
Sparse Operator Compression of Elliptic
Operators with Multiscale Coefficients

Thomas Y. Hou

Applied and Comput. Math, Caltech

February 1, 2017

Joint work with Pengchuan Zhang

Big Data Meets Computation, IPAM



Motivations

Dimension reduction appears nearly everywhere in science and
engineering.

Solving elliptic equations with multiscale coefficients: multiscale
finite element basis for the elliptic operator.

Principal component analysis (PCA): principle modes of the
covariance operator.

Quantum chemistry: eigen states of the Hamiltonian.

For computational efficiency and/or good interpretability, localized basis
functions are preferred.

Localized multiscale finite element basis: Babuska-Caloz-Osbron-94,
Hou-Wu-1997, Hughes-Feijóo-Mazzei-98, E-Engquist-03,
Owhadi-Zhang-07, Målqvist-Peterseim-14, Owhadi-15, etc.

Sparse principle modes obtained by Sparse PCA or sparse dictionary
learning: Zou-Hastie-Tibshirani-04, Witten-Tibshirani-Hastie-09, etc.

Compressed Wannier modes: Ozoliņš-Lai-Caflisch-Osher-13,
E-Li-Lu-10, Lai-Lu-Osher-15, etc.



Operator compression

Consider an elliptic operator in the divergence form

Lu =
∑

0≤|σ|,|γ|≤k

(−1)|σ|Dσ(aσγ(x)Dγu), (1)

where the coefficients aσγ ∈ L∞(D), D is a bounded domain in Rd,
σ = (σ1, . . . , σd) is a d-dimensional multi-index.

L is self-adjoint and positive definite in a Hilbert space Hk
B(D).

Hk
B(D) ⊂ Hk(D) incorporates the boundary condition for the

elliptic operator.

For any f ∈ L2(D), Lu = f has a unique weak solution in Hk
B(D),

denoted as u := L−1f .

Given n basis functions Ψ = [ψ1, . . . , ψn] ⊂ Hk
B(D), we define the

operator compression error:

Eoc(Ψ ;L−1) := min
Kn∈Rn×n, Kn�0

‖L−1 −ΨKnΨ
T ‖2, (2)

which is the optimal approximation error of L−1 among all positive
semidefinite operators with range space spanned by Ψ .



Main results of sparse operator compression

Definition

Given n basis functions Ψ = [ψ1, . . . , ψn] ⊂ Hk
B(D), we define the

operator compression error:

Eoc(Ψ ;L−1) := min
Kn∈Rn×n, Kn�0

‖L−1 −ΨKnΨ
T ‖2,

which is the optimal approximation error of L−1 among all positive
semidefinite operators with range space spanned by Ψ .

For any n ∈ N, we construct n localized basis functions {ψloci }ni=1 such
that

∣∣supp(ψloci )
∣∣ ≤ Cl log(n)

n
, ∀1 ≤ i ≤ n. (3)

Eoc(Ψ
loc;L−1) ≤ Ceλn(L−1), (4)

The constants Cl and Ce are independent of n and multiscale
features in aσγ .



Potential Applications I. Solving elliptic equations.

L is an elliptic operator of order 2k (k ≥ 1) with rough multiscale
coefficients in L∞(D), and the load f ∈ L2(D).

Lu = f, u ∈ Hk
0 (D). (5)

k = 1: heat equation, subsurface flow; k = 2: beam equation, plate
equation, etc...

We construct nearly optimally localized basis functions
{ψloci }ni=1 ⊂ Hk

0 (D). For a given mesh h, we have

∣∣supp(ψloci )
∣∣ ≤ Clh log(1/h) 1 ≤ i ≤ n.

The multiscale finite element solution ums := Ψ locL−1
n

(
Ψ loc

)T
f

satisfies
‖u− ums‖H ≤ Cehk‖f‖2 ∀f ∈ L2(D),

where ‖ · ‖H is the energy norm, Ce is indep. of small scale of aσγ .

Sparsity/locality: computational efficiency.



Potential Applications II. Sparse PCA.

Figure: Left: samples of human faces. Right: sparse principal modes. 1

The Matérn class covariance in spatial statistics

Kν(x, y) = σ2 21−ν

Γ(ν)

(√
2ν
|x− y|
ρ

)ν
Kν

(√
2ν
|x− y|
ρ

)
(6)

ν = 1/2: K1/2(x, y) = σ2 exp(−|x− y|/ρ)

ν →∞: limν→∞Kν(x, y) = σ2 exp
(
− |x−y|

2

2ρ2

)
.

1Wang-Jia-Hu-Turk, IJPRAI, 2005



Potential Applications II. Sparse PCA continued.

The Matérn class covariance

Kν(x, y) = σ2 21−ν

Γ(ν)

(√
2ν
|x− y|
ρ

)ν
Kν

(√
2ν
|x− y|
ρ

)
,

It is the solution operator of high-order elliptic operators

L = Cν,λσ
2

(
2ν

λ2
−∆

)ν+d/2

.

We construct nearly optimally localized basis functions {ψloci }ni=1:

∣∣supp(ψloci )
∣∣ ≤ Cl log(n)

n
1 ≤ i ≤ n.

We can approximate Kν by rank-n operator with optimal accuracy:

∥∥∥Kν −Ψ locKn

(
Ψ loc

)T∥∥∥
2
≤ Ceλn(Kν).

Sparsity/locality: better interpretability and computational efficiency.



Potential Applications III. Quantum chemistry.
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Maximally-localized generalized Wannier functions for composite energy bands

Nicola Marzari and David Vanderbilt
Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855-0849, USA

(July 10, 1997)

We discuss a method for determining the optimally-localized set of generalized Wannier functions
associated with a set of Bloch bands in a crystalline solid. By “generalized Wannier functions”
we mean a set of localized orthonormal orbitals spanning the same space as the specified set of
Bloch bands. Although we minimize a functional that represents the total spread

∑
n

⟨r2⟩n − ⟨r⟩2n
of the Wannier functions in real space, our method proceeds directly from the Bloch functions as
represented on a mesh of k-points, and carries out the minimization in a space of unitary matrices
U

(k)
mn describing the rotation among the Bloch bands at each k-point. The method is thus suitable

for use in connection with conventional electronic-structure codes. The procedure also returns the
total electric polarization as well as the location of each Wannier center. Sample results for Si,
GaAs, molecular C2H4 and LiCl will be presented.

I. INTRODUCTION

The study of periodic crystalline solids leads naturally
to a representation for the electronic ground state in
terms of extended Bloch orbitals ψnk(r), labeled via their
band n and crystal-momentum k quantum numbers. An
alternative representation can be derived in terms of lo-
calized orbitals or Wannier functions wn(r − R), that
are formally defined via a unitary transformation of the
Bloch orbitals, and are labeled in real space according to
the band n and the lattice vector of the unit cell R to
which they belong.1–4

The Wannier representation of the electronic problem
is widely known for its usefulness as a starting point for
various formal developments, such as the semiclassical
theory of electron dynamics or the theory of magnetic
interactions in solids. But until recently, the practical
importance of Wannier functions in computational elec-
tronic structure theory has been fairly minimal. How-
ever, this situation is now beginning to change, in view
of two recent developments. First, there is a vigorous ef-
fort underway on the part of many groups to develop so-
called “order-N” or “linear-scaling” methods, i.e., meth-
ods for which the computational time for solving for the
electronic ground state scales only as the first power of
system size,5 instead of the third power typical of conven-
tional methods based on solving for Bloch states. Many
of these methods are based on solving directly for local-
ized Wannier or Wannier-like orbitals that span the occu-
pied subspace,6–13 and thus rely on the localization prop-
erties of the Wannier functions. Second, a modern theory
of electric polarization of crystalline insulators has just
recently emerged;14–19 it can be formulated in terms of
a geometric phase in the Bloch representation, or equiv-
alently, in terms of the locations of the Wannier centers.

The linear-scaling and polarization developments are
at the heart of the motivation for the present work. How-

ever, there is another motivation that goes back to a
theme that has recurred frequently in the chemistry lit-
erature over the last 40 years, namely the study of “lo-
calized molecular orbitals.”20–25 The idea is to carry out,
for a given molecule or cluster, a unitary transformation
from the occupied one-particle Hamiltonian eigenstates
to a set of localized orbitals that correspond more closely
to the chemical (Lewis) view of molecular bond-orbitals.
It seems not to be widely appreciated that these are
the exact analogues, for finite systems, of the Wannier
functions defined for infinite periodic systems. Various
criteria have been introduced for defining the localized
molecular orbitals,20–23 two of the most popular being
the maximization of the Coulomb22 or quadratic23 self-
interactions of the molecular orbitals. One of the motiva-
tions for such approaches is the notion that the localized
molecular orbitals may form the basis for an efficient rep-
resentation of electronic correlations in many-body ap-
proaches, and indeed this ought to be equally true in the
extended, solid-state case.

One major reason why the Wannier functions have seen
little practical use to date in solid-state applications is
undoubtedly their non-uniqueness. Even in the case of
a single isolated band, it is well known that the Wan-
nier functions wn(r) are not unique, due to a phase inde-
terminacy eiφn(k) in the Bloch orbitals ψnk(r). For this
case, the conditions required to obtain a set of maximally
localized, exponentially decaying Wannier functions are
known.2,26

In the present work we discuss the determination of
the maximally localized Wannier functions for the case
of composite bands. Now a stronger indeterminacy is

present, representable by a free unitary matrix U
(k)
mn

among the occupied Bloch orbitals at every wavevector.

We require the choice of a particular set of U
(k)
mn according

to the criterion that the sum Ω of the second moments
of the corresponding Wannier functions be minimized.

1

2

i~∂tu(t, x) =
(
− ~2

2
∆x + V (x)

)
︸ ︷︷ ︸

Hamiltonian : L

u ⇒
{
Lem = λmem

u(x, t) =
∑
αm(t)em(x)

Figure 14: Left panel: WFCs (red) from a snapshot of a Car-Parrinello simulation of liquid
water. The hydrogen atoms are in black and the oxygens in white; hydrogen bonds have also
been highlighted. Center panel: MLWF for a O-H bond in a water dimer. Right panel: MLWF
for a lone pair in a water dimer. [Left panel courtesy of P. L. Silvestrelli [41]]

Figure 15: Snapshots of a rapid water-molecule dissociation under high-temperature (1390 K)
and high-pressure (27 GPa) conditions; one of the MLWFs in the proton-donor molecule is
highlighted in blue, and one of the MLWFs in the proton-acceptor molecule is highlighted in
green. [From Ref. [62]]

Finally, localized orbitals can embody the chemical concept of transferable functional

groups, and thus be used to construct a good approximation for the electronic-structure

of complex systems starting for the orbitals for the different fragments [75].

7.2 Local and Global Dielectric Properties

The modern theory of polarization [8, 9] directly relates the vector sum of the centers

of the Wannier functions to the polarization of an insulating system. This exact corre-

spondence to a macroscopic observable (rigorously speaking, the change in polarization

[76] upon a perturbation) cannot depend on the particular choice of representation: the

sum of the Wannier centers is in fact invariant – as it should be – with respect to unitary

transformations of the orbitals [35]. The existence of this exact relation between classical

electrostatics and the quantum-mechanical WFCs suggests a heuristic identification by

which the pattern of displacements of the WFCs can be regarded as defining a coarse-

155

TABLE III. Localization functional Ω and its decompo-
sition in invariant, off-diagonal, and diagonal parts, for the
case of GaAs (units are Å2). The bottom valence band, the
top three valence bands, and all four bands are separately in-
cluded in the minimization. The star (⋆) refers to the case
in which the minimization is not actually performed, and the
solution for the 1-band and 3-band cases is used. Sampling is
performed with a 8 × 8 × 8 mesh of k-points.

k set Ω ΩI ΩOD ΩD

1 band 1.968 1.944 0 0.0238
3 bands 10.428 9.844 0.560 0.0245
4 bands⋆ 12.396 8.038 4.309 0.0483
4 bands 8.599 8.038 0.555 0.0059

where we show the relative position of the centers along
the Ga-As bonds. Here β is the distance between the Ga
atom and the Wannier center, given as a fraction of the
bond length (in Si the centers were fixed by symmetry to
be in the middle of the bond, β = 0.5, irrespective of the
sampling).

In Fig. 2, we present plots showing one of these
maximally-localized Wannier functions in GaAs, for the
8 × 8 × 8 k-point sampling. Again, at the minimum Ω,
all four Wannier functions have become identical (under
the symmetry operations of the tetrahedral group), and
they are real, except for an overall complex phase. The
shape of the Wannier functions is again that of sp3 hy-
brids combining to form σ-bond orbitals; inversion sym-
metry is now lost, but the overall shape is otherwise
closely similar to what was found in Si. The Wannier
centers are still found along the bonds, but they have
moved towards the As, at a position that is 0.617 times
the Ga-As bond distance. It should be noted that these
Wannier functions are also very similar to the localized
orbitals that are found in linear-scaling approaches,54

where orthonormality, although not imposed, becomes
exactly enforced in the limit of an increasingly large lo-
calization region. This example highlights the connec-
tions between the two approaches. The characterization
of the maximally-localized Wannier functions indicates
the typical localization of the orbitals that can be ex-
pected in the linear-scaling approach. Moreover, such in-
formation ought to be extremely valuable in constructing
an intelligent initial guess at the solution of the electronic
structure problem in the case of complex or disordered
systems.

As pointed out before, in GaAs we can have different
choices for the Hilbert spaces that can be considered, so
we also studied the case in which only the bottom band,
or the top three, are used as an input for the the min-
imization procedure. Table III shows the spread func-
tional and its various contributions for these different
choices, where the bottom band is first treated as iso-
lated; next the three p bands are treated as a separate
group; then these two solutions are used to construct a
four-band solution, without further minimization; and fi-

(a)

[111] Axis
-0.1

0.0

0.1

0.2

(a 0-3
/2
)

Ga  As

(b)

FIG. 2. Maximally-localized Wannier function in GaAs, for
the 8 × 8 × 8 k-point sampling. (a) Profile along the Ga-As
bond. (b) Contour plot in the (110) plane of the bond chains.
The other Wannier functions lie on the other three tetrahedral
bonds and are related by tetrahedral symmetries to the one
shown.

14

Sparsity/locality: better interpretability and computational efficiency.
2Marzari-Vanderbilt, PRB (56), 97



Potential Applications III. Quantum chemistry continued.

We construct nearly optimally localized basis functions {ψloci }ni=1

that optimally approximates the eigenspace in the sense of

Eoc(Ψ
loc;L−1) := min

Kn∈Rn×n

Kn�0

‖L−1−Ψ locKn

(
Ψ loc

)T ‖2 ≤ Ceλn(L−1),

Another natural choice to define the compression error:

Ẽoc(Ψ) = ‖PVn
− PΨ‖2 =

∥∥∥∥∥
n∑

i=1

eie
T
i − PΨ

∥∥∥∥∥
2

,

where Vn is the first n-dimensional eigenspace span{e1, . . . , en} and
PV is the orthogonal projection from L2(D) to its subspace V .

Eoc(Ψ ;L−1) = min
Kn∈Rn×n, Kn�0

∥∥∥∥∥
∞∑

i=1

1

λi
eie

T
i −ΨKnΨT

∥∥∥∥∥
2

.

We believe that Eoc(Ψ ;L−1) is a better criterion for operator
compression because it takes into consideration the decay of the
eigenvalues of the solution operator L−1.



Our construction and theoretical results
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Figure: Left: 8 localized basis functions for −∆ with periodic BC.
Middle and right: 2 localized basis functions for ∆2 with homogeneous
Dirichlet BC.



Our construction of {ψloci }ni=1

1 Choose h > 0. Partition the physical domain
D using a regular partition {τi}mi=1 with mesh
size h.

2 Choose r > 0, say r = 2h log(1/h). For each
patch τi, Sr is the union of the subdomains
τi′ intersecting B(xi, r) (for some xi ∈ τi).

3 Pk−1(τi) is the space of all d-variate
polynomials of degree at most k − 1 on the
patch τi. Q =

(
k+d−1
d

)
is its dimension.

{ϕi,q}Qq=1 is a set of orthogonal basis
functions for Pk−1(τi).

Figure: A regular
partition, local patch τi
and its associated Sr.

ψloci,q = arg min
ψ∈Hk

B

‖ψ‖2H

s.t.

∫
Sr

ψϕj,q′ = δiq,jq′ , ∀1 ≤ j ≤ m, 1 ≤ q′ ≤ Q,

ψ(x) ≡ 0, x ∈ D\Sr,

where Hk
B is the solution space (with some prescribed BC), ‖ · ‖H is the energy

norm associated with L and the BC.



Our construction Ψ loc := {ψloci,q }m,Qi=1,q=1

Theorem (Hou-Zhang-2016)

Suppose Hk
B = Hk

0 (D) and Lu = (−1)k
∑

|σ|=|γ|=k
Dσ(aσγD

γu). Assume that

L is self-adjoint, positive definite and strongly elliptic, and that there exists
θmin, θmax > 0 such that

θmin‖ξ‖2k ≤
∑

|σ|=|γ|=k

aσγξ
σξγ ≤ θmax‖ξ‖2k, ∀ξ ∈ Rd.

Then for r ≥ Crh log(1/h), we have

1

‖L−1f −Ψ locL−1
n (Ψ loc)T f‖H ≤ Ceh

k

√
θmin

‖f‖2 ∀f ∈ L2(D), (7)

where Ln is the stiffness matrix under basis functions Ψ loc.

2

Eoc(Ψ
loc;L−1) ≤ C2

eh
2k

θmin
. (8)

Here, the constant Cr only depends on the contrast θmax
θmin

, and Ce is
independent of the coefficients.



Several remarks

Theorem (Hou-Zhang-2016) also applies to L with low order terms,
i.e. Lu = (−1)k

∑
|σ|,|γ|≤k

Dσ(aσγD
γu).

Theorem (Hou-Zhang-2016) also applies to other homogeneous
boundary conditions, like periodic BC, Robin BC and mixed BC.

For Hk
B = H1

0 (D), i.e. second order elliptic operators with zero
Dirichlet BC, Theorem (Hou-Zhang-2016) have been proved in
Owhadi-2015. A similar result for Hk

B = H1
0 (D) was also provided in

Målqvist-Peterseim-2014. In this case, Our proof improves the
estimates of the constants Cr and Ce.

For other BCs, operators with lower order terms, and high-order
elliptic operators, new techniques and concepts have been developed.
Among them, the most important three new techniques are

a projection-type polynomial approximation property in Hk(D),
the notion of the strong ellipticity 3,
an inverse energy estimate for functions in
Ψ := span{ψi,q : 1 ≤ i ≤ m, 1 ≤ q ≤ Q}.

3Equivalent to uniform ellipticity when d = 1, 2 or k = 1. Slightly stronger than
uniform ellipticity in other cases; counter examples exist but difficult to construct.



Roadmap of the proof: Error estimate

Theorem (An error estimate based on projection-type approximation)

Suppose there is a n-dimensional subspace Φ ⊂ L2(D) with basis {ϕi}ni=1 such
that

‖u− P(L2)
Φ u‖L2 ≤ kn‖u‖H ∀u ∈ Hk(D). (9)

Let Ψ be the n-dimensional subspace in Hk(D) (also in Hk
B(D)) spanned by

{L−1ϕi}ni=1. Then

1 For any f ∈ L2(D) and u = L−1f , we have

‖u− P(Hk
B)

Ψ u‖H ≤ kn‖f‖L2 . (10)

2 We have
Eoc(Ψ ;L−1) ≤ k2

n . (11)

k = 1: Φ piecewise constant functions. By the Poincare inequality, it is

easy to obtain ‖u− P(L2)
Φ u‖L2 ≤ Cph√

θmin

‖u‖H .

k ≥ 2: Φ piecewise polynomials with degree no more than k − 1. By a
projection-type polynomial approximation property in Hk(D), see

Thm 3.1 in Hou-Zhang-PartII, we have ‖u− P(L2)
Φ u‖L2 ≤ Cph

k√
θmin

‖u‖H .



Roadmap of the proof: Error estimate, discussions

Take Hk
B = H1

0 (D) as an example, where Φ is the space of piecewise
constant functions.

Based on a projection-type approximation property, we obtain the
error estimates of the GFEM in the energy norm, i.e.

‖u− P(L2)
Φ u‖L2 ≤ Cprojh‖u‖H ⇒ ‖u− P(H1

0 )
Ψ u‖H ≤ Cprojh‖f‖L2

.

Cproj does not depends on the small scales in the coefficients.

Tranditional interpolation-type estimation requires higher regularity
of the solution u: assume u ∈ H2(D)

|u− Ihu|1,2,D ≤ Ch|u|2,2,D ⇒ ‖u− Ihu‖H ≤ Cinterph‖f‖L2 .

Cinterp depends on the small scales in the coefficients.

Basis functions for Ihu: optimally localized linear nodal basis

Basis functions for P(H1
0 )

Ψ u: global basis functions {L−1ϕi}ni=1



Roadmap of the proof: Basis with exponential decay

Global energy minimizing basis functions

ψi,q = arg min
ψ∈Hk

B

‖ψ‖2H

s.t.

∫
D

ψi,qϕj,q′ = δiq,jq′ ,∀1 ≤ q′ ≤ Q, 1 ≤ j ≤ m.
(12)

Theorem (Energy minimizing basis functions with exponential decay)

{ψi,q : 1 ≤ i ≤ m, 1 ≤ q ≤ Q} and {L−1ϕi,q : 1 ≤ i ≤ m, 1 ≤ q ≤ Q}
span the same space Ψ.

ψi,q decays exponentially fast away from its associated patch τi.

Intuition: We apply a linear transform to {L−1ϕi,q : 1 ≤ i ≤ m, 1 ≤ q ≤ Q}
such that the new basis function ψi,q has zero moments up to the (k − 1)-th

order on any patch other than τi.



Roadmap of the proof: Basis with exponential decay

Global energy minimizing basis functions

ψi,q = arg min
ψ∈Hk

B

‖ψ‖2H

s.t.

∫
D

ψi,qϕj,q′ = δiq,jq′ ,∀1 ≤ q′ ≤ Q, 1 ≤ j ≤ m.
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such that the new basis function ψi,q has zero moments up to the (k − 1)-th

order on any patch other than τi.



Roadmap of the proof: Basis with exponential decay

ψi,q = arg min
ψ∈Hk

B

‖ψ‖2H

s.t.

∫
D

ψi,qϕj,q′ = δiq,jq′ ,∀1 ≤ q′ ≤ Q, 1 ≤ j ≤ m.

1D second order elliptic operator with
Robin BC:

Lu = −1

2
u′′ +

1

2
u,

u(0)− u′(0) = 0, u(1) + u′(1) = 0,

1D Matérn covariance with ν = 1/2:

K1/2(x, y) = exp(−|x− y|),

L−1f =

∫ 1

0

K1/2(x, y)f(y)dy.

Hk
B = H1([0, 1]), ‖u‖2H =

1

2

(
u(0)2 + u(1)2 +

∫ 1

0

(u′)2 +

∫ 1

0

u2

)
.

Figure: The basis function associated with patch [1/2− h, 1/2], h = 1/64.



Roadmap of the proof: Basis with exponential decay

ψi,q = arg min
ψ∈Hk

B
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2
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(u′)2 +
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0

u2

)
.

Figure: The basis function associated with patch [1/2− h, 1/2], h = 1/64.



Roadmap of the proof: Localized basis

Localized energy minimizing basis functions

ψloci,q = arg min
ψ∈Hk

B

‖ψ‖2H

s.t.

∫

Sr

ψϕj,q′ = δiq,jq′ , ∀1 ≤ j ≤ m, 1 ≤ q′ ≤ Q,

ψ(x) ≡ 0, x ∈ D\Sr.

Because ψi,q decays exponentially fast away from patch τi,
r = O(h log(1/h)) is sufficient to preserve the good error estimate
of Ψ:

‖u−P(Hk
B)

Ψ u‖H ≤
Cph

k

√
θmin

‖f‖L2
⇒ ‖u−P(Hk

B)

Ψloc u‖H ≤
2Cph

k

√
θmin

‖f‖L2
.

With the Aubin-Nistche duality argument, we have proved

Eoc(Ψ
loc;L−1) ≤ 4C2

ph
2k

θmin
.



Roadmap of the proof: Localized basis

Localized energy minimizing basis functions
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k
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Roadmap of the proof: Localized basis

Lu = −1

2
u′′(x) +

1

2
u, u(0)− u′(0) = 0, u(1) + u′(1) = 0.
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Figure: A few basis functions for the case m = 27 and r = 2.4h log2(1/h).
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Compare with the l1-minimization approach

Sparse Operator Compression

min
ψ∈Hk

B

‖ψ‖2H

s.t.

∫

Sr

ψϕj,q′ = δiq,jq′ , ∀j, q′

ψ(x) ≡ 0, x ∈ D\Sr,

Sparsity/locality from moment
condition and exponential decay

l1 minimization

min
Ψ⊂Hk

B

n∑

i=1

‖ψi‖2H + µ

n∑

i=1

‖ψi‖1,

s.t.

∫

D

ψiψj = δi,j ∀1 ≤ i, j ≤ n.

Sparsity/locality from the l1 penalty

See e.g. [Ozoliņš-Lai-Caflisch-Osher, PNAS, 2013].



Sparse OC vs l1 minimization: math formulation

Sparse Operator Compression

min
ψ∈Hk

B

‖ψ‖2H

s.t.

∫

Sr

ψϕj,q′ = δiq,jq′ , ∀j, q′

ψ(x) ≡ 0, x ∈ D\Sr,

l1 minimization

min
Ψ⊂Hk

B

n∑

i=1

‖ψi‖2H + µ

n∑

i=1

‖ψi‖1,

s.t.

∫

D

ψiψj = δi,j ∀1 ≤ i, j ≤ n.

Linear constraints, convex quadratic optimization v.s. orthogonality
constraints, non-convex optimization

Decoupled, parallel implementation v.s. coupled, not easy for
parallel computing

The computational complexity to obtain all n localized basis
functions {ψloci }ni=1 is only of order N log(N), where N is the
degree of freedom in the discretization of L.

The SOC algorithm 4 solves the l1 minimization in an iterative
manner, where the computational cost of each iteration is
comparable with the total cost of the Sparse OC.

4Lai-Osher, SIAM-JSC, 2014



Sparse OC vs l1 minimization: 1D free electron

Free electron with periodic boundary condition:

L = −1

2
∆, D = [0, 50]. 5

Discretization L ∈ R1024×1024.

Number of compressed/localized modes n = 128.

Sparse OC takes 0.035 sec to obtain all 128 localized modes,
without parallel computing.

After 390 iterations, the l1 approach achieves 1e-7 relative energy
decrease, and the iteration is stopped. The total time is 4.426 secs.
Each iteration takes 0.013 sec.

5Lai-Osher, SIAM-JSC, 2014



Sparse OC vs l1 minimization: 1D free electron

Localized/compressed modes
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Figure: A few basis functions for the
case m = 27 and r = h log2(1/h).
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Figure: A few compressed modes,
m = 27, µ = 0.84



Sparse OC vs l1 minimization: 1D free electron

Approximate eigenvalues
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Figure: The eigenvalues of QTHQ and
H; Q is an orthonormal basis of Ψ loc.
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m = 27, µ = 10



Sparse OC vs l1 minimization: 1D free electron

Operator compression error
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Figure: The operator compression error E(Ψ ; (L+ 1)−1) for the Hamiltonian
with localized basis functions Ψ loc.

Other related work
E-Li-Lu, PNAS, 2010 : localization using weight function
(algebraical decay)
Lai-Lu-Osher, CMS, 2015 : convex relaxation of the l1 approach
Hou-Li-Zhang, SIAM-MMS, 2016: ISMD for low rank covariance
matrices
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Operator compression error
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Figure: The operator compression error E(Ψ ; (L+ 1)−1) for the Hamiltonian
with localized basis functions Ψ loc.

Other related work
E-Li-Lu, PNAS, 2010 : localization using weight function
(algebraical decay)
Lai-Lu-Osher, CMS, 2015 : convex relaxation of the l1 approach
Hou-Li-Zhang, SIAM-MMS, 2016: ISMD for low rank covariance
matrices



Fourth order elliptic operators



The 1D biharmonic equation

d2

dx2

(
a(x)

d2u

dx2

)
= f(x), 0 < x < 1,

u(0) = u′(0) = 0, u(1) = u′(1) = 0,

(13)
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Figure: Highly oscillatory flexural rigidity a(x) and load f(x): no scale
separation.



The 1D biharmonic equation: basis functions
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Figure: 1D biharmonic operator: piecewise linear Φ. There are two basis
functions associated with each patch. The multiscale effect is visible in the
basis functions, but the decay rate only depends on the contrast amax

amin
.



The 1D biharmonic equation: finite element solutions

Φ0 space of piecewise constant functions ⇒ Ψ0 ⇒ Ψloc
0 ⇒ u0,h

Φ0 space of piecewise linear functions ⇒ Ψ1 ⇒ Ψloc
1 ⇒ u1,h
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Figure: Error of the finite element solutions: ‖uh,0 − u‖H and ‖uh,1 − u‖H .

To obtain the optimal convergence rate hk, it is necessary to take Φ as
the space of piecewise polynomial space of degree no more than k − 1.
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To obtain the optimal convergence rate hk, it is necessary to take Φ as
the space of piecewise polynomial space of degree no more than k − 1.



The 2D biharmonic operator

L = ∆2, H2
B = H2

0 ([0, 1]2) (14)

Figure: The three basis functions associated with patch
[1/2− hx, 1/2]× [1/2− hy, 1/2]. They clearly show exponential decay.



Ongoing work and conclusions



Discrete setting: graph Laplacians

Lu =− d

dx

(
a(x)

du

dx

)
,

u(0) = u(1).

Figure: A 1D circular
graph.

Lu =−∇ · (a(x)∇u),

u|∂D = 0.

Figure: A 2D lattice
graph.

Lu = f

L : a graph Laplacian

Figure: A social network
graph.

Social networks and transportation networks; genetic data and web
pages; spectral clustering of images; electrical resistor circuits;
elliptic partial differential equations discretized by finite elements; etc

Fundamental problems: fast algorithms for Lu = f and eigen
decomposition of L.



Discrete setting: graph Laplacians

Lu = f

Spielman-Teng (STOC-04, SICOMP-13, SIMAX-14): Nearly-Linear
Time Algorithms for Graph Partitioning and Solving Linear Systems

Maximal spanning tree, support-graph preconditioners, graph
sparsification, etc.
Theoretical results, impractical algorithms.
Gödel Prize 2008, 2015.

Livne-Brandt-2012: Lean Algebraic Multigrid. Practical nearly-linear
time algorithm, no theoretical guarantee.

Sparse operator compression for graph Laplacians? The key is an
efficient algorithm to find a partition {τi}mi=1 of the graph vertices
such that

‖u− P(L2)
Φ u‖L2 ≤ Cp

√
λn(L−1)‖u‖H ,

which is the Poincare inequality on graphs.

Implementing the sparse operator compression in a multigrid manner
leads to a nearly-linear time algorithm.



Conclusions

We have developed a general strategy to compress self-adjoint
second-order and high-order elliptic operators by localized
energy-minimizing basis functions.

For a self-adjoint, bounded and strongly elliptic operator of order 2k
(k ≥ 1), we have proved that with support size h log(1/h), our
localized basis functions can obtain the optimal operator
compression rate O(h2k).

We have applied our new operator compression strategy in different
applications: solving elliptic equations with multiscale coefficients,
Sparse PCA for the Matérn class covariance, and compressing
Hamiltonians in quantum chemistry.

Ongoing work on compressing elliptic operators with high contrast
coefficients, new multi-grid algorithms for elliptic operators, and fast
algorithms for graph partitioning and solving graph Laplacians.
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