization, Phys. Rev. Lett. 115 (2015Oct), 180405.
[4] , Tensor network renormalization yields the multiscale entanglement renormalization ansatz,

Phys. Rev. Lett. 115 (2015Nov), 200401.
[5] Zheng-Cheng Gu and Xiao-Gang Wen, Tensor-entanglement-filtering renormalization approach and

symmetry-protected topological order, Phys. Rev. B 80 (2009Oct), 155131.
[6] Kerson Huang, Statistical mechanics, Second, John Wiley & Sons, Inc., New York, 1987. MR1042093
[7] Michael Levin and Cody P. Nave, Tensor renormalization group approach to two-dimensional classical

lattice models, Phys. Rev. Lett. 99 (2007Sep), 120601.
[8] Hidetoshi Nishimori, Statistical physics of spin glasses and information processing, International Series of

Monographs on Physics, vol. 111, Oxford University Press, New York, 2001. An introduction, Translated
from the 1999 Japanese original. MR2250384

[9] Roman Orus, A practical introduction to tensor networks: Matrix product states and projected entangled

pair states, Annals of Physics 349 (2014), 117 –158.
[10] G. Vidal, Entanglement renormalization, Phys. Rev. Lett. 99 (2007Nov), 220405.
[11] , Class of quantum many-body states that can be e�ciently simulated, Phys. Rev. Lett. 101

(2008Sep), 110501.
[12] Z. Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang, and T. Xiang, Coarse-graining renormalization

by higher-order singular value decomposition, Phys. Rev. B 86 (2012Jul), 045139.
[13] Z. Y. Xie, H. C. Jiang, Q. N. Chen, Z. Y. Weng, and T. Xiang, Second renormalization of tensor-network

states, Phys. Rev. Lett. 103 (2009Oct), 160601.
[14] C. N. Yang, The spontaneous magnetization of a two-dimensional ising model, Phys. Rev. 85 (1952Mar),

808–816.

What	is	next?

Future	work
• More	efficient	implementations	for	TNS

• Quantuam ground	state	representations

• Disordered	systems

• 4D	statistical	and	3+1	quantum	spin	systems

High	dimensional	functions	and	probabilities
• Graphical	models	in	machine	learning

• Uncertainty	quantification

• Connection	to	deep	learning	networks

• Discrete/boolean analysis

Summary
• TNS:	a	new	renormalization/upscaling	method
• Structure-preserving	skeletonization removes	short-range	correlation
• Extends	to	3D,	etc.
• Represents	ground	states	effectively

• Reference
• L.	Ying.	Tensor	network	skeletonization,	arXiv:1607.00050v1

Thank	you

