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Dimension reduction appears nearly everywhere in science and
engineering.
@ Solving elliptic equations with multiscale coefficients: multiscale
finite element basis for the elliptic operator.

@ Principal component analysis (PCA): principle modes of the
covariance operator.

@ Quantum chemistry: eigen states of the Hamiltonian.

For computational efficiency and/or good interpretability, localized basis
functions are preferred.

@ Localized multiscale finite element basis: Babuska-Caloz-Osbron-94,
Hou-Wu-1997, Hughes-Feijéo-Mazzei-98, E-Engquist-03,
Owhadi-Zhang-07, Malqvist-Peterseim-14, Owhadi-15, etc.

@ Sparse principle modes obtained by Sparse PCA or sparse dictionary
learning: Zou-Hastie-Tibshirani-04, Witten-Tibshirani-Hastie-09, etc.

@ Compressed Wannier modes: Ozolin$-Lai-Caflisch-Osher-13,
E-Li-Lu-10, Lai-Lu-Osher-15, etc.



Operator compression

Consider an elliptic operator in the divergence form

Lu= Y (-1)'D(ag(z)Du), (1)

0<|a],|v|<k

where the coefficients a,-, € L>°(D), D is a bounded domain in R,
o= (01,...,04) is a d-dimensional multi-index.

o L is self-adjoint and positive definite in a Hilbert space Hf(D).
HE(D) C H*(D) incorporates the boundary condition for the
elliptic operator.

e Forany f € L*(D), Lu = f has a unique weak solution in HE(D),
denoted as u := L7 f.

e Given n basis functions ¥ = [t)1,...,1,] C HE(D), we define the
operator compression error:

Eoo(W;L£71) = min |7t — oK, 0T, (2)
Kn,€RmXn | K, >0
which is the optimal approximation error of £~! among all positive
semidefinite operators with range space spanned by V.



Main results of sparse operator compression

Given n basis functions ¥ = [, ..., ,] C HE(D), we define the
operator compression error:

Eoo(W; £L71) = o opiin H)||£—1 — UK, o7,
T‘LE TL>'<71.7 ni_

which is the optimal approximation error of £~! among all positive
semidefinite operators with range space spanned by V.

For any n € N, we construct n localized basis functions {t!°“}"_, such

that

o
|supp(¢1°°)| < C”‘)Tg(”) vi<i<n. (3)

o
Eoe(W1% L7 < Corn(L£7h), (4)

@ The constants C; and C. are independent of n and multiscale
features in ag- .



Potential Applications |. Solving elliptic equations.

L is an elliptic operator of order 2k (k > 1) with rough multiscale
coefficients in L>°(D), and the load f € L?(D).

Lu=f,  uec HED). (5)

@ k = 1: heat equation, subsurface flow; & = 2: beam equation, plate
equation, etc...

@ We construct nearly optimally localized basis functions
{yploeyn | C HE(D). For a given mesh h, we have

|supp(¢1°°)| < Cihlog(1/h) 1<i<n.

. . . T
o The multiscale finite element solution w,s := WL 1 (wlo¢)” f

satisfies
[t — tmsller < Ch®(|fll2 Vf € L*(D),

where || - || is the energy norm, C, is indep. of small scale of as~.

@ Sparsity/locality: computational efficiency.



Potential Applications Il. Sparse PCA.
.I!III

Figure: Left: samples of human faces. Right: sparse principal modes. *

The Matérn class covariance in spatial statistics

st - () ()

o v=1/2: Ky)5(z,y) = o exp(—|z —y|/p)

e v — o0 lim, o K, (7,y) = 0?exp (— ‘7”2_:;'2).

Wang-Jia-Hu-Turk, 1JPRAI, 2005



Potential Applications Il. Sparse PCA continued.

The Matérn class covariance

i - () . (),

@ It is the solution operator of high-order elliptic operators

20 v+d/2
L=Cyro? (F - A) .

@ We construct nearly optimally localized basis functions {wfoc S

Cilog(n)
n

|supp(1{°°)| < 1<i<n

@ We can approximate K, by rank-n operator with optimal accuracy:
|5, = vk, () "|| < Corn(E).
2

@ Sparsity/locality: better interpretability and computational efficiency.



Potential Applications Ill. Quantum chemistry.

Maximally-localized generalized Wannier functions for composite energy bands
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2 Leém = Amem
ihowu(t, ) = (— %Az +V(z))u {u(:v B =3 am(B)em ()

Hamiltonian : £

[111] Axis

Sparsity/locality: better interpretability and computational efficiency.
2Marzari-Vanderbilt, PRB (56), 97




Potential Applications Ill. Quantum chemistry continued.

@ We construct nearly optimally localized basis functions {wﬁoc A
that optimally approximates the eigenspace in the sense of

Boe( W% L7 = min £ = 0lcK, (1) ||y < CA(£7Y),
Ky €RNXn
K, =0

@ Another natural choice to define the compression error:

n
g eiel — Py

=1

Eoo(¥) = |Py, — Pyl2 =

)
2

where V,, is the first n-dimensional eigenspace span{ey,...,e,} and
Py is the orthogonal projection from L?(D) to its subspace V.

oo

Z %eie;fp — oK, vt

i=1""

Eoo(W; L7 = min
KneRm*n, K,~0

2

We believe that E,.(¥;L£L~!) is a better criterion for operator
compression because it takes into consideration the decay of the
eigenvalues of the solution operator £~



Our construction and theoretical results
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Figure: Left: 8 localized basis functions for —A with periodic BC.
Middle and right: 2 localized basis functions for A% with homogeneous
Dirichlet BC.



loc\n

Our construction of {¢;*} |

@ Choose h > 0. Partition the physical domain
D using a regular partition {7;}/; with mesh
size h.

@ Choose r > 0, say r = 2hlog(1/h). For each
patch 7;, S, is the union of the subdomains
Ty intersecting B(z;,r) (for some x; € 7;).

© Pi_1(7;) is the space of all d-variate
polynomials of degree at most k£ — 1 on the
patch 7. @ = ("*97') is its dimension.
{(pi,q}qQ:l is a set of orthogonal basis
functions for Pr_1(7;).

Figure: A regular
partition, local patch 7;
and its associated ;.

g = argmin |7
YEHE
s.t. Vg =0igjq, V1<j<m,1<q <Q,
Sr
P(x) =0, x€ D\S,,
where HY is the solution space (with some prescribed BC), || - || is the energy

norm associated with £ and the BC.



: loc .__ locym,Q
Our construction ¥'¢ := {4/}

p=ll

Theorem (Hou-Zhang-2016)

Suppose Hi = HE(D) and Lu = (—1)F Y. D%(ao,Du). Assume that

lo|=|v|=k
L is self-adjoint, positive definite and strongly elliptic, and that there exists
Omin70mam > 0 such that

Ominll€l™* < D" aoy£7E" < Omaz €], VEER?

lo|=lvI=Fk

Then for r > C\-hlog(1/h), we have

o
|£_1f—WlOCL;1 Wloc f f2 VfGLQD,
| (T) flla mll I (D)
where L, is the stiffness matrix under basis functions W'°°.
Q

C2p2k

min

Eoc( Wloc; L:_l) S

Here, the constant C. only depends on the contrast ‘Zm#, and C. is
independent of the coefficients.

()

(8)




Several remarks

@ Theorem (Hou-Zhang-2016) also applies to £ with low order terms,
ie. Lu= (=1 Y D%as,DVu).
lol,lvI<k
@ Theorem (Hou-Zhang-2016) also applies to other homogeneous
boundary conditions, like periodic BC, Robin BC and mixed BC.

o For HE = H}(D), i.e. second order elliptic operators with zero
Dirichlet BC, Theorem (Hou-Zhang-2016) have been proved in
Owhadi-2015. A similar result for Hf = H}(D) was also provided in
Malqvist-Peterseim-2014. In this case, Our proof improves the
estimates of the constants C,. and C..

@ For other BCs, operators with lower order terms, and high-order
elliptic operators, new techniques and concepts have been developed.
Among them, the most important three new techniques are

@ a projection-type polynomial approximation property in Hk(D),
o the notion of the strong ellipticity 3,

e an inverse energy estimate for functions in
W= span{ti,q:1<i<m,1<qg<Q}

3Equivalent to uniform ellipticity when d = 1,2 or k = 1. Slightly stronger than
uniform ellipticity in other cases; counter examples exist but difficult to construct.



Roadmap of the proof: Error estimate

Theorem (An error estimate based on projection-type approximation)

Suppose there is a n-dimensional subspace ® C L*(D) with basis {¢;}7—, such
that )
(L?) k
lu—"Pg “ullpz <knllullz Ve e HY(D). (9)

Let U be the n-dimensional subspace in H*(D) (also in Hf(D)) spanned by
{L7 p;}y. Then

@ Forany f € L*(D) and u = L™ f, we have
lu = PYullir < Fall s - (10)

@ We have

Eoc( W3 L7) < ki (11)

@ k=1: ® piecewise constant functions. By the Poincare inequality, it is
easy to obtain |lu — Pé Jull L2 < \/7HU||H

@ k > 2: ® piecewise polynomials with degree no more than K — 1. By a
projection-type polynomial approximation property in H*(D), see

Thm 3.1 in Hou-Zhang-Partll, we have |Ju — ’Pé Jul g2 < \/7||u||H



Roadmap of the proof: Error estimate, discussions

Take H{; = H{(D) as an example, where ® is the space of piecewise
constant functions.

@ Based on a projection-type approximation property, we obtain the
error estimates of the GFEM in the energy norm, i.e.

L? H!
lu =P ull 2 < Coroghlluller = [[u = PEullir < Cproghl| |-

Cproj does not depends on the small scales in the coefficients.

e Tranditional interpolation-type estimation requires higher regularity
of the solution u: assume u € H?(D)

|u — Zhuli2,p < Chlul22.p = |[u — Thullg < Cinterphl| fllL,-

Clinterp depends on the small scales in the coefficients.

@ Basis functions for Zu: optimally localized linear nodal basis
1
Basis functions for P\(I,HO)u: global basis functions {£L71p;}7™ |



Roadmap of the proof: Basis with exponential decay

Global energy minimizing basis functions

Viq =argmin |||
YEHE

s.t. / ¢i,q@j,q/ = 5iq,jq’7V1 < q/ <@, 1<j5<m.
D

(12)

Theorem (Energy minimizing basis functions with exponential decay)

@ {Wig:1<i<m,1<qg<Q}and{L 1 piq:1<i<m,1<q<Q}
span the same space V.

@ 1); 4 decays exponentially fast away from its associated patch ;.




Roadmap of the proof: Basis with exponential decay

Global energy minimizing basis functions

big =argmin |||
YEHE

s.t. / ¢i,q@j,q/ = 5iq,jq’>V1 < q/ <@, 1<j5<m.
D

(12)

Theorem (Energy minimizing basis functions with exponential decay)

@ {Wig:1<i<m,1<qg<Q}and{L 1 piq:1<i<m,1<q<Q}
span the same space V.

@ 1); 4 decays exponentially fast away from its associated patch ;.

Intuition: We apply a linear transform to {£L ;. :1<i<m,1<q<Q}
such that the new basis function v; 4 has zero moments up to the (k — 1)-th
order on any patch other than 7;.



Roadmap of the proof: Basis with exponential decay

Vig =argmin [[¢]|%
YEHE

s.t. / Yiqpjq = 6iq,jq’aV]- < q, <Q@,1<j5<m.
D

1D second order elliptic operator with 1D Matérn covariance with v = 1/2:
Robin BC:
Eu: —%u”+ %u7 K]_/z(ﬂ?,y) =exp(—|x—y|),

u(0) —u/(0) = 0, u(1) +u'(1) = 0, flf:/o Kiya(,y) f(y)dy.



Roadmap of the proof: Basis with exponential decay

Vig =argmin [[¢]|%
YEHE

s.t. / Yiqpjq = 6iq,jq’aV]- < q, <Q@,1<j5<m.
D

1D second order elliptic operator with 1D Matérn covariance with v = 1/2:
Robin BC:
ﬁu:_%u//_’_%u’ Kl/z(x7y)1:exp(_|x_y|)a
-1
u(0) —u/(0) = 0, u(1) +u'(1) = 0, L f=/0 Kiya(,y) f(y)dy.
k 1 2 _ 1 2 2 Lo Yy
Hg = H ([0,1)), ||u||H:§ (u(O) +u(l) +/ (u) +/ u’ ).
0 0

Figure: The basis function associated with patch [1/2 — h,1/2], h = 1/64.



Roadmap of the proof: Localized basis

@ Localized energy minimizing basis functions

i = argmin [|v]%
YEHE

s.t. / Vpjq = 0igjy, Y1<j<m,1<q <Q,
S



Roadmap of the proof: Localized basis

@ Localized energy minimizing basis functions

i = argmin [|v]%
YEHE

s.t. / Vpjq = 0igjy, Y1<j<m,1<q <Q,
S

P(x) =0, x € D\S,.




Roadmap of the proof: Localized basis

@ Localized energy minimizing basis functions

i = argmin [|v]%
YEHE

/ Vg = 0igjqe, YV1<j<m, 1< ¢ <Q,
S

P(x) =0, xz e D\S,.

@ Because v; ; decays exponentially fast away from patch 7;,
= O(hlog(1/h)) is sufficient to preserve the good error estimate

of U:
H 2C,h*
s = lu-PYul < T

11z

k
lu—Py ™ ul| s <

Cph
\% m'm,



Roadmap of the proof: Localized basis

@ Localized energy minimizing basis functions

i = argmin [|v]%
YEHE

/ Vg = 0igjqe, YV1<j<m, 1< ¢ <Q,
S

P(x) =0, xz e D\S,.

@ Because v; ; decays exponentially fast away from patch 7;,
= O(hlog(1/h)) is sufficient to preserve the good error estimate

of U:
H 2C,h*
s = lu-PYul < T

11z

(HE) Cph
lu=Py ™ ulln < —Z—
v m'm,
o With the Aubin-Nistche duality argument, we have proved

27 2k
4Ch .

Om”m

Eoc(qlloc; E—l) S



Roadmap of the proof: Localized basis

Lu= —%u" ) + %u w(0) — 0 (0) = 0, u(1) +u'(1) = 0.
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Figure: A few basis functions for the case m = 27 and r = 2.4hlog,(1/h).

Compression Error of w'°¢ 1ot Compression Error of w'°¢
= = ——2 hlog ,(1/h)
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patch number: m patch number: m

Figure: E(@'°¢; £™1) with localized basis functions ¥'°c.



Compare with the I'-minimization approach

Sparse Operator Compression 11 minimization

min  [[¢]%

n n
ek rninlc Z”W”%I""“ZH%HD
- vCHy T i=1
s.t. / 1/’90j,q’ = 6iq,jq’7 vja q
Sr

s.t. / ’(/)ZT)[JJ = 51‘7]‘ V1 S Z,j S n.
Y(x) =0, x € D\S,, D

Sparsity/locality from the I! penalt
Sparsity/locality from moment P y/ Yy p y

condition and exponential decay

See e.g. [Ozolin3-Lai-Caflisch-Osher, PNAS, 2013].



Sparse OC vs [' minimization: math formulation

Sparse Operator Compression I minimization
min ||
ver Jnin, ananwanlnl,
Vjq = Sigias Vi, q
/Sr o o s.t. / Yipy = 5¢,j V1<i,j7<n.
P(x) =0, x€ D\S,, D

@ Linear constraints, convex quadratic optimization v.s. orthogonality
constraints, non-convex optimization

@ Decoupled, parallel implementation v.s. coupled, not easy for
parallel computing

@ The computational complexity to obtain all n localized basis
functions {¢l°¢}7_, is only of order N log(N), where N is the
degree of freedom in the discretization of L.

@ The SOC algorithm # solves the ! minimization in an iterative
manner, where the computational cost of each iteration is
comparable with the total cost of the Sparse OC.

4Lai-Osher, SIAM-JSC, 2014



Sparse OC vs [! minimization: 1D free electron

Free electron with periodic boundary condition:

L= —%A, D =[0,50. 5

e Discretization £ € R1024x1024,
@ Number of compressed/localized modes n = 128.

@ Sparse OC takes 0.035 sec to obtain all 128 localized modes,
without parallel computing.

e After 390 iterations, the ! approach achieves le-7 relative energy
decrease, and the iteration is stopped. The total time is 4.426 secs.
Each iteration takes 0.013 sec.

5Lai-Osher, SIAM-JSC, 2014



Sparse OC vs [! minimization: 1D free electron

Localized/compressed modes

4 v 04 \ ’”I |
IR 1001
N
AAAA
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Figure: A few basis functions for the Figure: A few compressed modes,
case m =27 and r = hlog,(1/h). m=2" =084



Sparse OC vs [' minimization:

Approximate eigenvalues

s Approximated eigs from v'°® 4hpproxi eigs from compressed modes
+ Sparse OC 5
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Figure: The eigenvalues of QT HQ and Figure: The eigenvalues of WTH W,
H; Q is an orthonormal basis of ¥'°°. m=2", =10



Sparse OC vs [! minimization: 1D free electron

Operator compression error

Compression Error of '

——hlog,,(1/h)
—+- 1.2 hlog,(1/h)
——1.5 hlogz(1/h)
——2 hlog,(1/h)

—v—Eigen Decom

compression error
o

o
&

S,
S

10° 10° 102
patch number: m

Figure: The operator compression error E(W; (L +1)7") for the Hamiltonian
with localized basis functions w'°°



Sparse OC vs [! minimization: 1D free electron

Operator compression error

loc

Compression Error of ¥

—e—hlog,(1/h)

compression error
=
o

—+—1.2 hlog(1/h)
1031 |15 hlog,(1/h)
——2 hlog,,(1/h)
—v—Eigen Decom
-4
10
10° 10’ 102

patch number: m

Figure: The operator compression error E(W; (L +1)7") for the Hamiltonian
with localized basis functions w'°°

Other related work
o E-Li-Lu, PNAS, 2010 : localization using weight function
(algebraical decay)
o Lai-Lu-Osher, CMS, 2015 : convex relaxation of the I* approach
@ Hou-Li-Zhang, SIAM-MMS, 2016: ISMD for low rank covariance
matrices



Fourth order elliptic operators



The 1D biharmonic equation

d?

w(0) =4'(0) =0, wu(l)=4'(1)=0,

d? d?u
— (a(w)@> =flz), 0<z<l, (13)

s flexural rigidity: a(x) s loading: f(x)
14 14
13 13
12 12
11 11
1 1
08 0s
0.8 08
0.7 0.7
0.6 0.6
05 05

0 02 04 06 08 1 0 02 04 06 08 1

Figure: Highly oscillatory flexural rigidity a(z) and load f(z): no scale
separation.



The 1D biharmonic equation: basis functions
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(a) Left: 32,1, 32,2 for piecewise linear ®; Right: L w321, L 1302
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(b) 32,1, %32,2: normal scale and log-scale

Figure: 1D biharmonic operator: piecewise linear . There are two basis
functions associated with each patch. The multiscale effect is visible in the
basis functions, but the decay rate only depends on the contrast Zmaz,



The 1D biharmonic equation: finite element solutions

@ ¥\ space of piecewise constant functions = ¥, = \I/f)oc = ugp
o ¥\ space of piecewise linear functions = ¥, = \Ifll"c = Uy

Patch size vs Energy norm error
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Figure: Error of the finite element solutions: |lup,0 — ul|m and |lup,1 — ul|H.



The 1D biharmonic equation: finite element solutions

@ ¥\ space of piecewise constant functions = ¥, = \I/f)oc = ugp
o ¥\ space of piecewise linear functions = ¥, = \Ifll"c = Uy

Patch size vs Energy norm error
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Figure: Error of the finite element solutions: |lup,0 — ul|m and |lup,1 — ul|H.

To obtain the optimal convergence rate Kk it is necessary to take ® as
the space of piecewise polynomial space of degree no more than k — 1.



The 2D biharmonic operator

L=A%* HE=H:(0,1? (14)

¥

U2 ¥a

00 00
y x y x
log(ly,) ) tog(lu)

_ toglle)

Figure: The three basis functions associated with patch
[1/2 = ha,1/2] X [1/2 — hy,1/2]. They clearly show exponential decay.



Ongoing work and conclusions



Discrete setting: graph Laplacians

Lu = d (a(m)j—Z) . Lu=-V-(a(zx)Vu), Lu=71

Cdx :
ulap = 0. L : a graph Laplacian
u(0) = u(1)
:l :"»_‘__17 :Z,;;.:'
...o.oo..... = 7“““ T - EH ::
Fl 5" - ,m - =
- . - e

Big

P
- S !
L =
o
ok 53 N
=5 Ty
e

..‘000000°.
Figure: A 2D lattice Figure: A social network
graph. graph.

Figure: A 1D circular
graph.

@ Social networks and transportation networks; genetic data and web
pages; spectral clustering of images; electrical resistor circuits;
elliptic partial differential equations discretized by finite elements; etc

@ Fundamental problems: fast algorithms for Lu = f and eigen
decomposition of L.



Discrete setting: graph Laplacians

Lu=f

@ Spielman-Teng (STOC-04, SICOMP-13, SIMAX-14): Nearly-Linear
Time Algorithms for Graph Partitioning and Solving Linear Systems

o Maximal spanning tree, support-graph preconditioners, graph
sparsification, etc.
o Theoretical results, impractical algorithms.
o Godel Prize 2008, 2015.
@ Livne-Brandt-2012: Lean Algebraic Multigrid. Practical nearly-linear
time algorithm, no theoretical guarantee.
@ Sparse operator compression for graph Laplacians? The key is an
efficient algorithm to find a partition {7,}72, of the graph vertices

such that 2
=P ull 2 < Cpv/Mn(£) ul

which is the Poincare inequality on graphs.

@ Implementing the sparse operator compression in a multigrid manner
leads to a nearly-linear time algorithm.



Conclusions

@ We have developed a general strategy to compress self-adjoint
second-order and high-order elliptic operators by localized
energy-minimizing basis functions.

o For a self-adjoint, bounded and strongly elliptic operator of order 2k
(k > 1), we have proved that with support size hlog(1/h), our
localized basis functions can obtain the optimal operator
compression rate O(h2¥).

@ We have applied our new operator compression strategy in different
applications: solving elliptic equations with multiscale coefficients,
Sparse PCA for the Matérn class covariance, and compressing
Hamiltonians in quantum chemistry.

@ Ongoing work on compressing elliptic operators with high contrast
coefficients, new multi-grid algorithms for elliptic operators, and fast
algorithms for graph partitioning and solving graph Laplacians.
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