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What are tensor networks?



What are tensor networks

* Atriple (V, E, {Tl}iEV)
* V = {i}: the vertex set
* d;: degree
£ = {e}: the edge set
* Xe:bond dim
* E = E; U Epg (int. vs. bdry.)
* T'isad;-tensorati € V
e dims = {y,} of adj. edges

Q)

* All edges in E; are contracted
* A high-dim function or a number when Exz = (0

e Represent a function
tI‘EI (




Why tensor networks all high dim fns

* Represent high-dim functions and
probability distributions

physically meaningful fns

*tensor networks

* Examples

« DMRG/MPS for 1D quantum
ground state

e PEPS for 2D quantum ground state

e Existing methods
* Independent or weakly-dependent
* Mean field approach

* Limited power for “hard or critical”
physical systems

 Tensor networks
e Powerful and flexible
* Encode geometry



Example: 2D statistical Ising model

* |sing model with N = nXn spins on a
Cartesian grid

* 0 = {0y, ..., 0y}: spin configuration +1

. ,8 = 1/T: inverse temperature J

_ ZQ—BHN(U)

e Tensor network
e VV:sites of Cartesian grid
e F: edges between neighbors (periodic)
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Example: 1D quantum Ising model

* 1D spin chain of length N

* Hamiltonian H is local e—rh
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e Ground states

| D) ~ lim e_BHICI)Cmy>

B—00

e Suzuki-Trotter decomposition
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This talk

* Computation of tensor networks

 New approach: tensor network skeletonization (TNS)
* An exercise to understand what physicists have done

and try to improve on them

* Example: 2D statistical Ising model Zyn(B) = trg ®Ti

* Critical behaviorat 5. = 1/T,

* Main theme: renormalization or upscaling
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Basic tool

* Local replacements V=ViUV,, E=F UFyUE),
oo (@) = s | | @) @, (@ T

B =~ trg, ® T
1€V1

trE <® TZ> ~ trE2uE12 ® Tz ®B

=% 1€V




Local replacements

* Tensor contraction

* Projection q U ,@ b
B, ()
a T b a b N

aU ¢ Rb p=yr

%
€

e Structure-preserving skeletonization
* Loop simplification

¥ _
* Key to TNS e a ) €
~ cC =
b
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Structure-preserving skeletonization (SPS)
el

e a
) f !
- '
b
Y
tr. ' = trabc(X QR T X Y), Z Teef ~ Z XacTabfi/z)w X’ T
e abc

Key to removing short-range correlation in a loop

In matrix notation:

tre T = tro (X TY)

Solve a regularized problem , .
min | tr, T — tre(XTY)|} + (| X3 + [V ]3),

Use alternating least square algorithm with reasonable initial guess (W. Yin)
X)) = argmingy || tre T — tro(X*TY ™)|12 + || X ||%
YD) — argminy || tre T — tre (XY TY) |2 + of| V2.



Previous work



Previous work: Tensor renormalization group (TRG)

* Levin & Nave (2007)

e Arguably the first practical
algorithm for (>1D) tensor
networks

e Rotate by 45 degrees

* Cannot remove corner-
double-line (CDL) tensors

e Cannot remove short-range
correlation
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Previous work

* Second renormalization group

e Xie et al (2009), Xiang’s group at
CAS

* Considers environment effect
when performing projection

e Extends to 3D models

* Tensor-entanglement-filtering
renormalization (TEFR)

* Gu & Wen (2009) S; S5 S S5
* Points out the importance of \.Q/

removing correlation in loops
e Simple iterative algorithms
* 2D systems, rotate 45 degrees



Recent work: Tensor network renormalization (TNR)

* Evenbly & Vidal (2015)

* Apply disentangler to remove
short-range correlation in loops

* 2D systems: rotate by 45 degrees

e Related with MERA,
AdS/CFT correspondence,
holograph principle

A®)




Very recent work: Loop-TNR

* Yang, Gu, & Wen (2016)
* Built on top of TEFR I W N G

* Remove short-range correlation in loop —o——o0——
more effectively

* Use iterative QR algorithms and MPS
algorithms for optimization




Comparison

TRG

v
SRG v v
TEFR v
TNR v
Loop-TNR v v ?
TNS v v



Tensor network skeletonization



Tensor network skeletonization (TNS)

* A renormalization/upscaling approach
e Structure-preserving skeletonization for removing short-range correlation in loops
* Preserve the Cartesian structure (hence the name “skeletonization”)

* Extends easily to high dimensional models



TNS for 2D statistical Ising model

new correlation

structure-preserving skel.

level £




SPS for short-range correlation removal

* For a loop strucutre

* Consider edges one by one

* For each edge, insert two tensors

on the edge and reduce bond

dimension
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Use structure-preserving skeletonization



o . new correlation
A modified version level £ level £ + 1

* When we only care about evaluating
the partition function

e Simpler and sometimes faster




Partition function (2D statistical Ising model)

e N = nXxn periodic Cartesian lattice, up ton = 21°

* Free energy per site (_ % log ZN(@) IN T, = 2/In(1 + v/2)

In(B) =

log ] 06f
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relative error time per iteration



Observables —o—o—9

* Average magnetization —O—9—=¢

S oie PHN.B(0) O O O O

<0’i>N,B (B) = Za e—BHN,B(0)

* Internal energy per site
_ g 2o(oioy)e PN

un (P) ZJ e—BHN (o)
* Requires computation of 60— &— &6 — & O—o
/BHN(U) —BHN,B(0)
20:(02 ZO ¢ O O——>
* Impurity tensor method ——O— O——@
* Modified 1 or 2 tensors in network
O ——O—— O——




. new correlation
Impurity tensor method level ¢ level £ + 1

* The modified version works with
minimal changes

Z(O o, —BHN(U) Z o; e~ BHN,B(0)

o

* White tensors exactly the same

* Only gray ones are modified



Average magnetization and internal energy

e N = nXxn periodic Cartesian lattice, up ton = 21°
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TNS for 3D statistical Ising model

level £ + 1
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SPS for short-range correlation removal (3D)

e Consider 12 edges one by one
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Representing ground states



Ground state of 1D quantum Ising model

* 1D Ising chain

e Hamiltonian H is local —T1h
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e Ground states

| D) ~ lim e_BHICI)Cmy>

B—00

e Suzuki-Trotter decomposition
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Ground state through TNS

Similar to how TNR produces MERA
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Ground state for 2D quantum Ising model
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What is next?



Future work

* More efficient implementations for TNS
* Quantuam ground state representations
* Disordered systems

* 4D statistical and 3+1 quantum spin systems



High dimensional functions and probabilities

Graphical models in machine learning

Uncertainty quantification

Connection to deep learning networks

Discrete/boolean analysis
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Summary

* TNS: a new renormalization/upscaling method
» Structure-preserving skeletonization removes short-range correlation
e Extends to 3D, etc.

* Represents ground states effectively

* Reference
* L. Ying. Tensor network skeletonization, arXiv:1607.00050v1



Thank you



