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General Image Processing Problems

Many image processing problems can be formulated as recovering an image f ∈ Rm×n

from its noisy and linear measurements:

b = Φf + ε

Original Inpainting Denoising Deblurring

Inpainting: Φ = ΦΩ is the subsample operator, and ε = 0.

Denoising: Φ = Id , and ε is the corresponding noise type.

Deblurring: Φ is a convolution kernel.
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Variational Model for Image Processing

Reconstructing f from b is an ill-posed problem, and some regularization is needed in
a variational model:

min
f

R(f ) subject to: b = Φf + ε

Total variation (TV):

R(f ) = ‖∇f ‖L1

Nonlocal total variation (NLTV):

R(f ) = ‖∇w f ‖L1

Wavelet sparsity:

R(f ) = ‖Wf ‖L1

. . . . . .

LDMM: dimension of the patch manifold.

Stanley Osher LDMM in Image Reconstruction
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Patch Set and Patch Manifold of an Image

Image patches have been widely used in image processing.

Original Image f Patch Set P(f ) Patch Manifold M(f )

MP

P(f ) ⊂ Rd is the collection of of all patches in the image f .

M(f ) ⊂ Rd is the underlying patch manifold, discretely sampled by the point
cloud P(f ).

Stanley Osher LDMM in Image Reconstruction
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Low Dimensionality of the Patch Manifold M

For most natural images, the dimension of the patch manifold M is usually much
lower than that of the ambient space.

If f is a smooth image, the patch at coordinate x , px (f ) can be approximated by
a linear function

px (f )(y) ≈ f (x) + (y − x) · ∇f (x).

This implies that dimM≈ 3.

If f is a piecewise constant function corresponding to a cartoon image, then each
patch is characterized by the location and the orientation of the edge. This
means dimM≈ 2.

If f is an oscillatory function corresponding to a texture, then

f (x) ≈ a(x) cos θ(x), px f ≈ aL cos θL,

where aL and θL are linear approximation of a and θ. Hence dimM ≈ 6.

Stanley Osher LDMM in Image Reconstruction
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Dimension of a Manifold
Numerical Implementation

Low Dimensional Manifold Model

The idea of the low dimensional manifold model (LDMM) in image processing is to
use the dimension of the patch manifold M as a regularization.

min
f ,M

dim(M), subject to: b = Φf + ε,P(f ) ⊂M

Question: How to compute dimM?

Stanley Osher LDMM in Image Reconstruction
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Dimension of a Manifold

Proposition

LetM be a smooth submanifold embedded in Rd . For any x ∈M,

dim(M) =
d∑

j=1

‖∇Mαj (x)‖2,

where αi , i = 1, . . . , d are coordinate functions,

∀x ∈M, αi (x) = xi .
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Dimension of a Manifold

Sanity check:
If M = S1, then k = dim(M) = 1, d = dim(R2) = 2, and x = ψ(θ) = (cos θ, sin θ)t is
the coordinate chart.
The metric tensor g = g11 =

〈
∂ψ
∂θ
, ∂ψ
∂θ

〉
= 1 = g11.

The gradient of αi , ∇Mαi = g11∂1αi∂1 = ∂1αi∂1 can be viewed as a vector in the
ambient space R2:

∇j
Mαi = ∂1ψ

j∂1αi

Therefore, we have

∇Mα1 =
〈
∂1ψ

1∂1α1, ∂1ψ
2∂1α1

〉
=
〈
sin2 θ,− cos θ sin θ

〉
,

∇Mα2 =
〈
∂1ψ

1∂1α2, ∂1ψ
2∂1α2

〉
=
〈
− sin θ cos θ, cos2 θ

〉
.

Hence ‖∇Mα1‖2 + ‖∇Mα2‖2 = sin2 θ + cos2 θ = 1

Stanley Osher LDMM in Image Reconstruction
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Low Dimensional Manifold Model

The original optimization problem can be rewritten as:

min
f∈Rm×n

M⊂Rd

d∑
i=1

‖∇Mαi‖2
L2(M)

+ λ‖y − Φf ‖2
2, subject to: P(f ) ⊂M,

where

‖∇Mαi‖L2(M) =

(∫
M
‖∇Mαi (x)‖2dx

)1/2

This optimization problem is nonconvex. It can be solved by alternating the direction
of minimization with respect to f and M. We also perturb the coordinate function α
at each step.

Stanley Osher LDMM in Image Reconstruction
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Alternating Direction of Minimization

min
f∈Rm×n

M⊂Rd

d∑
i=1

‖∇Mαi‖2
L2(M)

+ λ‖y − Φf ‖2
2, subject to: P(f ) ⊂M,

With a guess Mn and f n of the manifold and image, update the coordinate
function αn+1

i , i = 1, · · · , d and f n+1:

(f n+1,αn+1) = arg min
f∈Rm×n,

α1,...,αd∈H1(Mn)

d∑
i=1

‖∇Mnαi‖2
L2(Mn)

+ λ‖b − Φf ‖2
2,

subject to: α(P(f n)) = P(f )

Update M by setting

Mn+1 = α(Mn) =
{

(αn+1
1 (x), . . . , αn+1

d (x))T : x ∈Mn
}
.

Question: How to update f and α

Stanley Osher LDMM in Image Reconstruction
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Split Bregman (ADMM) Iteration

Solve αn+1,k+1
i , i = 1, · · · , d with fixed f n+1,k ,

min
α1,··· ,αd∈H1(Mn)

d∑
i=1

‖∇αi‖2
L2(Mn)

+ µ‖α(P(f n))− P(f n+1,k ) + dk ||2F .

Update f n+1,k+1 as

min
f∈Rm×n

λ‖b − Φf ‖2
2 + µ‖αn+1,k+1(P(f n))− P(f ) + dk‖2

F .

Update dk+1:

dk+1 = dk + αn+1,k+1(P(f n))− P(f n+1,k+1).

Stanley Osher LDMM in Image Reconstruction
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Algorithm

Algorithm 1 LDMM Algorithm - Continuous version

1: while not converge do
2: while not converge do
3:

α
n+1,k+1
i = arg min

αi∈H1(Mn)
‖∇Mnαi‖2

L2(Mn)
+ µ‖αi (P(f n))− Pi (f

n+1,k ) + dk
i ‖

2

4:

f n+1,k+1 = arg min
f∈Rm×n

λ‖b − Φf ‖2
2 + µ‖αn+1,k+1(P(f n))− P(f ) + dk‖2

F

5:

dk+1 = dk + α
n+1,k+1(P(f n))− P(f n+1,k+1).

6: end while
7:

Mn+1 =
{

(αn+1
1 (x), · · · , αn+1

d (x)) : x ∈ Mn
}
.

8: end while

Stanley Osher LDMM in Image Reconstruction
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Graph Laplacian

The key step in the previous algorithm is to solve the following optimization:

min
u∈H1(M)

‖∇Mu‖2
L2(M)

+ µ
∑
y∈Ω

|u(y)− v(y)|2 (1)

Normally, (1) is solved by discretizing ∇Mu by the nonlocal gradient:

∇wu(x, y) =
√

w(x, y) (u(y)− u(x)) .

This leads to solving the following graph Laplacian (GL) problem:

min
u∈Rm×n

∑
x,y∈Ω

w(x, y)(u(x)− u(y))2 + µ
∑
y∈Ω

|u(y)− v(y)|2.

Or equivalently,∑
y∈Ω

w(x, y)(u(x)− u(y)) + µ(u(x)− v(y)) = 0, ∀x ∈ Ω.

Stanley Osher LDMM in Image Reconstruction
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Graph Laplacian

Original Subsample (10%) LDMM GL
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Laplace-Beltrami Equation

By a standard variational approach, we know that problem (1) is equivalent to the
following PDE:

−∆Mu(x) + µ
∑
y∈Ω

δ(x− y)(u(y)− v(y)) = 0, x ∈M

∂u

∂n
(x) = 0, x ∈ ∂M,

(2)

where ∂M is the boudary of M and n is the outer normal of ∂M.

Stanley Osher LDMM in Image Reconstruction
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Point Integral Method

In the point integral method (PIM), the key observation is the following integral
approximation:

∫
M

∆Mu(y)R̄

(
‖x− y‖2

4t

)
dy ≈−

1

t

∫
M

(u(x)− u(y))R

(
‖x− y‖2

4t

)
dy

+ 2

∫
∂M

∂u

∂n
(y)R̄

(
‖x− y‖2

4t

)
dτy.

The function R is a positive function defined on [0,+∞) with compact support (or
fast decay) and

R̄ =

∫ ∞
r

R(s)ds.

Stanley Osher LDMM in Image Reconstruction
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Local Truncation Error

Theorem

LetM be a smooth manifold and u ∈ C3(M), then∥∥∥∥−1

t

∫
M

(u(x)− u(y))Rt(x, y)dy + 2

∫
∂M

∂u

∂n
(y)R̄t(x, y)dτy

−
∫
M

∆Mu(y)R̄t(x, y)dy

∥∥∥∥
L2(M)

= O(t1/4),

where

Rt(x, y) =
1

(4πt)k/2
R

(
‖x− y‖2

4t

)
, R̄t(x, y) =

1

(4πt)k/2
R̄

(
‖x− y‖2

4t

)
.

Stanley Osher LDMM in Image Reconstruction
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Proof of Theorem

Using integration by part, we have∫
Ω

∆u(x)R̄t(x, y)dx = −
∫

Ω
∇u(x) · ∇R̄t(x, y)dx +

∫
∂Ω

∂u

∂n
(x)R̄t(x, y)dx

=
1

2t

∫
Ω

(x− y) · ∇u(x)Rt(x, y)dx +

∫
∂Ω

∂u

∂n
(x)R̄t(x, y)dx

We want to replace ∇u with function value u, which leads us to use the Taylor
expansion

u(x)− u(y) = (x− y) · ∇u(x)−
1

2
(x− y)THu(x)(x− y) + O(‖x− y‖3).

Stanley Osher LDMM in Image Reconstruction
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Proof of Theorem

u(x)− u(y) = (x− y) · ∇u(x)−
1

2
(x− y)THu(x)(x− y) + O(‖x− y‖3).

Integrating on both sides, we have

1

2t

∫
Ω

(x− y) · ∇u(x)Rt(x, y)dx

=
1

2t

∫
Ω

(u(x)− u(y))Rt(x, y)dx

+
1

4t

∫
Ω

(x− y)THu(x)(x− y)Rt(x, y)dx + O(t1/2),

where O(t1/2) is uniform with respect to y. Next we need to estimate the Hu term.

Stanley Osher LDMM in Image Reconstruction
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Proof of Theorem

1

4t

∫
Ω

(x− y)THu(x)(x− y)Rt(x, y)dx

=
1

4t

∫
Ω

(xi − yi )(xj − yj )∂iju(x)Rt(x, y)dx

=−
1

2

∫
Ω

(xi − yi )∂iju(x)∂j (R̄t(x, y))dx

=
1

2

∫
Ω
∂j (xi − yi )∂iju(x)R̄t(x, y)dx +

1

2

∫
Ω

(xi − yi )∂ijju(x)R̄t(x, y)dx

−
1

2

∫
∂Ω

(xi − yi )nj∂iju(x)R̄t(x, y)dx

=
1

2

∫
Ω

∆u(x)R̄t(x, y)dx−
1

2

∫
∂Ω

((x− y)⊗ n) : Hu(x)R̄t(x, y)dx + O(t1/2).

Stanley Osher LDMM in Image Reconstruction
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Proof of Theorem

∫
Ω

∆u(x)R̄t(x, y)dx =
1

2t

∫
Ω

(x− y) · ∇u(x)Rt(x, y)dx +

∫
∂Ω

∂u

∂n
(x)R̄t(x, y)dx

=
1

2t

∫
Ω

(u(x)− u(y))Rt(x, y)dx +
1

4t

∫
Ω

(x− y)THu(x)(x− y)Rt(x, y)dx + O(t1/2)

+

∫
∂Ω

∂u

∂n
R̄t(x, y)dx

=
1

2t

∫
Ω

(u(x)− u(y))Rt(x, y)dx +
1

2

∫
Ω

∆u · R̄t(x, y)dx

−
1

2

∫
∂Ω

((x− y)⊗ n) : Hu(x)R̄t(x, y)dx +

∫
∂Ω

∂u

∂n
R̄t(x, y)dx + O(t1/2)

This implies that:∫
Ω

∆u(x)R̄t(x, y)dx =
1

t

∫
Ω

(u(x)− u(y))Rt(x, y)dx + 2

∫
∂Ω

∂u

∂n
R̄t(x, y)dx

−
∫
∂Ω

((x− y)⊗ n) : Hu(x)R̄t(x, y)dx + O(t1/2)

Stanley Osher LDMM in Image Reconstruction
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Proof of Theorem

∫
Ω

∆u(x)R̄t(x, y)dx =
1

t

∫
Ω

(u(x)− u(y))Rt(x, y)dx + 2

∫
∂Ω

∂u

∂n
R̄t(x, y)dx

−
∫
∂Ω

((x− y)⊗ n) : Hu(x)R̄t(x, y)dx + O(t1/2)

Although
∥∥∫
∂Ω((x− y)⊗ n) : Hu(x)R̄t(x, y)dx

∥∥
L∞(Ω)

= O(1), it can be easily

estimated in L2(Ω):∥∥∥∥∫
∂Ω

((x− y)⊗ n) : Hu(x)R̄t(x, y)dx

∥∥∥∥
L2(Ω)

= O(t1/4).

Therefore ∥∥∥∥−1

t

∫
M

(u(x)− u(y))Rt(x, y)dy + 2

∫
∂M

∂u

∂n
(y)R̄t(x, y)dτy

−
∫
M

∆Mu(y)R̄t(x, y)dy

∥∥∥∥
L2(M)

= O(t1/4),

Stanley Osher LDMM in Image Reconstruction
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Integral Equation

The Laplace-Beltrami equation is:
−∆Mu(x) + µ

∑
y∈Ω

δ(x− y)(u(y)− v(y)) = 0, x ∈M

∂u

∂n
(x) = 0, x ∈ ∂M,

The integral approximation is:∫
M

∆u(x)R̄t(x, y)dx ≈
1

t

∫
M

(u(x)− u(y))Rt(x, y)dx + 2

∫
∂M

∂u

∂n
R̄t(x, y)dx

The integral equation is:∫
M

(u(x)− u(y))Rt(x, y)dx + µt
∑
y∈Ω

R̄t(x, y)(u(y)− v(y)) = 0.

Stanley Osher LDMM in Image Reconstruction
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Discretization

|M|
N

N∑
j=1

Rt(xi , xj )(ui − uj ) + µt
N∑
j=1

R̄t(xi , xj )(uj − vj ) = 0.

The matrix form is:

( L + µ̄W̄)U = µ̄W̄V,

where µ̄ = µtN/|M|,

 L = D−W, W = (wij ), W̄ = (w̄ij ),

and

wij = Rt(xi , xj ), w̄ij = R̄t(xi , xj ), xi , xj ∈ P(f n), i , j = 1, · · · ,N.

Stanley Osher LDMM in Image Reconstruction
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Algorithm (LDMM PIM)

Algorithm 2 LDMM PIM

1: while not converge do
2: Compute the matrices W = (wij )1≤i,j≤N from P(f n)
3: for k = 1 : K do
4:

(L + µ̄W̄ )Uk = µ̄W̄Vk−1.

where Vk =
(
P(f n)− dk

)T
.

5: Update f by solving a least square problem

f n+1,k = arg min
f∈Rm×n

λ‖b − Φf ‖2
2 + µ̄‖UT

k − P(f ) + dk−1‖2
F

6:

dk = dk−1 + UT
k − P(f n+1,k )

7: end for
8: f n+1 = f n+1,K

9: end while

Stanley Osher LDMM in Image Reconstruction
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LDMM PIM in Image Inpainting

Original Subsample LDMM GL LDMM PIM
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Another Reason Why Graph Laplacian Fails

Consider an unknown function u defined on a discrete set Ω̄ ⊂M. Assume that we
know the function value of u on a subset Ω ⊂ Ω̄, u(x) = b(x),∀x ∈ Ω. Assume also
that |Ω| � |Ω̄|. The harmonic extension of u onto Ω is modeled as

min
u∈H1(M)

‖∇Mu‖2, subject to: u(x) = b(x),∀x ∈ Ω

If we discretize the objective function above using graph Laplacian, we have

‖∇Mu‖2 =
∑
x∈Ω̄

∑
y∈Ω̄

w(x , y) (u(x)− u(y))2

=
∑
x∈Ω

∑
y∈Ω̄

w(x , y) (u(x)− u(y))2 +
∑

x∈Ω̄\Ω

∑
y∈Ω̄

w(x , y) (u(x)− u(y))2

The first term on the right is of order |Ω|, which is much smaller than that of the
second term |Ω̄ \ Ω|. This causes the first term to be neglected in the minimization,
and the algorithm sacrifices the continuity of u on Ω for small variation in Ω̄ \ Ω.

Stanley Osher LDMM in Image Reconstruction
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Weighted Graph Laplacian (WGL)

An easy fix for the aforementioned problem is to put an extra weight µ in front of the
first term.

‖∇Mu‖2 = µ
∑
x∈Ω

∑
y∈Ω̄

w(x , y) (u(x)− u(y))2 +
∑

x∈Ω̄\Ω

∑
y∈Ω̄

w(x , y) (u(x)− u(y))2

To balance the orders of the two terms, µ is chosen to be |Ω̄||Ω| .

Notice that if Ω̄ = Ω, the weighted graph Laplacian is just the graph Laplacian.

Stanley Osher LDMM in Image Reconstruction
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LDMM WGL for Image Inpainting

Notice that a key step in LDMM for image inpainting is to solve the following
optimization problem:

min
f∈Rm×n

d∑
i=1

‖∇Mαi‖2
L2(Mk )

,

subject to: αi

(
P(f k )(x)

)
= Pi f (x), ∀x ∈ Ω̄, i = 1, · · · , d ,

f (x) = b(x), ∀x ∈ Ω ⊂ Ω̄,

where Pi f (x) is the i-th element of the patch Pf (x). We use the notation x̂
i−1

to

denote the (i − 1)-th element after x in a patch, i.e. Pi f (x) = f (x̂
i−1

).

If we use periodic padding near the boundary, the ajoint operator P∗i = P−1
i

Stanley Osher LDMM in Image Reconstruction
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LDMM WGL for Image Inpainting

Pi f (x) is the i-th element of the patch Pf (x). x̂
i−1

denotes the (i − 1)-th element

after x in a patch, i.e. Pi f (x) = f (x̂
i−1

). If we use periodic padding near the

boundary, the ajoint operator P∗i = P−1
i

Stanley Osher LDMM in Image Reconstruction
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Weighted Graph Laplacian
Semi-local Patches

LDMM WGL for Image Inpainting

min
f∈Rm×n

d∑
i=1

‖∇Mαi‖2
L2(Mk )

,

subject to: αi

(
P(f k )(x)

)
= Pi f (x), ∀x ∈ Ω̄, i = 1, · · · , d ,

f (x) = b(x), ∀x ∈ Ω ⊂ Ω̄,

Applying WGL, we have the following discretized optimization problem:

min
f∈Rm×n

d∑
i=1

 ∑
x∈Ω̄\Ωi

∑
y∈Ω̄

w̄(x , y)((Pi f (x)− Pi f (y))2

+
mn

|Ω|
∑
x∈Ωi

∑
y∈Ω̄

w̄(x , y)((Pi f (x)− Pi f (y))2

 subject to: f (x) = b(x), x ∈ Ω ⊂ Ω̄

where Ωi =
{
x ∈ Ω̄ : Pi f (x) is sampled

}
, and w̄(x , y) = w(Pf (x),Pf (y))

Stanley Osher LDMM in Image Reconstruction
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LDMM WGL

Using a standard variational approach, the equivalent Euler-Lagrange equation is
[

d∑
i=1

P∗i (hi ) + µ
d∑

i=1

P∗i (gi )

]
(x) = 0, x ∈ Ω̄ \ Ω

f (x) = b(x), x ∈ Ω

where

hi (x) =
∑
y∈Ω̄

2w̄(x , y)(Pi f (x)− Pi f (y))

gi (x) =
∑
y∈Ωi

w̄(x , y)(Pi f (x)− Pi f (y))

Stanley Osher LDMM in Image Reconstruction
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LDMM WGL

hi (x) =
∑
y∈Ω̄

2w̄(x , y)(Pi f (x)− Pi f (y))

P∗i hi (x) = hi (x̂1−i
) =

∑
y∈Ω̄

2w̄(x̂
1−i

, y)
(
Pi f (x̂

1−i
)− Pi f (y)

)
=
∑
y∈Ω̄

2w̄(x̂
1−i

, y)
(
f (x)− f (ŷ

i−1
)
)

=
∑
y∈Ω̄

2w̄(x̂
1−i

, ŷ
1−i

) (f (x)− f (y))

Therefore

d∑
i=1

P∗i (hi )(x) =
d∑

i=1

∑
y∈Ω̄

2w̄(x̂
1−i

, ŷ
1−i

) (f (x)− f (y))

Similarly,

d∑
i=1

P∗i (gi )(x) =
d∑

i=1

∑
y∈Ω

w̄(x̂
1−i

, ŷ
1−i

) (f (x)− f (y))
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Weighted Graph Laplacian
Semi-local Patches

LDMM WGL

The Euler-Lagrange equation becomes:

∑
y∈Ω̄

(
d∑

i=1

2w̄(x̂
1−i

, ŷ
1−i

)

)
(f (x)− f (y))

+ µ
∑
y∈Ω

(
d∑

i=1

w̄(x̂
1−i

, ŷ
1−i

)

)
(f (x)− f (y)) = 0, x ∈ Ω̄ \ Ω

f (x) = b(x), x ∈ Ω

Let w̃(x , y) =
∑d

i=1 w̄(x̂
1−i

, ŷ
1−i

), then

2
∑
y∈Ω̄

w̃(x , y) (f (x)− f (y)) + µ
∑
y∈Ω

w̃(x , y) (f (x)− f (y)) = 0, x ∈ Ω̄ \ Ω

Stanley Osher LDMM in Image Reconstruction



Introduction
Low Dimensional Manifold Model

Point Integral Method
Weighted Graph Laplacian and Semi-local Patches

Results
Conclusion

Weighted Graph Laplacian
Semi-local Patches

LDMM WGL

2
∑
y∈Ω̄

w̃(x , y) (f (x)− f (y)) + µ
∑
y∈Ω

w̃(x , y) (f (x)− f (y)) = 0, x ∈ Ω̄ \ Ω

Let ∆ = diag(sum(W̃12, 2)), then

2L̃11v + 2L̃12b + µ(∆v − W̃12b) = 0

(2L̃11 + µ∆)v = µW̃12b − 2L̃12b

Stanley Osher LDMM in Image Reconstruction
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Semi-local Patches

The semi-local patches are obtained by adding local coordinates to the nonlocal
patches with a weight λ, i.e.

P̄f (x) = [Pf (x), λx] .

When λ = 0, semi-local patches are just nonlocal patches. When λ→∞, the patches
are completely determined by local coordinates. We choose a proper λ to help LDMM
update the “true” metric on the manifold M faster and more reliably.

MP
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Weighted Graph Laplacian
Semi-local Patches

LDMM WGL with Semi-local Patches

Original Subsample (10%) LDMM PIM LDMM WGL

PSNR = 24.74 PSNR = 25.92
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Numerical Results
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2D Image Inpainting
Image Denoising
Hyperspectral Image Inpainting
Reconstruction of PDE Solutions

2D Image Inpainting

Original Subsample (10%) BPFA (23.44dB) LDMM (25.92dB)

Original Subsample (10%) BPFA (24.71dB) LDMM (25.70dB)
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2D Image Inpainting
Image Denoising
Hyperspectral Image Inpainting
Reconstruction of PDE Solutions

Image Denoising

Original Noisy (8.13dB) LDMM (23.46dB) BM3D (23.60dB)

Original Noisy (8.13dB) LDMM (24.54dB) BM3D (24.64dB)
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2D Image Inpainting
Image Denoising
Hyperspectral Image Inpainting
Reconstruction of PDE Solutions

Hyperspectral Image Inpainting

Original Subsampled (5%) Recovered Error (PSNR = 37.9)

Original Subsampled (5%) Recovered Error (PSNR = 38.2)
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2D Image Inpainting
Image Denoising
Hyperspectral Image Inpainting
Reconstruction of PDE Solutions

Noisy and Incomplete Hyperspectral Images

Original at 50th band Subsampled (10%) Recovered

Original at 100th band Subsampled (10%) Recovered
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2D Image Inpainting
Image Denoising
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Reconstruction of PDE Solutions

3D Plasma Reconstruction

Original (20th band) Subsampled (5%) Reconstructed Error

Original (40th band) Subsampled (5%) Reconstructed Error
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2D Image Inpainting
Image Denoising
Hyperspectral Image Inpainting
Reconstruction of PDE Solutions

Shock Reconstruction

Original (t=1) Subsampled (5%) Reconstructed Error

Original (t=2) Subsampled (5%) Reconstructed Error
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2D Image Inpainting
Image Denoising
Hyperspectral Image Inpainting
Reconstruction of PDE Solutions

Shock Reconstruction with Granular Structure

Original Subsampled (10%)

Reconstructed Error
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Image Denoising
Hyperspectral Image Inpainting
Reconstruction of PDE Solutions

Comparison of Compression Results

Every algorithm except for LDMM has access to the entire image. The budge is set to
be 10% of the original data size.

Original Subsampled (10%) LDMM (29.34dB)

DCT (35.63dB) FFT (34.44dB) Wavelet (34.20dB)
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2D Image Inpainting
Image Denoising
Hyperspectral Image Inpainting
Reconstruction of PDE Solutions

Comparison of Super-resolution Results

The image is downsampled with a sampling spacing of 4 in each direction.

Original Bicubic (26.81dB) LDMM (29.20dB)

DCT (26.21dB) FFT (27.43dB) Wavelet (25.47dB)
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2D Image Inpainting
Image Denoising
Hyperspectral Image Inpainting
Reconstruction of PDE Solutions

Neutron Transport

Original Subsampled (5%)

Reconstructed Error
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2D Image Inpainting
Image Denoising
Hyperspectral Image Inpainting
Reconstruction of PDE Solutions

Comparison of Compression Results

Every algorithm except for LDMM has access to the entire image. The budge is set to
be 10% of the original data size.

Original Subsampled (10%) LDMM (40.06dB)

DCT (59.64dB) FFT (47.89dB) Wavelet (50.95dB)
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2D Image Inpainting
Image Denoising
Hyperspectral Image Inpainting
Reconstruction of PDE Solutions

Comparison of Super-resolution Results

The image is downsampled with a sampling spacing of 4 in each direction.

Original Bicubic (39.25dB) LDMM (39.98dB)

DCT (32.64dB) FFT (37.28dB) Wavelet (31.26dB)
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Conclusion and Future Work

Conclusion
LDMM uses the dimension of the patch manifold to regularize the variational
problem.

The Laplace-Beltrami equation is solved via either the point integral method or
the weighted graph Laplacian

Weighted graph Laplacian is much more efficient for image inpainting, because
the equation is solved on the image domain instead of the patch domain

Ongoing and future work
Sparse dimensional manifold model (SDMM) for HSI processing.

LDMM or SDMM with rotating patches with different resolutions.

Stanley Osher LDMM in Image Reconstruction
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