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Introduction

General Image Processing Problems

Many image processing problems can be formulated as recovering an image f € R™*"
from its noisy and linear measurements:

b=®f +¢

riginal

Inpainting Denoising

Deblurring

I‘J

@ Inpainting: ® = ® is the subsample operator, and € = 0.
@ Denoising: ® = Id, and € is the corresponding noise type.

o Deblurring: ® is a convolution kernel.
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Introduction

Variational Model for Image Processing

Reconstructing f from b is an ill-posed problem, and some regularization is needed in
a variational model:

mfin R(f) subject to: b=®f +¢€

o Total variation (TV):

R(f) = IVl
@ Nonlocal total variation (NLTV):

R(f) = [[Vwfll
o Wavelet sparsity:

R(f) = [Wfll

LDMM: dimension of the patch manifold.
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Introduction

Patch Set and Patch Manifold of an Image

Image patches have been widely used in image processing.

Original Image f
I y

Patch Set P(f)
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Patch Manifold M(f)

P

P(f) C RY is the collection of of all patches in the image f.

o M(f) C R? is the underlying patch manifold, discretely sampled by the point

cloud P(f).
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Introduction

Low Dimensionality of the Patch Manifold M

For most natural images, the dimension of the patch manifold M is usually much
lower than that of the ambient space.

o If f is a smooth image, the patch at coordinate x, px(f) can be approximated by
a linear function

Px(F)(y) = f(x) + (y — x) - VF(x).
This implies that dim M = 3.

o If f is a piecewise constant function corresponding to a cartoon image, then each
patch is characterized by the location and the orientation of the edge. This
means dim M = 2.

o If f is an oscillatory function corresponding to a texture, then
f(x) = a(x) cosfO(x), pxf ~ a;cos,

where a; and 6, are linear approximation of a and . Hence dim M =~ 6.
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Low Dimensional Manifold Model
Dimension of a Manifold
I Implementation

Low Dimensional Manifold Model

The idea of the low dimensional manifold model (LDMM) in image processing is to
use the dimension of the patch manifold M as a regularization.

;n/l\q dim(M), subject to: b= ®f +¢,P(f) C M

Question: How to compute dim M?
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Low Dimensional Manifold Model
Dimension of a Manifold
Numerical Implementation

Dimension of a Manifold

Let M be a smooth submanifold embedded in R?. For any x € M,
d
dim(M) = > |V aa (3],
j=1

where o, i = 1,...,d are coordinate functions,

Vx € M, Oc,'(X) = 2%
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Low Dimensional Manifold Model
Dimension of a Manifold
Numerical Implementation

Dimension of a Manifold

Sanity check:

If M = S, then k = dim(M) = 1, d = dim(R?) = 2, and x = ¥(0) = (cos @, sin 0)* is
the coordinate chart.

The metric tensor g = g11 = <‘3—1é’, %’ =l=g"

The gradient of a;, Vo = glld1aj01 = 01001 can be viewed as a vector in the
ambient space R2:

Vi ai = 01l dra;
Therefore, we have

Vmar = <81w181a1, 81w281a1> = <sin2 6, — cos 0 sin 0> ,
VMOQ = <611/11310¢2, 611/1231042> = <7 sin 0 cos 9, COS2 09> o

Hence ||V pa1])? + [V amqaz|]? = sin? 0 + cos? § = 1
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Low Dimensional Manifold Model
Dimension of a Manifold
Numerical Implementation

Low Dimensional Manifold Model

The original optimization problem can be rewritten as:

d
min D IVma@iliZa ngy + Ally = ©F[13,  subject to: P(f) C M,
fACRd =l

where

1/2
Vil = ([ 19amastolPax)

This optimization problem is nonconvex. It can be solved by alternating the direction
of minimization with respect to f and M. We also perturb the coordinate function o
at each step.
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Low Dimensional Manifold Model
Dimension of a Manifold
Numerical Implementation

Alternating Direction of Minimization

d
min DIV at@illa pgy + Ally — SFI3,  subject to: P(f) C M,
fACRd =l

o With a guess M" and f" of the manifold and image, update the coordinate

function oa"“ i=1,---,d and f"t1:
(F™, o) —arg min ZHVMna,HLZ(M" + X||b — ®f|3,

Qe mdeHl(M")

subject to:  a(P(f")) = P(f)
o Update M by setting
Mn+1:a(M {(an+1 . Z+1( ))TZXGMn}.
Question: How to update f and «
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Low Dimensional Manifold Model
Dimension of a Manifold
Numerical Implementation

Split Bregman (ADMM) Iteration

@ Solve afﬂ’k“, i=1,---,d with fixed 1k,
d
min Vil 22 pm + lla(P(F7)) — P(FTTHK) + o2
041,“~,ad6H1(Mn)l_z:;” il2( pny + 1l (P(F")) ( ) [l

o Update fFrt1k+1 55

min N[b— OF[ + ™ HE(P(F7)) — P(F) + ¥}

o Update dk+t1;

dk+1 — dk + an+1,k+1(rp(fn)) _ ’P(f”+1’k+1).
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Low Dimensional Manifold Model
Dimension of a Manifold
Numerical Implementation

Algorithm

Algorithm 1 LDMM Algorithm - Continuous version

1: while not converge do
2:  while not converge do

3:
of M =arg  min |V pnaillf ey + #llai(P(FT) = Pi(FTHE) + df 2
a;EHL(M™M)
4:
Frviit—arg min - Xb— OF|3 + ulla” P = P(F) + ol
5:

gt = gk 4 an+1,k+1(7)(f—n)) _ P(fn+1.k+1)_
6: end while
M= {0 ), 0 x) i x e M}

8: end while
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Graph Laplacian

Point Integral Method Integral Approximation
In Equation and Discretization
Algorithm

Graph Laplacian

The key step in the previous algorithm is to solve the following optimization:

v —v(y)l 1
ueml(n I MUHLz )+M§I|U(Y) v(y)l (1)

Normally, (1) is solved by discretizing V rqu by the nonlocal gradient:

Vwu(x,y) = v/ w(x,y) (uy) — u(x)

This leads to solving the following graph Laplacian (GL) problem:

min Y w(xy)(u(x) = u(y))® +p ) fuly) = v(y)P

Rmxn
ue X,y€Q yeQ

Or equivalently,

D wlxy)(u(x) = u(y)) + p(u(x) = v(y)) =0, Vx€Q.

yeEQ
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Introduction
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Graph Laplacian

Point Integral Method Integral Approximation
Integral Equation and Discretization
Algorithm

Laplace-Beltrami Equation

By a standard variational approach, we know that problem (1) is equivalent to the
following PDE:

—Apu(x)+p Y 6(x—y)(u(y) = v(y)) =0, xeM
ven @
du
—(x)=0, x€oM,
on

where OM is the boudary of M and n is the outer normal of OM.
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Graph Laplacian

Point Integral Method Integral Approximation
Integral Equation and Discretization
Algorithm

Point Integral Method

In the point integral method (PIM), the key observation is the following integral
approximation:

/MAMu(y)P(w> 1wt - wo e (B i)

The function R is a positive function defined on [0, +-00) with compact support (or

fast decay) and
R :/ R(s)ds.
r
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Graph Laplacian
Point Integral Method Integral Approximation
Integral Equation and Discretization

Algorithm

Local Truncation Error

Let M be a smooth manifold and u € C3(M), then

u
——(y

) = e R e A JRe(x, y)dry
& )

M On

-/ AMu(y)R’t(x,y)dyH — o(V/*),
M 2(M)

where

Ri(xy) = — R(”X_y‘lz),ﬁt(x,y)* 1 R(HX—Yﬂz).

(4mt)k/2 4t a (4mt)k/2 4t
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Graph Laplacian

Point Integral Method Integral Approximation
Integral Equation and Discretization
Algorithm

Proof of Theorem

Using integration by part, we have
/Au(x)!?,,»(x7 y)dx = —/ Vu(x) - VR(x, y)dx+/ %(X)Rt(x, y)dx
Q Q aq On

(xfy) Vu(x)Rt(x,y)dx+/ @(X)Rt(x,y)dx

2t 90 On

We want to replace Vu with function value u, which leads us to use the Taylor
expansion

u(x) —uly) = (x—y) - Vu(x) — %(X —¥)THu(x)(x = y) + O(llx — y|*).
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Graph Laplacian

Point Integral Method Integral Approximation
Integral Equation and Discretization
Algorithm

Proof of Theorem

u(x) —uly) = (x—y) - Vu(x) — %(x =) THu(x)(x —y) + O(llx — y[*).

Integrating on both sides, we have
1
57 (=) TulRe(x,)dx
2t Jq
1
5= [ () = uly)) Re(x. y)
tJa
1
+ a5 L= DTHI(x — )R x e+ O(E2),
Q

where O(t!/2) is uniform with respect to y. Next we need to estimate the H,, term.
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Graph Laplacian

Point Integral Method Integral Approximation
Integral Equation and Discretization
Algorithm

Proof of Theorem

1t | = DT = )Rl y)
S / (xi — y1)(x — ¥/)u(x)Re(x, y)dx
-1 / (xi — y1) 35 u(x);(Re(x, y))dx
_*/3j(xi—y,')3g'u(x):‘§r(X, y)dx+%/(x,-—y,—)a,-l-,-u(x).‘?t(x, y)dx
Q
-2 / (xi — yi)m; Oy u(x)Re(x, y) dx

- 1 _
ZE/QAU(X)Rt(x,y)dx -5 /fm((x —y)®@n) : Hy(x)Re(x, y)dx + O(t/?).
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Graph Laplacian

Point Integral Method Integral Approximation
Integral Equation and Discretization
Algorithm

Proof of Theorem

/Au(x)Rt(x y)dx = —/(x —y) - Vu(x)Re(x, y)dx+/ (x)Rt(x y)dx
*i (U(X) — u(y)) Re(x, y)dx + */(X — ) THL(x)(x = y)Re(x, y)dx + O(t'/?)

/ n (x,y)dx

¢ |0t~ uRe(x x4 5 [ A Rexy)

1 - ou -
= / (x=y) @) : Hu(Re(x,)dx + [ SER(x,y)dx+ O(¢/2)
2 Joaq aq On

This implies that:

_ 1 ou =
/S;Au(x)Rt(x, y)dx :? /Q(u(x) — u(y))Re(x,y)dx + 2 /(:m %Rt(x,y)dx

- /m“* —y)®@n) : Hy(x)Re(x, y)dx + O(£/2)
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Graph Laplacian

Point Integral Method Integral Approximation
Integral Equation and Discretization
Algorithm

Proof of Theorem

/QAu(x)Rt(x, o :%/(u(x) )R y)dx+2/ O R, y)x
— [ (= y)@m) : Hu(Re(x.)dx + O(2)

Although || [50((x —y) ®n) : Hu(x)ﬁt(x,y)dxHLoo(Q) = O(1), it can be easily
estimated in L?(Q):

= O(t'/%).
2@

| tom mwR e

Therefore

L

H_%/M(“(X) - U(y))Rt(x,y)dyH/

—/ A pu(y)Re(x, y)dy = O(t'/*4),
M

12(M)
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Graph Laplacian

Point Integral Method Integral Approximation
Integral Equation and Discretization
Algorithm

Integral Equation

The Laplace-Beltrami equation is:

—Apu(x)+p Y 5(x—y)(u(y) — v(y)) =0, x€M
yeQ
Y=o, xeam,

The integral approximation is:

/M Au(x):‘?t(x7 y)dx ~ %/M(u(x) — u(y))Re(x,y)dx + 2/8./\/1 %f_?t(x, y)dx

The integral equation is:

(000 = u)Re(x.y)dx + st 3 Re(x.9)(uly) = v(y)) =

yeQ
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Graph Laplacian

Point Integral Method Integral Approximation
Integral Equation and Discretization
Algorithm

Discretization

M| - N
N D Re(xiy x)(uj — uj) 4+ pt > Re(xi,x;)(uj — vj) = 0.
Jj=1 j=1
The matrix form is:
(L + AW)U = WV,
where i = utN/|M|,
L=D-W, W=(w), W= (),

and

wj = Re(xi,%)), Wi = Re(xi,x;), xi,x; € P(f"), i,j=1,---,N.
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Graph Laplacian

Point Integral Method Integral Approximation
Integral Equation and Discretization
Algorithm

Algorithm (LDMM_PIM)

Algorithm 2 LDMM_PIM

1: while not converge do
2. Compute the matrices W = (w;;)1<;j j<n from P(f")
3: fork=1:K do

4:
(L+ W)Uk = gW V.
where Vi = (P(f") — d¥)".
5: Update f by solving a least square problem
Frbk —arg min A|b— |3 + AUT — P(F) + d* L2
fERMXn
6:

dk — dk71 + UIZ— _ P(f"+1’k)

7. end for
8: fn+1 — fn+1,K

9: end while
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Introduction
Low Dimensional Manifold Model Graph Laplacian

Point Integral Method Integral Approximation
Weighted Graph Laplacian and Semi-local Integral Equation and Discretization
Algorithm
Conclu

LDMM_PIM in Image Inpainting

Original Subsample

I

LDMM_GL LDMM_PIM

AL

i ’ﬂ’fﬁ
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Weighted Graph Laplacian
Weighted Graph Laplacian and Semi-local Patches Semi-local Patches

Another Reason Why Graph Laplacian Fails

Consider an unknown function u defined on a discrete set Q C M. Assume that we
know the function value of u on a subset Q C Q, u(x) = b(x),Vx € Q. Assume also
that |Q| < |©|. The harmonic extension of u onto € is modeled as

m1|n (IVaqul?,  subject to:  u(x) = b(x),Vx € Q
ueH

If we discretize the objective function above using graph Laplacian, we have

IVl = 37 57 wix, ) (u(x) — u(y))?

xeQyeQ
=D wly) (ux) —u(y))’+ D D wixy) (u(x) — u(y))?
xEQyeQ x€Q\QyeQ

The first term on the right is of order |Q2|, which is much smaller than that of the
second term |2\ Q|. This causes the first term to be neglected in the minimization,
and the algorithm sacrifices the continuity of u on Q for small variation in Q \ Q.
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Weighted Graph Laplacian
Weighted Graph Laplacian and Semi-local Patches Semi-local Patches

Weighted Graph Laplacian (WGL)

An easy fix for the aforementioned problem is to put an extra weight w in front of the

first term.
IVamull? =D > wix,y) (u(x) —u()? + D > wlxy) (u(x) — u(y))?
x€EQyeQ xeN\QyeQ
To balance the orders of the two terms, u is chosen to be %

Notice that if Q = Q, the weighted graph Laplacian is just the graph Laplacian.
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Weighted Graph Laplacian
Weighted Graph Laplacian and Semi-local Patches Semi-local Patches

LDMM _WGL for Image Inpainting

Notice that a key step in LDMM for image inpainting is to solve the following
optimization problem:

d

: 2

i ; IV ateilliz pary:

subject to:  a; (P(fk)(x)> = Pif(x), vxeQ,i=1,---,d,
f(x) = b(x), Vx €QCQ,

where P;f(x) is the i-th element of the patch 7f(x). We use the notation x— to
denote the (i — 1)-th element after x in a patch, i.e. Pif(x) = f(x—).

If we use periodic padding near the boundary, the ajoint operator P} = 73171
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Weighted Graph Laplacian
Weighted Graph Laplacian and Semi-local Patches Semi-local Patches

LDMM _WGL for Image Inpainting

Pif(x) is the i-th element of the patch Pf(x). x— denotes the (i — 1)-th element
after x in a patch, i.e. P;f(x) = f(x—). If we use periodic padding near the

boundary, the ajoint operator P/ = 73,-71

’pf(x) When p, =p, =10

w@ + - |

T

Pif (@) '
/ & Pz X Dy

Pif Pf )

Ty gy
~

N=mxn

Stanley Osher LDMM in Image Reconstruction



Weighted Graph Laplacian
Weighted Graph Laplacian and Semi-local Patches Semi-local Patches

LDMM _WGL for Image Inpainting

d

: 2

LB LI

subject to: «; <73(fk)(x)) = Pif(x), VxeQ,i=1,---,d,
f(x) = b(x), VxeQcCQ,

Applying WGL, we have the following discretized optimization problem:

d
fe'ﬁgim”x"z ( >0 > Wl y)(Pif(x) — Pif(y))?

i=1 \xeQ\Q; yeQ

mn

+
1|

Z Z w(x, y)((Pif(x) — ’P,-f(y))2> subject to: f(x) = b(x), x€QCQ

x€Q; yef

where Q; = {x € Q: Pif(x) is sampled}, and w(x,y) = w(Pf(x), Pf(y))
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Weighted Graph Laplacian

Weighted Graph Laplacian and Semi-local Patches Semi-local Patches

LDMM_WGL

Using a standard variational approach, the equivalent Euler-Lagrange equation is

d d
STPEh) +ud Pig)| () =0, xeQ\Q
i=1 i=1

f(x) = b(x), x€Q

where

hi(x) =D 2w(x, y)(Pif (x) — Pif(y))

yeQ

gi(x) = > wlix,y)(Pif(x) = Pif(y))

yEQ;
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Weighted Graph Laplacian
Weighted Graph Laplacian and Semi-local Patches Semi-local Patches

LDMM_WGL

hi(x) =D 2w(x, y)(Pif (x) — Pif(y))

yeQ

Prhi(x) = hilx=) = D 20(x=,¥) (Pif(x=) = Pif(y))

yeQ
=> 2w(x—,y) (f(x) - f(}'ﬁ))
yeQ
= Z 2w (x5, yy=) (f(x) — £(¥))
yeQ
Therefore
d d
DPHBNG) =32 D 20 v=) (F(x) — (1)
i=1 i=1 yeQ
Similarly,

d
2P Z > Wl 5) (F(x) = £())

i=1 yeQ
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Weighted Graph Laplacian
Weighted Graph Laplacian and Semi-local Patches Semi-local Patches

LDMM_WGL

The Euler-Lagrange equation becomes:

d
S <Z 2w (o, ﬁ\)) (F(x) — f(¥))
i=1

yeQ

d
+“Z<Z"_"(>T_Tvyf_7)) (F(x)—f(y)) =0, x€Q\Q
(x) = b(x), e

Let w(x,y) = Z; 1 W= ¥7=), then

23 w(x,y) (F(x) = F(¥)) + 1 Y W(x,y) (F(x) — f(y)) =0, xe€Q\Q

yeQ yEQ
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Weighted Graph Laplacian
Weighted Graph Laplacian and Semi-local Patches Semi-local Patches

LDMM_WGL

2 w6 y) (F() = F)) + 1Y w(xy) (F(x) = f(¥)) =0, x€Q\Q

yeQ ye
Q\Q Q Q\Q Q
W= Wi V15 L= Ly Lio| f=|v

Let A = diag(sum(Wi2,2)), then

2[11V + 2[12b —+ ;,L(AV = leb) =0
(2[11 aF ;LA)V = ,U,Wub = 2[121)
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Weighted Graph Laplacian
Weighted Graph Laplacian and Semi-local Patches Semi-local Patches

Semi-local Patches

The semi-local patches are obtained by adding local coordinates to the nonlocal
patches with a weight X, i.e.

73f(x) = [Pf(x), Ax] .

When A\ = 0, semi-local patches are just nonlocal patches. When A — oo, the patches
are completely determined by local coordinates. We choose a proper A to help LDMM
update the “true” metric on the manifold M faster and more reliably.

P
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Weighted Graph Laplacian
Semi-local Patches

Orlglnal Subsample (10%) LDMM_PIM LDMM_WGL

PSNR = 24. 74
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2D Image Inpainting
Image Denoising

Hyperspectral Image Inpainting
Results Reconstruction of PDE Solutions

Numerical Results
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Introduction
Low Dimensional ifo c 2D Image Inpainting

Point Integrz 1 Image Denoising
Weighted Graph Laplacian and Ser

Hyperspectral Image Inpainting
Reconstruction of PDE Solutions
Conclusion

2D Image Inpainting

Original Subsample (10%)

BPFA (23.44dB) LDMM (25.92dB)

Subsample (10%)
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Results

Image Denoising

Original Noisy (8.13dB)

(8.13dB)

Stanley Osher

2D Image Inpainting

Image Denoising

Hyperspectral Image Inpainting
Reconstruction of PDE Solutions

LDMM (23.46dB)

_ 7 .\U‘V

LDMM in Image Reconstruction
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2D Image Inpainting

Image Denoisi

Hyperspectral Image Inpainting
Results Reconstruction of PDE Solutions

Hyperspectral Image Inpainting

Original
®

Subsampled (5%

Recovered Error (PSNR = 37.9)

Recovered Error (PSNR = 38.2)
R |
e

e

Original

5

Subsampled (5%
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2D Image Inpainting

Image Denoising

Hyperspectral Image Inpainting
Results Reconstruction of PDE Solutions

Noisy and Incomplete Hyperspectral Images

Original at 50th band Subsampled (10%) Recovered

Original at 100th ba Subsampled (10%) Recovered
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2D Image Inpainting

Image Denoisii

Hyperspectral Image Inpainting
Results Reconstruction of PDE Solutions

3D Plasma Reconstruction

Original (20th band) Subsampled (5%) Reconstructed Error

i

Orlgmal (40th band Subsampled (5%)
'L',

Reconstructed Error
T
I -
‘(1
( K,

{

Stanley Osher LDMM in Image Reconstruction



2D Image Inpainting
Image Denoising
Hyperspectral Image Inpainting

Results Reconstruction of PDE Solutions

Shock Reconstruction

Original (t=1)

€«
S »

Reconstructed Error

Subsampled (5%)

Error

(

ub mpled

Original (t=2)
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ge Inpainting

Results Reconstruction of PDE Solutions

Shock Reconstruction with Granular Structure

Original Subsampled (10%)

Lt

=

R b ,

Reconstructed Error
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0 e Image Denoising
Weighted Graph La and Se 2 c Hyperspectral Image Inpainting

Reconstruction of PDE Solutions
Conclusion

Comparison of Compression Results

Every algorithm except for LDMM has access to the entire image. The budge is set to
be 10% of the original data size.

Original Subsampled (10%) LDMM (29.34dB)
o s SR e ~
3 §\. &
y S\A k \
DN
E L R | L LSRR
DCT (35.63dB) FFT (34.44dB) Wavelet (34.20dB)
3, -i 3
- \ /\
w, NN
i S i

Stanley Osher LDMM in Image Reconstruction



2D Image Inpainting
Image Denoising
e (e Nt

Results Reconstruction of PDE Solutions

Comparison of Super-resolution Results

The image is downsampled with a sampling spacing of 4 in each direction.

Original Bicubic (26.81dB) LDMM (29 20dB)
N » A |
% i i 5\ o
A -t\ % .
N L\ . k . {
b ¢ : )
W R as -1.. N T4 \
DCT (26.21dB) FFT (27. 3dB) Wavelet (25.47dB)
) - ~ A} - i '

Y ‘ﬁ‘ & 3 %\ & W
AR LS A

% o e ; €7
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Results

Original

R:-F

Reconstructed

R:-F

Stanley Osher

2D Image Inpainting
Image Denoising
Hyperspectral Image Inpainting

Reconstruction of PDE Solutions

Subsampled (5%)

Error
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2D Image Inpainting
Image Denoisii
Hyperspectral Image Inpainting

Results Reconstruction of PDE Solutions

Comparison of Compression Results

Every algorithm except for LDMM has access to the entire image. The budge is set to
be 10% of the original data size.

LDMM (40.06dB)

- -

Original

Subsampled (10%)

~

avelet (50.95dB)

FFT (47.89dB)
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Comparison of Super-resolution Results

The image is downsampled with a sampling spacing of 4 in each direction.
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Conclusion

Conclusion and Future Work

Conclusion
o LDMM uses the dimension of the patch manifold to regularize the variational
problem.
@ The Laplace-Beltrami equation is solved via either the point integral method or
the weighted graph Laplacian

o Weighted graph Laplacian is much more efficient for image inpainting, because
the equation is solved on the image domain instead of the patch domain

Ongoing and future work
@ Sparse dimensional manifold model (SDMM) for HSI processing.
o LDMM or SDMM with rotating patches with different resolutions.
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