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Kinetic equations

Of 1
o7+ Vaf = —Q(f . f)(v). xcQCRY veR?

e f(t,x,v) is the phase space distribution function of time t,
position x, and velocity v

@ © is the Knudsen number, ratio of the mean free path and the
characteristic length scale: ¢ ~ O(1) kinetic regime; ¢ < O(1) fluid
regime

e Q(f,f) is the collision operator, a quadratic integral operator
modeling the interaction of particles



Different Q

Boltmann

Landau for collisional plasma
Fokker-Planck

Neutron transport

Radiative transfer
Semiconductor Boltzmann
Quantum Boltzmann

etc



Major challenges

e Multiscale
e Random inputs

e Dimensional curse (6 dimension + dimension
of random variables)



Scales in kinetic equations

* When ¢is small (kn < 0.01), the moments
of f solve the compressive Euler (to
leading order) or Navier-Stokes equations
( to O(¢g) ) of fluid dynamics, except at
initial, boundary or shock layers

* When ¢ Is not small the fluid equations
are not valid, so one has to use the kinetic
equations



Other scales

High field limit (balance of collision with
strong electric/magnetic field)

Quasineutral limit

Incompressible Euler/Navier-Stokes or
diffusion limit

etc.



A typical multi-physics/multiscale approach

 Domain decomposition methods are useful in multiscale
computation:

coupling of microscopic and macroscopic models: multiphysics
simulation

Kinetic hydrodynamic

The difficulty is the interface condition: how to transfer data between
different scales—often no unique solution; where to put the interface?



Asymptotic-preserving (AP) method
-- a different multiscale paradigm

* Work in both kinetic and fluid regimes
by solving only the kinetic equation

* When ¢ is small, and A x, At>> ¢ they
automatically become a fluid dynamic
solver

* No coupling with macroscopic equations,
thus avoid the difficulty of interface
condition/treatment as in other multiscale
methods



AP diagram (Jin ‘99)
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Developments of AP schemes

e Since the 90s there have been many
developments of AP schemes for various
kinetic and hyperbolic equations:

time-independent: Larsen-Morel-Miller ‘89, Jin-Levermore ‘93,

time-dependent: Jin ‘99, Jin-Pareschi-Toscani ‘99, Klar ‘99, Degond etc
‘05, Lemou-Mieusseun ‘08, Filbet-Jin ‘11, Xu etc. ‘15, ...

e Reviews

Jin 12, Acta Numerica (general), Degond ‘13 (for
plasma) and Degond-Deluzet 16, JCP (for Plasma)



Uncertainty in kinetic equations

Kinetic equations are usually derived from N-body Newton’s
second law, by mean-field limit, BBGKY hierachy, Grad-
Boltzmann limit, etc.

Collision kernels are often empirical

Initial and boundary data contain uncertainties due to
measurement errors or modelling errors; geometry

While UQ has been popular in solid mechanics, CFD, elliptic
equations, etc. there has been little effort for kinetic equation



Example: linear neutron transport with random cross-
sections
(Jin-Xiu-Zhu JCP’14)

o(x, 2)

Eaﬂf(t:) T ldxf(“) —

€

1 1 ' ! .
[zf_lf(‘i’}dt‘ — f(v)|,

oz, 3’) the scattering cross-section, is random
Diffusion limit: Larsen-Keller, Bardos-Santos-Sentis,
Bensoussan-Lions-Papanicolaou (for each z)

1
as € — 0t > plt,z) = 1}/ f(v') dv’
< J-1




Polynomial Chaos (PC) approximation

e The PCor generalized PC (gPC) approach first introduced by
Wiener, followed by Cameron-Martin, and generalized by
Ghanem and Spanos, Xiu and Karniadakis etc. has been
shown to be very efficient in many UQ applications when the
solution has enough regularity in the random variable

e Letzbearandom variable with pdf .D( ] > ()

* Let ®,,(2) bethe orthonormal polynomials of degree m
corresponding to the weight p(z) > 0

f‘l"i{:)‘l’j[:j'ﬂ{:) dz = d;5



The Wiener-Askey polynomial chaos for random variables
(table from Xiu-Karniadakis SISC 2002)

Random variables ( | Wiener-Askey chaos {®(()} Support
Continuous (Gaussian Hermite-Chaos (—00, 00)
Gamma Laguerre-Chaos 0, )
Beta Jacobi-Chaos la, b]
Uniform Legendre-Chaos la,b]
Discrete Poisson Charlier-Chaos {0,1,2,...}
Binomial Krawtchouk-Chaos {0,1,...,] N}
Negative Binomial Meixner-Chaos {0.1,2,...}
Hypergeometric Hahn-Chaos {0,1,....N}
TABLE 4.1

The correspondence of the type of Wiener-Askey polynomial chaos and their underlying random
variables (N > 0 is a finite integer).



Intrusive vs Non-Intrusive

Intrusive: stochastic Galerkin, change the equations and solvers, nice
mathematical formulation, better accuracy,

Non-intrusive stochastic collocation methods: running deterministic
solvers, for samplings chosen to be the zeroes of the orthogonal
polynomials rather than the Monte-Carlo samplings; using
interpolations/quadrature rules to get information at non-sampling points
and other quantities of interests

Higher dimension using sparse grids

Babuska, Ghanem-Spanos, Gunzburger, Hesthaven, Hou, Karniadakis, Knio,
Le Maitre, Majda, Mishira, Oden, Schwab, Stuart, Tempone, Webster,
Xiu, ...



Accuracy and efficiency

We will consider the gPC-stochastic Galerkin
(gPC-SG) method

Under suitable regularity assumptions this
method has a spectral accuracy

Much more efficient than Monte-Carlo
samplings (halfth-order)

Our regularity analysis is also important for
stochastic collocation method



Stochastic AP schemes (s-AP)

2.1. Stochastic asymptotic preserving scheme. We now consider the same
problem subject to random inputs.

Oyu® = L(t,x, 2, u"; €), (2.3)

where z € I, C R, d > 1, are a set of random variables equipped with probability
density function p. These random variables characterize the random inputs into the
system. As € — 0, the diffusive limit becomes

du= L(t,x,z,u). (2.4)

We now extend the concept of deterministic AP to the stochastic case. To avoid the
cluttering of notations, let us now focus on the discretization in the random space I..

DEFINITION 2.1 (Stochastic AP). Let S be a numerical scheme for (2.3), which
results in a solution v*(z) € V, in a finite dimensional linear function space V,. Let
v(z) = lim__,qv*(2) be its asymptotic limit. We say that the scheme S is strongly
asymptotic perserving if the limiting solution v(z) satisfies the limiting equation (2.4)
for almost every z € I,.; and it is weakly asymptotic perserving if the limiting solution
v(z) satisfies the limiting equation (2.4) in a weak form.



Linear transport equation with random coeffcients

1
€O f + v, f = J(i:z} E/ f(v')dv' — f] ._
J 1

To understand its diffusion limit, we first split this equation into two equations
for v = 0:

4l
0, f(v) + 00, f(v) = T8 E / ) f(-v)} ?

£

o(xz,2) [1 [} (3.6)
anf-0) = v0.f(-0) = 22 [ gyao— g,
and then consider its even and odd parities
r(t,z,v) = %[f{:fzﬂf,l-‘) + f(t, z, —v)],
(3.7)

j(t,xz,v) = %[f(ta:,v) — f(t,z,—v)l.

€



Diffusion limit

The system (3.6) can then be rewritten as follows:

hr +vdy] = U(J;‘z) (F—1),
€ (z.2) (3.8)
. v olx,z
Oij + —50pr = ——— 2.
t.] + 62 T 62 J
where
1
7(t, x) =/ rdv.
0
As e — 07, (3.8) yields
v
r=T, | = — Oy T.
r=r, j (@.2) T

Substituting this into system (3.8) and integrating over v, one gets the limiting diffu-
sion equation ([23, 1]):

| | 1
O, = O, [ a)ﬁ] . (3.9)



gPC approximations

M

M
(T, 2, ) = Y Pt 2)Pm(2), (T2 t) =) Jm(t,2)®
m=A0

m=1

be the Nth-order gPC expansion for the solutions and

P= (i), G= G )T
. ~ 2 1 .
O +v0,) = E—ES(:F)I[I‘ —r)
A v . . 1 . -
ﬂr%9%1=—§5mh

where

1
f(:czt)zf rdv,
0

and S(z) = (s;5(%))1<ij<m 18 a M x M matrix with entries

siy(@) = [ 0(2,2)8,(2)8, (2)p(2)ds:

z) (6.1)



Vectorized version of the deterministic problem
(we can do APUQ!)

e One can now use deterministic AP schemes to
solve this system

e Why s-AP?

e When ¢—0 the gPC-SG for transport equation becomes the
gPC-SG for the limiting diffusion equation



gPC-SG for limiting diffusion equations

e For diffusion equation:
ug = Ozla(z, 2)Opul
e Galerkin approximation:

M

w(@, z,t) =Y g (t, 2) By ()
=i M
e moments: (Elud=ruo. Var[u] = :D--ﬂr.;i

e let a= (1. --.am)" then
0yt = 0, (Ad,0) A= (a)mxu symm. pos. def

aij(ar) = /u.(.r. 2)Pi(2)Pji(z)p(z)d=.



Rigorous analysis (J-J.G. Liu-Z.

 The regularity in the random space is

preserved in time, uniformly in €
DFf(t,z,v,2) =0 f(t,x,v,2)
Theorem 4.1 (Uniform regularity). Assume
o(2) 2 Omn > 0.
If for some integer m > 0,
|D*o(2)||L < Cs ID* follr(o) < Co. k=0,...,m,

then
|D* flre < C, k=0,---,m, ¥t>0,

where C,, Cy and C' are constants independent of «.

A good problem to use the gPC-SG for UQ

Ma)



Uniform spectral accuracy

Define the following norms
(F.oh= [ fEEwE A IFIE =
1f(t, 2,0, )5 = Z | DYf(t.x, v, )|

a<k
£ (2, -, Hr /Hf (t,x,v,-)|]2 dado.
Then Theorem 4.3 (Uniformly convergence in €). Assume

‘7(:) 2 Tmin -~ 0.

If for some integer m > 0,

lo()|lge < Coy 1D follroy < Co, 1D (0ufo)llw € Coy E=0,..., '
Then the error of the whole gPC-SG method is
('(T)
17— il < S

where C(T') is a constant independent of ¢.



Uniform stability

* For a fully discrete scheme based on the
deterministic micro-macro decomposition

(f=M + g) based approach (Klar-Schmeiser, Lemou-
Mieusseun) approach, we can also prove the
following uniform stability:

min 5 ¢ QH
At <2 2 AC? + gm,



Numerical tests

10
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Fic. 8.13. The linear transport eguation: Errors of the mean (solid line) and standard deviation
(dash line) of ¥ (circle) with respect to the gPC order at e = 107 % Aax — 0.04 (sguares), Hoe — 0.02
(circles). A = 0.01 (stars).
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Fia. 8.14. The linear transpori egquaiion: The mean (left) and standard deviation (right) of
T oat € = 10 %, obtained by the gPC Galerkin at order W = 4 (eircles), the stochastic collocation
method (crosses), and the limiting analytical solution (8.6).



10°

Fig. 8.15. The linear transport equation: Differences in the mean (solid line) and standard
deviation (dash line) of ¥ with respect to €2, between the limiting analytical solution (8.6) and the
4th-order gPC solution with Az = 0.04 (squares), Az = 0.02 (circles) and Az = 0.01 (stars).



Boltzmann equation with high dimensional random inputs
(with Ruiwen Shu, Jingwei Hu)

time  space velocity
| | |
Ohf+v-Vxf=0Q(f,f), teR", xeQcR¥ veRk

f = f(t,x,v) :distribution function of particles

Collision operator:Q(f.9) = /Fd o B(v.vy,0)(f(v))g(V.) = f(v)g(vs))dodv,

Collision kernel: B(v,v.,o) = B(|v — v.|,cos6), cos = ZEVe)

V—v.]

vV + VvV, |V_V*|
T
9 9

i )

Pre/post collision velocity | v/ =

, V+vVe  |[v—v,|
. — a.
x* 2 C)

-




Properties of Q(f,9)

Conservation: / Q(f. /)1, v, |v[*) dv =0
JRA

H-theorem: / Q(f, f)log fdv <0
Rd

0
(27T7)4/2

p . density, u: velocity, T': temperature

p:/fdvg u:l/fvdv3 T——/f|v—u| dv
: P .

v — ul?

Local equilibrium: M (v) = 5T

exp(—

)



Boundary Condition

 Maxwell boundary condition

flt.x,v) =g(t.x,v)., x€df, v-n>0,

—

gt,x,v)=(1 —a)f(t.x,v—2(v-n)n)

reflective

§ /d|ffuswe
2T/ f(t.x,v)|v-n|dv
v-n<0

' (27 )(dv—1) /27 (dvF1)/2 €

T, :wall temperature, o : accommodation
coefficient



BE with uncertainty”

aﬁf(trxrvrz) V- fo(?f?X,_V,_Z) — QZ(ff)
teR..xeQ.veR¥ zel,

7 random variable

I,: d-dimensional random space, with probability
distribution =(z)

Random collision kernel: B(v,v,,w.z) = b(z)Bo(v.,v,.w)

Random boundary condition: 13,(z), a(z)



SG Method for BE

Orf(t,x,v,z) +v-Vxf(t,x,v,z) = Qu(f, )

#

8tfk(tﬂxﬂv) + V- VXfﬁﬂ(tﬁxﬂv) — (Qk(fﬁrﬂ fﬁr)ﬂ ;L — 01

K
Qe(fX. X)) =" SinQ(fi. fi).

i,7=0

where S _/ b(z)®i(z)P;(z)Pr(z)m(z)dz.
I,



Curse of dimension

* Boltzmann is already 6 dimension in space and
velocity; random inputs add many more
dimensions

e SG basis for random space:

if polynomial of degree n is used, then the

number of basis is (n + d)
d



Sparse Grids”

Efficient methods to choose basis functions {®«(z)} in
high dimensional random spaces

Guo and Cheng[?’] use sparse grids for a
discontinuous Galerkin method for transport equations

For sufficiently smooth function, the approximation
error is O(K ~ "+ (log K )mT2)d=1+1) where K is the
number of basis, and m is the degree of polynomials.

Partly break "the curse of dimensionality”

[2] H.-J. Bungartz and M. Griebel, 2004
[3] W. Guo and Y. Cheng, 2016



Restrict to the case 1, =[-1.1]%, and n(z) = %

P™(a,b) : the space of polynomials of degree at
most m on the interval (a,b)

Start with 1-d piecewise polynomial space

Vit ={o:0c P™(—1+27 N 1427 NG 1)), =0,1,...,2Y —1}.

Define Wi as the orthogonal complement of Vi,
N
inside V. Then Vi = @og<n )"

Dimension of Wi is (m +1)2V~"!



* |In d-dimensional random space, define tensor

grlds R%Z_IN" XlN"d W.;n UJT 21 U;:j Zd
* Then V7T, =®oc.<vW. - | | | |
ZoN W W Wl wy wy
When all the P S A
. [f{f"os 1 i 1 @ 2 | 4 i 8
components of j are SRS R A N E
arge, the WP+ 1 2 48
coefficients are very ”0
;,;25 2 i 2 5 4 5 8 i 16
small. But such S NS R N N
70 | | | | |
spaces have a lot of Wi 4 4 8 16 32
basis functions! I""’”f. 5 8 16 52 64



e |ldea: take V., = Po<jl<nWja-

* The most expensive parts are dropped, without affecting
the accuracy too much

¢ 256 — 481 X! w!w!wlwlwe

o w!
* More effective in higher BRSNS
dimensional random W) f2

spaces




Number of Basis Functions
Sparse vs. Full

(a) m=0 (by m=1
N =3 N =41 N =5 N=3 N =4 N =5
d=1 8,8 16,16 32,32 d=1 16,16 32,32 64,64
d=2| 20,64 48,256 112,1024 d=2| 80,256 192,1024 448,4096
d=3 | 38,512 104,4096 272,32768 d=3 | 304,4096 | 832,32768 | 2176,262144
d=4 | 63,4096 | 192,65536 | 552,1048576

Table 1: Comparison of basis function: d is the dimension; in each cell, the left number (blue)
is the number of basis of functions of vT the right number (red) is the number of basis of
functions of V}

Sparse grid: O((m + 1)2V N9
Full grid: O((m + 1)727)



Construct Basis Functions™

Basis functions
of Wi are
locally
supported
piecewise
polynomials

Basis functions
of Wi are
tensor products
of basis of Wg

[4] B. Alpert, 1993



Sparsity of Sijx

* The most expensive part is the computation of
K
Qe(ff. )= sipQfi.fi), k=0,1,..., K
1,7=0

where S, :/ b(z)Pi(z)d;(z)r(z)m(z)dz.
I

« The computation of Q(f;. f;) is unnecessary if

S =0, Vk

* This happens if ®; and ¢; have disjoint supports



 Since ®; and ®; are tensor products of locally supported
functions, their supports are disjoint if one of their
components are disjoint.

Theorem. The patrs of basis functions of ":"-_'{'- with iniersecting sup-
port have total number at most O((m + 172922V y9-1),
famong O([m + 17122 N*-2) padrs)

Figure 3 Demonsceation of sparsity of &0 m=0% =4,d=1



Regularity in the random space

Theorem. Assume that B depends on z linearly, B and 0,5 are

locally integrable and bounded in z. Assume sup,.;

flly < M,
11/°Ilx < oo for some integer k > 0. Then there exists a constant

Cr > 0, depending only on B, M, T, and ||| f°|||x such that

Al < Cry forany t 0,17

. 1/2
|||l f (. )|l|x = sup (Z Ii)éf(tv-Z)lig)

zCl, 1|=0




Projection kError

« Number of basis functions of Vi is K = O((m + 1)%2NNd- 1),
Lemma. For any f € H"(1,). N > 1, we have

HPKf . fHL-?(Iz) < (C(.ﬂl_)i?\f)d Q_N(mﬂ}HfHH"”“(Iz)-

e it

* Express the error in terms of K,

1P f = fllezer,) < Clmd) K=" (log 1) 2 DHY | Fllggma g .

 The space H™(I,) is defined by Ifllxm,) = max || --- 02 |21,

[3] W. Guo, Y. Cheng, 2016




Accuracy estimate

Theorem. Assume the random variable z and initial data f° sat-

wafy the assumplion in the lemma for regularity, and the Galerkin
approzimation f% is uniformly bounded in K, then

1=, < C0) {Clm, d) K" 10g K) ™11 4 K (0)] .},
where e®(0) = [Py f — %20,



Numerical Result 1
Approximation error

* Take function f(z) in random spaces with
dimension 2, 3, 4

1 LN/ 1-K(2)
12) = 5ok P (_QIC(Z)) (ZMZ) T ) ’

where

1 —0.5(0.5 4 0.1sin(z1) + 0.1sin(229)).
Ka=3(z) =1 —0.5(0.5 4 0.1sin(z) + 0.1sin(2z2) + 0.1 cos(z3)).
1—-0.5 2

(0.5 4+ 0.1sin(zy) + 0.1sin(2z2) + 0.1 cos(zz) + 0.1 cos(2z4)).

| f=Pfll 2
Sl 22

 Compare relative error



relatve L amor

relative L® ermor

Figure 1: Comparison of approximation error for d = 2, 3,4. For d = 4 we do not give the result
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107

10°

d=3

—

10’ 0° 1w

number of basis

10f

Full grid error:

Sparse grid error:
()([(—(m—kl) (log I{)(m—}—iZ)(d—l))

O(K ~m+h/dy

by tensor grid because the number of basis functions is too large.




Numerical Result 2: Solve
SE with uncertainty

« 6-dimensional random space. 3 for initial data, 2 for boundary data, 1 for
collision kernel. 1-din X, 2-d in'V

* Initial data: equilibrium with
plr,z) =1, u(z,z)=0, T =140.5(14+0.229)exp(—100(140.1z3)(x—0.4—0.0121)?)

* Boundary data: at # = 0 take Maxwell boundary with
Tw=1+4+02z, a=0.5+0.3z5

« Collision kernel: b(z) =1+ 0.2z

» Take sparse grid basis with m = 0, N = 3, number of basis: 138

« Compare with stochastic collocation method at ¢ = 0.04
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Figuee T Inhomaogeneous Boltzmann equation with randomness on nitlal data. boundary data

and collision kKernel [ = &), Corve: oollocation: asterisks: Calerkin



gPC-SG for many different kinetic equations

Boltzmann: a fast algorithm for collision operator (J. Hu-Jin, JCP “16),
sparse grid for high dimensional random space (J. Hu-Jin-R. Shu “16):
initial regularity in the random space is preserved in time; but not clear
whether it is stable in the fluid dynamics limit (s-AP?): gPC-SG for
nonlinear hyperbolic system is not globally hpperbolic! (APUQ is open)

Landau equation (J. Hu-Jin-R. Shu, ‘16): not able to prove regularity result
in the random space (APUQ is open)

Semiconductor Boltzmann-drift diffusion limit (uniform regularity. APUQ
OK: Jin-L. Liu “15)

Radiative heat transfer (APUQ OK: Jin-H. Lu “16): proof of regularity in
random space for linearized problem (nonlinear? Open)

Valsov-Poisson-Fokker-Planck equation and high field limit (APUQ OK in
1D: Jin-Y. Zhu “16): proof of regularity in random space for linearized
problem (nonlinear? Open)



conclusion

gPC-SG allows us to treat kinetic equations with random inputs in the
deterministic AP framework

Many different kinetic equations can be solved this way;
Rigorous sharp s-AP analysis established for linear transport equation.

Kinetic equations have the good regularity in the random space, even for
the nonlinear Boltzmann equation (Hu-Jin ‘16)

Many kinetic ideas useful for UQ problems: mean-field approximations;
moment closure; etc.  (APUQ is one example)

Some of the estimates/techniques for velocity space can be used in
random space

Many open questions, very few existing works
Kinetic equations are good problems for UQ;
¥+ UQ + Multiscale **
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