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Kinetic equations



Different Q

• Boltmann
• Landau for collisional plasma
• Fokker-Planck
• Neutron transport
• Radiative transfer
• Semiconductor Boltzmann
• Quantum Boltzmann
• etc 



Major challenges

• Multiscale
• Random inputs
• Dimensional curse (6 dimension + dimension 

of random variables)



Scales in kinetic equations



Other scales

• High field limit (balance of collision with 
strong electric/magnetic field)

• Quasineutral limit
• Incompressible Euler/Navier-Stokes or 

diffusion limit

• etc. 



A typical multi-physics/multiscale approach



Asymptotic-preserving (AP) method
-- a different multiscale paradigm



AP diagram (Jin ‘99)



Developments of AP schemes

• Since the 90s there have been many 
developments of AP schemes for various 
kinetic and hyperbolic  equations:  
time-independent: Larsen-Morel-Miller ‘89, Jin-Levermore ‘93,

time-dependent: Jin ‘99,  Jin-Pareschi-Toscani ‘99, Klar ‘99, Degond etc 
‘05, Lemou-Mieusseun ‘08, Filbet-Jin ‘11, Xu etc. ‘15, …

• Reviews
Jin ’12, Acta Numerica (general),   Degond ‘13 (for 
plasma) and Degond-Deluzet 16, JCP (for Plasma)



Uncertainty in kinetic equations

• Kinetic equations are usually derived from N-body Newton’s 
second law, by mean-field limit, BBGKY hierachy, Grad-
Boltzmann limit, etc.

• Collision kernels are often empirical 
• Initial and boundary data contain uncertainties due to 

measurement errors or modelling errors; geometry
• While UQ has been popular in solid mechanics, CFD, elliptic 

equations, etc. there has been little effort for kinetic equation



Example: linear neutron transport with random cross-
sections

(Jin-Xiu-Zhu  JCP’14)

the scattering cross-section, is random
Diffusion limit:  Larsen-Keller, Bardos-Santos-Sentis,      

Bensoussan-Lions-Papanicolaou (for each z)

as                           f



Polynomial Chaos (PC)  approximation

• The PC or generalized PC (gPC)  approach first introduced by 
Wiener,  followed by Cameron-Martin,  and generalized by 
Ghanem and Spanos, Xiu and Karniadakis etc.  has been 
shown to be very efficient in many UQ applications when the 
solution has enough regularity in the random variable

• Let z be a random variable with pdf 
• Let              be the orthonormal polynomials of degree m 

corresponding to the weight 





Intrusive vs Non-Intrusive
• Intrusive:  stochastic Galerkin, change the equations and solvers, nice 

mathematical formulation, better accuracy, 
• Non-intrusive stochastic collocation methods: running deterministic 

solvers, for samplings chosen to be the zeroes of the orthogonal 
polynomials rather than the Monte-Carlo samplings; using 
interpolations/quadrature rules  to get information at non-sampling points 
and other quantities of interests

• Higher dimension using sparse grids

• Babuska, Ghanem-Spanos, Gunzburger, Hesthaven, Hou, Karniadakis, Knio, 
Le Maitre, Majda, Mishira, Oden, Schwab, Stuart, Tempone, Webster, 
Xiu, …



Accuracy and efficiency

• We will consider the gPC-stochastic Galerkin 
(gPC-SG) method

• Under suitable regularity assumptions this 
method has a spectral accuracy 

• Much more efficient than Monte-Carlo 
samplings (halfth-order)

• Our regularity analysis is also important for 
stochastic collocation method 



Stochastic AP schemes (s-AP)



Linear transport equation with random coeffcients



Diffusion limit



gPC approximations



Vectorized version of the deterministic problem
(we can do APUQ!) 

• One can now use deterministic AP schemes to 
solve this system

• Why s-AP?

• When              the gPC-SG for transport equation becomes the 
gPC-SG for the limiting diffusion equation



gPC-SG for limiting diffusion equations

• For diffusion equation:

• Galerkin approximation:

• moments:
• Let                                  then

sy   symm. pos. def



Rigorous analysis (J-J.G. Liu-Z. Ma)

• The regularity in the random space is 
preserved in time, uniformly in

• A good problem to use the gPC-SG for UQ 



Uniform spectral accuracy
• Define the following norms

• Then



Uniform stability

• For a fully discrete scheme  based on the 
deterministic micro-macro decomposition
(f=M + g) based approach (Klar-Schmeiser, Lemou-
Mieusseun)  approach, we can also prove the 
following uniform stability: 



Numerical tests





Boltzmann equation with high dimensional random inputs
(with Ruiwen Shu, Jingwei Hu)











Curse of dimension

• Boltzmann is already 6 dimension in space and 
velocity; random inputs add many more 
dimensions

• SG basis for random space: 
if polynomial of degree n is used, then the 
number of basis is  

















• Since      and       are tensor products of locally supported 
functions, their supports are disjoint if one of their 
components are disjoint.



Regularity in the random space





Accuracy estimate











gPC-SG for many different kinetic equations

• Boltzmann: a fast algorithm for collision operator     (J. Hu-Jin, JCP ‘16), 
sparse grid for high dimensional random space (J. Hu-Jin-R. Shu ‘16):  
initial regularity in the random space is preserved in time;   but not clear 
whether it is stable in the fluid dynamics limit (s-AP?):  gPC-SG for 
nonlinear hyperbolic system is not globally hpperbolic! (APUQ is open)

• Landau equation (J. Hu-Jin-R. Shu, ‘16): not able to prove regularity result 
in the random space (APUQ is open)

• Semiconductor Boltzmann-drift diffusion limit (uniform regularity. APUQ 
OK: Jin-L. Liu ‘15)

• Radiative heat transfer (APUQ OK: Jin-H. Lu ‘16): proof of regularity in 
random space for linearized problem (nonlinear?  Open)

• Valsov-Poisson-Fokker-Planck equation and high field limit (APUQ OK in 
1D: Jin-Y. Zhu ‘16): proof of regularity in random space for linearized 
problem (nonlinear?  Open)



conclusion
• gPC-SG allows us to treat kinetic equations with random inputs in the 

deterministic AP framework
• Many different kinetic equations can be solved this way;
• Rigorous sharp s-AP analysis established for linear transport equation.
• Kinetic equations have the good regularity  in the random space, even for 

the nonlinear Boltzmann equation (Hu-Jin ‘16)
• Many kinetic ideas useful for UQ problems: mean-field approximations; 

moment closure; etc.    （APUQ is one example）
• Some of the estimates/techniques for velocity space can be used in 

random space
• Many open questions, very few existing works
• Kinetic equations are good problems for UQ;    

**     UQ  +  Multiscale   **
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