Making Sense of the Universe with Supercomputers

Tom Abel

Kavli Institute for Particle Astrophysics and Cosmology, Stanford, SLAC

- Adaptive Mesh Refinement in Cosmology: First Stars
- Adaptive Ray-Tracing for Radiation Transport
- The Phase Space Sheet for collision-less fluids
- Outlook

 mostly in collaboration with Greg Bryan, John Wise, Mike Norman, Oliver Hahn, Raul Angulo, Ralf Kähler, Devon Powell

Universe at 400,000 years

- Temperature 3000K, fluctuations 1 part in 100,000
- Density 300 per cm³, fluctuations 1 part in 1,000
- Hydrogen 76% & Helium 24%. Ion fraction: 2 part in 100,000
- Dark Matter about 6 times more than baryons
- No observations between 400,000 and 900 million years of the universe! So called Dark Ages.

First Things in the Universe Physics problem:

- Initial Conditions measured
- Constituents, Density Fluctuations, Thermal History
- Physics: Gravity: DM & Gas, HD, Chemistry, Radiative Cooling, Radiation Transport, Cosmic Rays, Dust drift & cooling, Supernovae, Stellar evolution, etc.
- Transition from Linear to Non-Linear:
 - Using patched based structured adaptive (space & time) mesh refinement
 - Use a computer!

Ralf Kähler & Tom Abel for PBS Origins. Aired Dec 04

$$rac{
m R_{\odot}}{
m R_{MilkyWay}}pprox 10^{-12}$$

$$\frac{\mathbf{P_{\odot,Kepler}}}{\mathbf{t_{Hubble}(z=30)}} \approx \mathbf{10^{-12}}$$

Adaptive Mesh Refinement

- Enzo: Bryan and Norman 1997-Bryan, Abel & Norman 2002; O'Shea et al 2004; Abel, Wise & Bryan 2006, Bryan et al. 2014
 - Gravity, DM, Gas, Chemistry, Radiation, star formation & feedback, MHD, Cosmic Rays
 - > 300,000 lines of code in C++ and F77
 - Cosmological Radiation Hydrodynamics adapting in space and time
 - Dynamic range up to 1e15 using up to 128 bit precision coordinates in space and time
 - Has been run with up to millions of grid patches
 - Dynamically load balanced parallel with MPI
 - www.enzo-project.org

Primordial Gas Chemistry

(1)
$$H + e^- \rightarrow H^+ + 2e^- (10) H_2^+ + H \rightarrow H_2 + H^+$$

(2) $H^+ + e^- \rightarrow H + h\nu$ (11) $H_2 + H^+ \rightarrow H_2^+ + H$
(3) $He + e^- \rightarrow He^+ + 2e^- (12) H_2 + e^- \rightarrow 2 H + e^-$
(4) $He^+ + e^- \rightarrow He + h\nu$ (13) $H_2 + H \rightarrow 3 H$
(5) $He^+ + e^- \rightarrow He^{++} + 2e^- (14) H^- + e^- \rightarrow H + 2e^-$
(6) $He^{++} + e^- \rightarrow He^+ + h\nu$ (15) $H^- + H \rightarrow 2 H + e^-$
(7) $H + e^- \rightarrow H^- + h\nu$ (15) $H^- + H^+ \rightarrow 2 H$
(8) $H + H^- \rightarrow H_2 + e^-$ (16) $H^- + H^+ \rightarrow H_2^+ + e^-$
(9) $H + H^+ \rightarrow H_2^+ + h\nu$ (18) $H_2^+ + e^- \rightarrow 2 H$
(10) $H_2^+ + H \rightarrow H_2 + H^+$ (19) $H_2^+ + H^- \rightarrow H_2 + H$

- Reaction 8 is much faster than reaction 7.
- I.e. (7) will continue as long as free electrons are available -> H2 formation timescale = recombination timescale
- However, $k_7 \propto T^{0.88}$ hence adiabatic contraction important. Requires sufficiently high virial temperatures and so introduces a temperature (mass) scale based on chemistry

$$T_{vir}^{Chem} \approx 10^3 \, \mathrm{K}$$

Making a proto-star

Zoom in

Dynamic range ~1e12.
> 30 levels of refinement
tens of thousands of grid patches
dynamically load balanced
MPI. 16 processors enough

Typically 3 solar mass dm particles > 8 cells per local Jeans Length non-equilibrium chemistry RT effects above 1e12 cm⁻³

Formation of the very first stars very well suited to ab initio modeling

Can only increase effective Reynolds number with super-computing Average properties such as mass and temperature profiles converge reasonably well. Amount of turbulence, vorticity and magnetic field generated less so.

Mass Scales?

Recap

First Stars are isolated and very massive

Theoretical uncertainty: 30 - 300 solar mass

Many simulations with three different numerical techniques and a large range of numerical resolutions have converged to this result. Some of these calculations capture 20 orders of magnitude in density!

Non-equilibrium chemistry & cooling, three body H2 formation, chemical heating, H2 line transfer, collision induced emission and its transport, and sufficient resolution to capture chemo-thermal and gravitational instabilities.

Stable results against variations on all so far test dark matter variations, as well as strong soft UV backgrounds.

cosmological: Abel et al 1998; Abel, Bryan & Norman 2000, 2002; O'Shea et al 2006; Yoshida et al 2006; Gao et al 2006 idealized spheres: Haiman et al 1997; Nishi & Susa 1998; Bromm et al 1999, 2000, 2002; Ripamonti & Abel 2004

3D Cosmological Radiation Hydrodynamics

Focus on point sources

Early methods: Abel, Norman & Madau 1999 ApJ; Abel & Wandelt 2002, MNRAS; Variable Eddington tensors: Gnedin & Abel 2001, NewA

Abel, Wise & Bryan 06, MNRAS. Keeps time dependence of transfer equation using photon package concept from Monte Carlo techniques, yet not using any random numbers.

Adaptive ray-tracing of PhotonPackages using HEALPIX pixelization of the sphere. Photon conserving at any resolution.

Parallel using MPI and dynamic load

balancing.

$$\frac{1}{c}\frac{\partial I_{\nu}}{\partial t} + \frac{\partial I_{\nu}}{\partial r} = -\kappa I_{\nu}$$

Transfer done along adaptive rays Case B recombination

Feedback changes ICs and stellar masses.

- Input on small scales ...
- Formation of early disks more common?
- Caveat: Small numbers of simulations so far
- Mass range: 10-100 in second generation of metal free stars? This second generation may be much more abundant.

O'Shea, Abel, Whalen & Norman 2005 Yoshida et al 2006

Surprising Life

- No three dimensional stellar evolution calculations but much poorly constrained relevant physics
 - Angular momentum transport
 - Mixing from core, mixing into the atmosphere?
 - Stellar winds, as well as episodic mass loss?
 - Magnetic dynamo? Guaranteed seed field of ~ 4 ×10⁻¹⁰ Gauss from recombination.
- Can do:
 - Proto-stars (1st & 2nd generation)
 - HII regions (HeII & HeIII regions)
 - Metal enrichment & potential GRB remnants
 - Beginning of Cosmic Reionization
- Relevant mass range: 1) 30 300 solar mass and 2) 10 100 solar mass

Cosmological N-body simulations

- Used to make predictions about the distribution of dark matter in the Universe
- Key results
 - Galaxies are arranged in cosmic web of voids/sheets/ filaments/halos
 - Universal spherical Dark Matter density profile (NFW)
 [not understood from analytical arguments]
 - Predicted mass functions of halos and their clustering and velocity statistics
- Primary tool to study observational consequences of LCDM
 - initial conditions: warm vs cold DM, Gaussian vs non-Gaussian
 - sensitivity on global cosmological parameters such as the total matter content and amount of dark energy, etc.
 - Gravitational Lensing signatures

Cosmological N-body simulations

$$\dot{\mathbf{x}} = \mathbf{v}(t) \qquad \dot{\mathbf{v_i}} = -\sum_{i \neq j}^{N} Gm_i m_j \frac{(\mathbf{x_j} - \mathbf{x_i})}{|\mathbf{x_j} - \mathbf{x_i}|^3}$$

- All modern cosmological simulation codes only differ in how they accelerate the computation of the sum over all particles to obtain the net force
- End result are simply the positions and velocities of all particles
- Softening of forces (add epsilon^2 in denominator) avoids singularities.
- Limit N goes to infinity must give correct answer, right?
- Plummer

$$\dot{\mathbf{v}}_i = -\sum_{i \neq j}^{N} G m_i m_j \frac{(\mathbf{x}_j - \mathbf{x}_i)}{(|\mathbf{x}_j - \mathbf{x}_i|^2 + \epsilon^2)^{3/2}}$$

Poisson Equation

CONTINUOM DESCRIPTION

FOR N-DO TOSMICAL

TOTAL MASS DENS

 $: \nabla^{2} \phi = 4\pi 65$

VLASOV EQUATION St + V & f - V Ø & f = 0

N POINT MASSES:
$$\vec{Q}_i = -\sum_{i \neq j} \frac{Gm_i}{|\vec{x}_i - \vec{x}_i|^2 + \epsilon^2} \frac{(\vec{x}_i - \vec{x}_i)}{|\vec{x}_i - \vec{x}_i|}$$

Particle Picture

Particle advection:
$$\frac{\partial \vec{x}}{\partial t} = \vec{v}$$
; $\frac{\partial \vec{v}}{\partial t} = \vec{a}_i$

DISCREVIZE DARR MATTER DISTRIBUTION: Mass or Volum?

TESSELATE SD MANIFOLD & TRACK IN 60 PASSE SPACE

-NATURAL TESSELATION SPLITS CUBE INTO & EQUAL SIZED TETRAHEDRA

- mass per telenhelmen = 1/6 of IM public mass.

- Number the edges of the cube
- think of lattice
- Looping over

The initial convesion (LAGRANGIAN) Lattice jouerates the 6N tetrahedra.

All microphysical phase space information available

Exact Overlap Integrals

- any polyhedra intersections without constructing the overlap
- linear and quadratic function defined over polyhedra
- N-th order polynomial over N-dimensional polyhedron (in prep.)
- fundamental building block for many novel algorithms
- 30 times faster than a recursive algorithm
- Computational Geometry -Patent?
- Powell and Abel (2015)
 JComP

Linear tets + refinement

Linear tets

Enormous accuracy gains with higher order interpolation schemes.

Shown here in the test case of a cube evolving in a static potential.

Hahn & Angulo 2015, MNRAS Angulo et al. in prep.

Warm dark
matter halo with
refinement and
higher order elements

Kates-Harbeck, Totorica, Zrake & Abel 2015, JCompPhys

abs(j_x) with log norm color scale CIC 16X Resolution

abs(j_x) with log norm color scale Triangles 16X Resolution

Lagrangian Tessellation: What's it good for?

- Analyzing N-body sims, including web classification, velocity dispersion, profiles, resolution study (Abel, Hahn, Kaehler 2012)
- DM visualization (Kaehler, Hahn, Abel 2012)
- Better Numerical Methods (Hahn, Abel & Kaehler 2013, Hahn, Angulo & Abel 2014-)
- Finally reliable WDM mass functions below the cutoff scale (Angulo, Hahn, Abel 2013)

- Gravitational Lensing predictions (Angulo, Chen, Hilbert & Abel 2014)
- Cosmic Velocity fields (Hahn, Angulo, Abel 2014)
- The SIC method for Plasma simulations (Vlasov/Poisson) (Kates-Harbeck, Totorica, Zrake & Abel 2015, JComp)
- Exact overlap integrals of Polyhedra (Powell & Abel 2015 JComp.)
- Void profiles, Wojtak, Powell, Abel
 2016 ArXive: 1602.08541
- Totorica, et. al. Weibel instabilities, shocks, particle acceleration in PIC simulations in prep.
- your application here ...

Final Remarks

- In Astrophysics very few problems can be addressed in a laboratory setting and computation takes a special case including "discovery" science.
- Many non-linear timedependent physics applications lead to ever more complex solutions which require ever more memory to be represented.

- Adaptivity is completely essential to these problems. This is true in space, time, phase-space (angles too).
- (Perhaps unsurprisingly)
 Monte Carlo methods often are neither accurate nor efficient. However, they parallelize well and are much simpler to develop.