Low Dimensional Manifold Model in Image Reconstruction

Stanley Osher

University of California Los Angeles

Joint work with Zuoqiang Shi and Wei Zhu

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

General Image Processing Problems

Many image processing problems can be formulated as recovering an image $f \in \mathbb{R}^{m \times n}$ from its noisy and linear measurements:

$$b = \Phi f + \epsilon$$

- Inpainting: $\Phi = \Phi_{\Omega}$ is the subsample operator, and $\epsilon = 0$.
- Denoising: $\Phi = Id$, and ϵ is the corresponding noise type.
- Deblurring: Φ is a convolution kernel.

Introduction

LDMM in Image Reconstruction

◆□→ ◆◎→ ◆注→ ◆注→ 注

Variational Model for Image Processing

Reconstructing f from b is an ill-posed problem, and some regularization is needed in a variational model:

$$\min_{f} R(f) \quad \text{subject to:} \quad b = \Phi f + \epsilon$$

• Total variation (TV):

 $R(f) = \|\nabla f\|_{L^1}$

• Nonlocal total variation (NLTV):

 $R(f) = \|\nabla_w f\|_{L^1}$

• Wavelet sparsity:

 $R(f) = \|Wf\|_{L^1}$

•

LDMM: dimension of the patch manifold.

....

Stanley Osher

Introduction

Low Dimensional Manifold Model Point Integral Method Weighted Graph Laplacian and Semi-local Patches Results Conclusion

Patch Set and Patch Manifold of an Image

Image patches have been widely used in image processing.

- $\mathcal{P}(f) \subset \mathbb{R}^d$ is the collection of all patches in the image f.
- $\mathcal{M}(f) \subset \mathbb{R}^d$ is the underlying patch manifold, discretely sampled by the point cloud $\mathcal{P}(f)$.

< 口 > < 同 > < 回 > < 回 > :

Introduction

LDMM in Image Reconstruction

Low Dimensional Manifold Model Point Integral Method Weighted Graph Laplacian and Semi-local Patches Results Conclusion

Low Dimensionality of the Patch Manifold ${\cal M}$

For most natural images, the dimension of the patch manifold ${\cal M}$ is usually much lower than that of the ambient space.

• If f is a smooth image, the patch at coordinate $x, \ p_x(f)$ can be approximated by a linear function

$$p_x(f)(y) \approx f(x) + (y - x) \cdot \nabla f(x).$$

This implies that dim $\mathcal{M} \approx 3$.

- If f is a piecewise constant function corresponding to a cartoon image, then each patch is characterized by the location and the orientation of the edge. This means dim $\mathcal{M}\approx 2.$
- If f is an oscillatory function corresponding to a texture, then

Stanley Osher

$$f(x) \approx a(x) \cos \theta(x), \quad p_x f \approx a_L \cos \theta_L,$$

where a_L and θ_L are linear approximation of a and θ . Hence dim $M \approx 6$.

Dimension of a Manifold Numerical Implementation

Low Dimensional Manifold Model

The idea of the low dimensional manifold model (LDMM) in image processing is to use the dimension of the patch manifold ${\cal M}$ as a regularization.

 $\min_{f,\mathcal{M}} \dim(\mathcal{M}), \quad \text{subject to:} \quad b = \Phi f + \epsilon, \mathcal{P}(f) \subset \mathcal{M}$

Question: How to compute dim \mathcal{M} ?

Dimension of a Manifold Numerical Implementation

Dimension of a Manifold

Proposition

Let \mathcal{M} be a smooth submanifold embedded in \mathbb{R}^d . For any $x \in \mathcal{M}$,

$$\dim(\mathcal{M}) = \sum_{j=1}^{d} \|\nabla_{\mathcal{M}} \alpha_j(\mathbf{x})\|^2,$$

where $\alpha_i, i = 1, \ldots, d$ are coordinate functions,

$$\forall \mathbf{x} \in \mathcal{M}, \quad \alpha_i(\mathbf{x}) = x_i.$$

< ロ > < 同 > < 回 > < 回 > < □ > <

Dimension of a Manifold Numerical Implementation

Dimension of a Manifold

Sanity check:

If $\mathcal{M} = S^1$, then $k = \dim(\mathcal{M}) = 1$, $d = \dim(\mathbb{R}^2) = 2$, and $\mathbf{x} = \psi(\theta) = (\cos \theta, \sin \theta)^t$ is the coordinate chart.

The metric tensor $g=g_{11}=\left\langle rac{\partial\psi}{\partial\theta},rac{\partial\psi}{\partial\theta}
ight
angle =1=g^{11}.$

The gradient of α_i , $\nabla_M \alpha_i = g^{11} \partial_1 \alpha_i \partial_1 = \partial_1 \alpha_i \partial_1$ can be viewed as a vector in the ambient space \mathbb{R}^2 :

$$\nabla^j_{\mathcal{M}}\alpha_i = \partial_1 \psi^j \partial_1 \alpha_i$$

Therefore, we have

$$\begin{split} \nabla_{\mathcal{M}} \alpha_1 &= \left\langle \partial_1 \psi^1 \partial_1 \alpha_1, \partial_1 \psi^2 \partial_1 \alpha_1 \right\rangle = \left\langle \sin^2 \theta, -\cos \theta \sin \theta \right\rangle, \\ \nabla_{\mathcal{M}} \alpha_2 &= \left\langle \partial_1 \psi^1 \partial_1 \alpha_2, \partial_1 \psi^2 \partial_1 \alpha_2 \right\rangle = \left\langle -\sin \theta \cos \theta, \cos^2 \theta \right\rangle. \end{split}$$

Hence $\|\nabla_{\mathcal{M}} \alpha_1\|^2 + \|\nabla_{\mathcal{M}} \alpha_2\|^2 = \sin^2 \theta + \cos^2 \theta = 1$

イロト イポト イヨト イヨト

Dimension of a Manifold Numerical Implementation

Low Dimensional Manifold Model

The original optimization problem can be rewritten as:

$$\min_{\substack{f \in \mathbb{R}^{m \times n} \\ \mathcal{M} \subset \mathbb{R}^{d}}} \sum_{i=1}^{d} \| \nabla_{\mathcal{M}} \alpha_{i} \|_{L^{2}(\mathcal{M})}^{2} + \lambda \|_{\mathcal{Y}} - \Phi f \|_{2}^{2}, \quad \text{subject to: } \mathcal{P}(f) \subset \mathcal{M},$$

where

$$\|\nabla_{\mathcal{M}}\alpha_i\|_{L^2(\mathcal{M})} = \left(\int_{\mathcal{M}} \|\nabla_{\mathcal{M}}\alpha_i(\mathbf{x})\|^2 d\mathbf{x}\right)^{1/2}$$

This optimization problem is nonconvex. It can be solved by alternating the direction of minimization with respect to f and \mathcal{M} . We also perturb the coordinate function α at each step.

(日) (周) (三) (三)

Dimension of a Manifold Numerical Implementation

Alternating Direction of Minimization

$$\min_{\substack{f \in \mathbb{R}^{m \times n} \\ \mathcal{M} \subset \mathbb{R}^{d}}} \sum_{i=1}^{d} \| \nabla_{\mathcal{M}} \alpha_{i} \|_{L^{2}(\mathcal{M})}^{2} + \lambda \| y - \Phi f \|_{2}^{2}, \quad \text{subject to: } \mathcal{P}(f) \subset \mathcal{M},$$

 With a guess Mⁿ and fⁿ of the manifold and image, update the coordinate function α_iⁿ⁺¹, i = 1, · · · , d and fⁿ⁺¹:

$$(f^{n+1}, \boldsymbol{\alpha}^{n+1}) = \arg \min_{\substack{f \in \mathbb{R}^{m \times n}, \\ \alpha_1, \dots, \alpha_d \in H^1(\mathcal{M}^n)}} \sum_{i=1}^d \|\nabla_{\mathcal{M}^n} \alpha_i\|_{L^2(\mathcal{M}^n)}^2 + \lambda \|b - \Phi f\|_2^2,$$

subject to: $\boldsymbol{\alpha}(\mathcal{P}(f^n)) = \mathcal{P}(f)$

• Update \mathcal{M} by setting

$$\mathcal{M}^{n+1} = \boldsymbol{\alpha}(\mathcal{M}^n) = \left\{ (\alpha_1^{n+1}(\mathbf{x}), \dots, \alpha_d^{n+1}(\mathbf{x}))^T : \mathbf{x} \in \mathcal{M}^n
ight\}.$$

Question: How to update f and α

Dimension of a Manifold Numerical Implementation

Split Bregman (ADMM) Iteration

• Solve
$$\alpha_i^{n+1,k+1}, i=1,\cdots,d$$
 with fixed $f^{n+1,k}$,

$$\min_{\alpha_1,\cdots,\alpha_d\in H^1(\mathcal{M}^n)}\sum_{i=1}^d \|\nabla\alpha_i\|_{L^2(\mathcal{M}^n)}^2 + \mu\|\boldsymbol{\alpha}(\mathcal{P}(f^n)) - \mathcal{P}(f^{n+1,k}) + d^k\|_F^2.$$

$$\min_{f\in\mathbb{R}^{m\times n}}\lambda\|b-\Phi f\|_2^2+\mu\|\boldsymbol{\alpha}^{n+1,k+1}(\mathcal{P}(f^n))-\mathcal{P}(f)+d^k\|_F^2.$$

• Update d^{k+1} :

$$d^{k+1} = d^k + \alpha^{n+1,k+1}(\mathcal{P}(f^n)) - \mathcal{P}(f^{n+1,k+1}).$$

<ロ> (四) (四) (三) (三) (三) (三)

Dimension of a Manifold Numerical Implementation

Algorithm

Algorithm 1 LDMM Algorithm - Continuous version

- 1: while not converge do
- 2: while not converge do
- 3:

$$\alpha_i^{n+1,k+1} = \arg\min_{\alpha_i \in H^1(\mathcal{M}^n)} \|\nabla_{\mathcal{M}^n} \alpha_i\|_{L^2(\mathcal{M}^n)}^2 + \mu \|\alpha_i(\mathcal{P}(f^n)) - \mathcal{P}_i(f^{n+1,k}) + d_i^k\|^2$$

4:

$$f^{n+1,k+1} = \arg\min_{f \in \mathbb{R}^{m \times n}} \quad \lambda \|b - \Phi f\|_2^2 + \mu \|\boldsymbol{\alpha}^{n+1,k+1}(\mathcal{P}(f^n)) - \mathcal{P}(f) + d^k\|_{\mathsf{F}}^2$$

5:

$$d^{k+1} = d^k + \alpha^{n+1,k+1}(\mathcal{P}(f^n)) - \mathcal{P}(f^{n+1,k+1}).$$

6: end while

7:

$$\mathcal{M}^{n+1} = \left\{ (\alpha_1^{n+1}(\mathbf{x}), \cdots, \alpha_d^{n+1}(\mathbf{x})) : \mathbf{x} \in \mathcal{M}^n \right\}.$$

8: end while

æ.

Graph Laplacian Integral Approximation Integral Equation and Discretization Algorithm

Graph Laplacian

The key step in the previous algorithm is to solve the following optimization:

$$\min_{\boldsymbol{u}\in\mathcal{H}^{1}(\mathcal{M})} \|\nabla_{\mathcal{M}}\boldsymbol{u}\|_{L^{2}(\mathcal{M})}^{2} + \mu \sum_{\boldsymbol{y}\in\Omega} |\boldsymbol{u}(\boldsymbol{y}) - \boldsymbol{v}(\boldsymbol{y})|^{2}$$
(1)

Normally, (1) is solved by discretizing $\nabla_{\mathcal{M}} u$ by the nonlocal gradient:

$$abla_w u(\mathbf{x}, \mathbf{y}) = \sqrt{w(\mathbf{x}, \mathbf{y})} \left(u(\mathbf{y}) - u(\mathbf{x}) \right).$$

This leads to solving the following graph Laplacian (GL) problem:

$$\min_{u\in\mathbb{R}^{m\times n}}\sum_{\mathbf{x},\mathbf{y}\in\Omega}w(\mathbf{x},\mathbf{y})(u(\mathbf{x})-u(\mathbf{y}))^2+\mu\sum_{\mathbf{y}\in\Omega}|u(\mathbf{y})-v(\mathbf{y})|^2.$$

Or equivalently,

$$\sum_{\mathbf{y}\in\Omega}w(\mathbf{x},\mathbf{y})(u(\mathbf{x})-u(\mathbf{y}))+\mu(u(\mathbf{x})-v(\mathbf{y}))=0,\quad orall \mathbf{x}\in\Omega.$$

Graph Laplacian

Graph Laplacian Integral Approximation Integral Equation and Discreti Algorithm

Original

Subsample (10%)

LDMM_GL

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Graph Laplacian Integral Approximation Integral Equation and Discretization Algorithm

Laplace-Beltrami Equation

By a standard variational approach, we know that problem (1) is equivalent to the following PDE:

$$\begin{cases} -\Delta_{\mathcal{M}} u(\mathbf{x}) + \mu \sum_{\mathbf{y} \in \Omega} \delta(\mathbf{x} - \mathbf{y})(u(\mathbf{y}) - v(\mathbf{y})) = 0, & \mathbf{x} \in \mathcal{M} \\ & \frac{\partial u}{\partial \mathbf{n}}(\mathbf{x}) = 0, & \mathbf{x} \in \partial \mathcal{M}, \end{cases}$$
(2)

where $\partial \mathcal{M}$ is the boudary of \mathcal{M} and **n** is the outer normal of $\partial \mathcal{M}$.

イロト イポト イヨト イヨト

Graph Laplacian Integral Approximation Integral Equation and Discretization Algorithm

Point Integral Method

In the point integral method (PIM), the key observation is the following integral approximation:

$$\begin{split} \int_{\mathcal{M}} \Delta_{\mathcal{M}} u(\mathbf{y}) \bar{R} \left(\frac{\|\mathbf{x} - \mathbf{y}\|^2}{4t} \right) d\mathbf{y} &\approx -\frac{1}{t} \int_{\mathcal{M}} \left(u(\mathbf{x}) - u(\mathbf{y}) \right) R \left(\frac{\|\mathbf{x} - \mathbf{y}\|^2}{4t} \right) d\mathbf{y} \\ &+ 2 \int_{\partial \mathcal{M}} \frac{\partial u}{\partial \mathbf{n}} (\mathbf{y}) \bar{R} \left(\frac{\|\mathbf{x} - \mathbf{y}\|^2}{4t} \right) d\tau_{\mathbf{y}}. \end{split}$$

The function R is a positive function defined on $[0, +\infty)$ with compact support (or fast decay) and

$$ar{R}=\int_r^\infty R(s)ds.$$

イロト イポト イヨト イヨト

Graph Laplacian Integral Approximation Integral Equation and Discretization Algorithm

Local Truncation Error

Theorem

Let \mathcal{M} be a smooth manifold and $u \in C^3(\mathcal{M})$, then

$$\begin{aligned} \left\| -\frac{1}{t} \int_{\mathcal{M}} \left(u(\mathbf{x}) - u(\mathbf{y}) \right) R_t(\mathbf{x}, \mathbf{y}) d\mathbf{y} + 2 \int_{\partial \mathcal{M}} \frac{\partial u}{\partial \mathbf{n}}(\mathbf{y}) \bar{R}_t(\mathbf{x}, \mathbf{y}) d\tau_{\mathbf{y}} \\ - \int_{\mathcal{M}} \Delta_{\mathcal{M}} u(\mathbf{y}) \bar{R}_t(\mathbf{x}, \mathbf{y}) d\mathbf{y} \right\|_{L^2(\mathcal{M})} &= O(t^{1/4}), \end{aligned}$$

where

$$R_t(\mathbf{x}, \mathbf{y}) = \frac{1}{(4\pi t)^{k/2}} R\left(\frac{\|\mathbf{x} - \mathbf{y}\|^2}{4t}\right), \bar{R}_t(\mathbf{x}, \mathbf{y}) = \frac{1}{(4\pi t)^{k/2}} \bar{R}\left(\frac{\|\mathbf{x} - \mathbf{y}\|^2}{4t}\right).$$

< ロ > < 同 > < 回 > < 回 > < □ > <

Graph Laplacian Integral Approximation Integral Equation and Discretization Algorithm

Proof of Theorem

Using integration by part, we have

$$\begin{split} \int_{\Omega} \Delta u(\mathbf{x}) \bar{R}_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} &= -\int_{\Omega} \nabla u(\mathbf{x}) \cdot \nabla \bar{R}_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} + \int_{\partial \Omega} \frac{\partial u}{\partial \mathbf{n}}(\mathbf{x}) \bar{R}_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} \\ &= \frac{1}{2t} \int_{\Omega} (\mathbf{x} - \mathbf{y}) \cdot \nabla u(\mathbf{x}) R_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} + \int_{\partial \Omega} \frac{\partial u}{\partial \mathbf{n}}(\mathbf{x}) \bar{R}_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} \end{split}$$

We want to replace ∇u with function value u, which leads us to use the Taylor expansion

$$u(\mathbf{x}) - u(\mathbf{y}) = (\mathbf{x} - \mathbf{y}) \cdot \nabla u(\mathbf{x}) - \frac{1}{2} (\mathbf{x} - \mathbf{y})^T \mathbf{H}_u(\mathbf{x}) (\mathbf{x} - \mathbf{y}) + O(\|\mathbf{x} - \mathbf{y}\|^3).$$

Graph Laplacian Integral Approximation Integral Equation and Discretization Algorithm

Proof of Theorem

$$u(\mathbf{x}) - u(\mathbf{y}) = (\mathbf{x} - \mathbf{y}) \cdot \nabla u(\mathbf{x}) - \frac{1}{2} (\mathbf{x} - \mathbf{y})^T \mathbf{H}_u(\mathbf{x}) (\mathbf{x} - \mathbf{y}) + O(\|\mathbf{x} - \mathbf{y}\|^3).$$

Integrating on both sides, we have

$$\begin{split} &\frac{1}{2t} \int_{\Omega} (\mathbf{x} - \mathbf{y}) \cdot \nabla u(\mathbf{x}) R_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} \\ &= \frac{1}{2t} \int_{\Omega} \left(u(\mathbf{x}) - u(\mathbf{y}) \right) R_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} \\ &+ \frac{1}{4t} \int_{\Omega} (\mathbf{x} - \mathbf{y})^T \mathbf{H}_u(\mathbf{x}) (\mathbf{x} - \mathbf{y}) R_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} + O(t^{1/2}), \end{split}$$

where $O(t^{1/2})$ is uniform with respect to y. Next we need to estimate the H_u term.

< ロ > < 同 > < 回 > < 回 > < □ > <

Graph Laplacian Integral Approximation Integral Equation and Discretization Algorithm

Proof of Theorem

$$\begin{split} &\frac{1}{4t} \int_{\Omega} (\mathbf{x} - \mathbf{y})^T \mathbf{H}_u(\mathbf{x})(\mathbf{x} - \mathbf{y}) R_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} \\ &= \frac{1}{4t} \int_{\Omega} (\mathbf{x}_i - \mathbf{y}_i) (\mathbf{x}_j - \mathbf{y}_j) \partial_{ij} u(\mathbf{x}) R_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} \\ &= -\frac{1}{2} \int_{\Omega} (\mathbf{x}_i - \mathbf{y}_i) \partial_{ij} u(\mathbf{x}) \partial_j (\bar{R}_t(\mathbf{x}, \mathbf{y})) d\mathbf{x} \\ &= \frac{1}{2} \int_{\Omega} \partial_j (\mathbf{x}_i - \mathbf{y}_i) \partial_{ij} u(\mathbf{x}) \bar{R}_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} + \frac{1}{2} \int_{\Omega} (\mathbf{x}_i - \mathbf{y}_i) \partial_{ijj} u(\mathbf{x}) \bar{R}_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} \\ &- \frac{1}{2} \int_{\partial\Omega} (\mathbf{x}_i - \mathbf{y}_i) \mathbf{n}_j \partial_{ij} u(\mathbf{x}) \bar{R}_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} \\ &= \frac{1}{2} \int_{\Omega} \Delta u(\mathbf{x}) \bar{R}_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} - \frac{1}{2} \int_{\partial\Omega} ((\mathbf{x} - \mathbf{y}) \otimes \mathbf{n}) : \mathbf{H}_u(\mathbf{x}) \bar{R}_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} + O(t^{1/2}) \end{split}$$

Graph Laplacian Integral Approximation Integral Equation and Discretization Algorithm

Proof of Theorem

$$\begin{split} &\int_{\Omega} \Delta u(\mathbf{x}) \bar{R}_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} = \frac{1}{2t} \int_{\Omega} (\mathbf{x} - \mathbf{y}) \cdot \nabla u(\mathbf{x}) R_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} + \int_{\partial \Omega} \frac{\partial u}{\partial \mathbf{n}} (\mathbf{x}) \bar{R}_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} \\ &= \frac{1}{2t} \int_{\Omega} \left(u(\mathbf{x}) - u(\mathbf{y}) \right) R_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} + \frac{1}{4t} \int_{\Omega} (\mathbf{x} - \mathbf{y})^T \mathbf{H}_u(\mathbf{x}) (\mathbf{x} - \mathbf{y}) R_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} + O(t^{1/2}) \\ &+ \int_{\partial \Omega} \frac{\partial u}{\partial \mathbf{n}} \bar{R}_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} \\ &= \frac{1}{2t} \int_{\Omega} (u(\mathbf{x}) - u(\mathbf{y})) R_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} + \frac{1}{2} \int_{\Omega} \Delta u \cdot \bar{R}_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} \\ &- \frac{1}{2} \int_{\partial \Omega} ((\mathbf{x} - \mathbf{y}) \otimes \mathbf{n}) : \mathbf{H}_u(\mathbf{x}) \bar{R}_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} + \int_{\partial \Omega} \frac{\partial u}{\partial \mathbf{n}} \bar{R}_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} + O(t^{1/2}) \end{split}$$

This implies that:

$$\begin{split} \int_{\Omega} \Delta u(\mathbf{x}) \bar{R}_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} &= \frac{1}{t} \int_{\Omega} (u(\mathbf{x}) - u(\mathbf{y})) R_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} + 2 \int_{\partial \Omega} \frac{\partial u}{\partial \mathbf{n}} \bar{R}_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} \\ &- \int_{\partial \Omega} ((\mathbf{x} - \mathbf{y}) \otimes \mathbf{n}) : \mathbf{H}_u(\mathbf{x}) \bar{R}_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} + O(t^{1/2}) \end{split}$$

Graph Laplacian Integral Approximation Integral Equation and Discretization Algorithm

Proof of Theorem

$$\begin{split} \int_{\Omega} \Delta u(\mathbf{x}) \bar{R}_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} &= \frac{1}{t} \int_{\Omega} (u(\mathbf{x}) - u(\mathbf{y})) R_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} + 2 \int_{\partial \Omega} \frac{\partial u}{\partial \mathbf{n}} \bar{R}_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} \\ &- \int_{\partial \Omega} ((\mathbf{x} - \mathbf{y}) \otimes \mathbf{n}) : \mathbf{H}_u(\mathbf{x}) \bar{R}_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} + O(t^{1/2}) \end{split}$$

Although $\left\|\int_{\partial\Omega}((\mathbf{x} - \mathbf{y}) \otimes \mathbf{n}) : \mathbf{H}_{u}(\mathbf{x})\overline{R}_{t}(\mathbf{x}, \mathbf{y})d\mathbf{x}\right\|_{L^{\infty}(\Omega)} = O(1)$, it can be easily estimated in $L^{2}(\Omega)$:

$$\left\|\int_{\partial\Omega}((\mathbf{x}-\mathbf{y})\otimes\mathbf{n}):\mathsf{H}_u(\mathbf{x})\bar{R}_t(\mathbf{x},\mathbf{y})d\mathbf{x}\right\|_{L^2(\Omega)}=O(t^{1/4}).$$

Therefore

$$\left\| -\frac{1}{t} \int_{\mathcal{M}} \left(u(\mathbf{x}) - u(\mathbf{y}) \right) R_t(\mathbf{x}, \mathbf{y}) d\mathbf{y} + 2 \int_{\partial \mathcal{M}} \frac{\partial u}{\partial \mathbf{n}}(\mathbf{y}) \bar{R}_t(\mathbf{x}, \mathbf{y}) d\tau_{\mathbf{y}} \right. \\ \left. - \int_{\mathcal{M}} \Delta_{\mathcal{M}} u(\mathbf{y}) \bar{R}_t(\mathbf{x}, \mathbf{y}) d\mathbf{y} \right\|_{L^2(\mathcal{M})} = O(t^{1/4}),$$

< ロ > < 同 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Graph Laplacian Integral Approximation Integral Equation and Discretization Algorithm

Integral Equation

The Laplace-Beltrami equation is:

$$\begin{cases} -\Delta_{\mathcal{M}} u(\mathbf{x}) + \mu \sum_{\mathbf{y} \in \Omega} \delta(\mathbf{x} - \mathbf{y})(u(\mathbf{y}) - v(\mathbf{y})) = 0, & \mathbf{x} \in \mathcal{M} \\ \\ \frac{\partial u}{\partial \mathbf{n}}(\mathbf{x}) = 0, & \mathbf{x} \in \partial \mathcal{M}, \end{cases}$$

The integral approximation is:

$$\int_{\mathcal{M}} \Delta u(\mathbf{x}) \bar{R}_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} \approx \frac{1}{t} \int_{\mathcal{M}} (u(\mathbf{x}) - u(\mathbf{y})) R_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} + 2 \int_{\partial \mathcal{M}} \frac{\partial u}{\partial \mathbf{n}} \bar{R}_t(\mathbf{x}, \mathbf{y}) d\mathbf{x}$$

The integral equation is:

$$\int_{\mathcal{M}} (u(\mathbf{x}) - u(\mathbf{y})) R_t(\mathbf{x}, \mathbf{y}) d\mathbf{x} + \mu t \sum_{\mathbf{y} \in \Omega} \bar{R}_t(\mathbf{x}, \mathbf{y}) (u(\mathbf{y}) - v(\mathbf{y})) = 0.$$

< ロ > < 同 > < 回 > < 回 > : < 回 > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □

Graph Laplacian Integral Approximation Integral Equation and Discretization Algorithm

Discretization

$$\frac{|\mathcal{M}|}{N}\sum_{j=1}^{N}R_t(\mathbf{x}_i,\mathbf{x}_j)(u_i-u_j)+\mu t\sum_{j=1}^{N}\bar{R}_t(\mathbf{x}_i,\mathbf{x}_j)(u_j-v_j)=0.$$

The matrix form is:

$$(\mathbf{L} + \bar{\mu}\mathbf{\bar{W}})\mathbf{U} = \bar{\mu}\mathbf{\bar{W}V},$$

where $\bar{\mu} = \mu t N / |\mathcal{M}|$,

$$\mathbf{L} = \mathbf{D} - \mathbf{W}, \quad \mathbf{W} = (w_{ij}), \quad \bar{\mathbf{W}} = (\bar{w}_{ij}),$$

and

$$w_{ij} = R_t(\mathbf{x}_i, \mathbf{x}_j), \quad \bar{w}_{ij} = \bar{R}_t(\mathbf{x}_i, \mathbf{x}_j), \quad \mathbf{x}_i, \mathbf{x}_j \in \mathcal{P}(f^n), \quad i, j = 1, \cdots, N.$$

< ロ > < 同 > < 回 > < 回 > < □ > <

æ.

Graph Laplacian Integral Approximation Integral Equation and Discretization Algorithm

Algorithm (LDMM_PIM)

Algorithm 2 LDMM_PIM

- 1: while not converge do
- 2: Compute the matrices $\boldsymbol{W} = (w_{ij})_{1 \le i,j \le N}$ from $\mathcal{P}(f^n)$
- 3: for k = 1 : K do

4:

$$(\boldsymbol{L}+\bar{\mu}\boldsymbol{\bar{W}})\boldsymbol{U}_{k}=\bar{\mu}\boldsymbol{\bar{W}}\boldsymbol{V}_{k-1}.$$

where $\boldsymbol{V}_k = \left(\mathcal{P}(f^n) - d^k\right)^T$.

5: Update f by solving a least square problem

$$f^{n+1,k} = \arg\min_{f \in \mathbb{R}^{m \times n}} \lambda \|b - \Phi f\|_2^2 + \bar{\mu} \|\boldsymbol{U}_k^T - \mathcal{P}(f) + d^{k-1}\|_F^2$$

6:

$$d^k = d^{k-1} + \boldsymbol{U}_k^T - \mathcal{P}(f^{n+1,k})$$

- 7: end for
- 8: $f^{n+1} = f^{n+1,K}$
- 9: end while

Graph Laplacian Integral Approximation Integral Equation and Discretization Algorithm

LDMM_PIM in Image Inpainting

(日) (四) (日) (日) (日)

Weighted Graph Laplacian Semi-local Patches

Another Reason Why Graph Laplacian Fails

Consider an unknown function u defined on a discrete set $\overline{\Omega} \subset \mathcal{M}$. Assume that we know the function value of u on a subset $\Omega \subset \overline{\Omega}$, u(x) = b(x), $\forall x \in \Omega$. Assume also that $|\Omega| \ll |\overline{\Omega}|$. The harmonic extension of u onto Ω is modeled as

$$\min_{u \in H^1(\mathcal{M})} \|\nabla_{\mathcal{M}} u\|^2, \quad \text{subject to:} \quad u(x) = b(x), \forall x \in \Omega$$

If we discretize the objective function above using graph Laplacian, we have

$$\begin{split} \|\nabla_{\mathcal{M}} u\|^2 &= \sum_{x \in \bar{\Omega}} \sum_{y \in \bar{\Omega}} w(x, y) \left(u(x) - u(y) \right)^2 \\ &= \sum_{x \in \Omega} \sum_{y \in \bar{\Omega}} w(x, y) \left(u(x) - u(y) \right)^2 + \sum_{x \in \bar{\Omega} \setminus \Omega} \sum_{y \in \bar{\Omega}} w(x, y) \left(u(x) - u(y) \right)^2 \end{split}$$

The first term on the right is of order $|\Omega|$, which is much smaller than that of the second term $|\overline{\Omega} \setminus \Omega|$. This causes the first term to be neglected in the minimization, and the algorithm sacrifices the continuity of u on Ω for small variation in $\overline{\Omega} \setminus \Omega$.

イロト イポト イヨト イヨト

Weighted Graph Laplacian Semi-local Patches

Weighted Graph Laplacian (WGL)

An easy fix for the aforementioned problem is to put an extra weight μ in front of the first term.

$$\|\nabla_{\mathcal{M}} u\|^{2} = \mu \sum_{x \in \Omega} \sum_{y \in \overline{\Omega}} w(x, y) \left(u(x) - u(y) \right)^{2} + \sum_{x \in \overline{\Omega} \setminus \Omega} \sum_{y \in \overline{\Omega}} w(x, y) \left(u(x) - u(y) \right)^{2}$$

To balance the orders of the two terms, μ is chosen to be $\frac{|\overline{\Omega}|}{|\Omega|}$.

Notice that if $\overline{\Omega} = \Omega$, the weighted graph Laplacian is just the graph Laplacian.

Weighted Graph Laplacian Semi-local Patches

LDMM_WGL for Image Inpainting

Notice that a key step in LDMM for image inpainting is to solve the following optimization problem:

$$\begin{split} \min_{f \in \mathbb{R}^{m \times n}} \sum_{i=1}^{d} \| \nabla_{\mathcal{M}} \alpha_i \|_{L^2(\mathcal{M}^k)}^2, \\ \text{subject to:} \quad \alpha_i \left(\mathcal{P}(f^k)(x) \right) = \mathcal{P}_i f(x), \qquad \forall x \in \bar{\Omega}, i = 1, \cdots, d, \\ \quad f(x) = b(x), \qquad \forall x \in \Omega \subset \bar{\Omega}, \end{split}$$

where $\mathcal{P}_i f(x)$ is the *i*-th element of the patch $\mathcal{P}f(x)$. We use the notation $x_{\widehat{i-1}}$ to denote the (i-1)-th element after x in a patch, i.e. $\mathcal{P}_i f(x) = f(x_{\widehat{i-1}})$. If we use periodic padding near the boundary, the ajoint operator $\mathcal{P}_i^* = \mathcal{P}_i^{-1}$

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Weighted Graph Laplacian Semi-local Patches

LDMM_WGL for Image Inpainting

 $\mathcal{P}_i f(x)$ is the *i*-th element of the patch $\mathcal{P}f(x)$. $x_{\widehat{i-1}}$ denotes the (i-1)-th element after x in a patch, i.e. $\mathcal{P}_i f(x) = f(x_{\widehat{i-1}})$. If we use periodic padding near the boundary, the ajoint operator $\mathcal{P}_i^* = \mathcal{P}_i^{-1}$

< ロ > < 同 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Weighted Graph Laplacian Semi-local Patches

LDMM_WGL for Image Inpainting

$$\begin{split} \min_{f \in \mathbb{R}^{m \times n}} \sum_{i=1}^{d} \| \nabla_{\mathcal{M}} \alpha_i \|_{L^2(\mathcal{M}^k)}^2, \\ \text{subject to:} \quad \alpha_i \left(\mathcal{P}(f^k)(x) \right) = \mathcal{P}_i f(x), \qquad \forall x \in \bar{\Omega}, i = 1, \cdots, d, \\ f(x) = b(x), \qquad \forall x \in \Omega \subset \bar{\Omega}, \end{split}$$

Applying WGL, we have the following discretized optimization problem:

$$\begin{split} \min_{f \in \mathbb{R}^{m \times n}} \sum_{i=1}^{d} \left(\sum_{x \in \bar{\Omega} \setminus \Omega_{i}} \sum_{y \in \bar{\Omega}} \bar{w}(x, y) ((\mathcal{P}_{i}f(x) - \mathcal{P}_{i}f(y))^{2} \\ &+ \frac{mn}{|\Omega|} \sum_{x \in \Omega_{i}} \sum_{y \in \bar{\Omega}} \bar{w}(x, y) ((\mathcal{P}_{i}f(x) - \mathcal{P}_{i}f(y))^{2} \right) \quad \text{subject to: } f(x) = b(x), \quad x \in \Omega \subset \bar{\Omega} \end{split}$$

where $\Omega_{i} = \{x \in \bar{\Omega} : \mathcal{P}_{i}f(x) \text{ is sampled} \}, \text{ and } \bar{w}(x, y) = w(\mathcal{P}f(x), \mathcal{P}f(y)) \end{split}$

(日) (同) (三) (三)

Weighted Graph Laplacian Semi-local Patches

LDMM_WGL

Using a standard variational approach, the equivalent Euler-Lagrange equation is

$$\begin{cases} \left[\sum_{i=1}^{d} \mathcal{P}_{i}^{*}(h_{i}) + \mu \sum_{i=1}^{d} \mathcal{P}_{i}^{*}(g_{i})\right](x) = 0, \quad x \in \bar{\Omega} \setminus \Omega\\ f(x) = b(x), \quad x \in \Omega \end{cases}$$

where

$$h_i(x) = \sum_{y \in \bar{\Omega}} 2\bar{w}(x, y)(\mathcal{P}_i f(x) - \mathcal{P}_i f(y))$$
$$g_i(x) = \sum_{y \in \Omega_i} \bar{w}(x, y)(\mathcal{P}_i f(x) - \mathcal{P}_i f(y))$$

Weighted Graph Laplacian Semi-local Patches

LDMM_WGL

1

$$\begin{aligned} h_i(x) &= \sum_{y \in \bar{\Omega}} 2\bar{w}(x, y) (\mathcal{P}_i f(x) - \mathcal{P}_i f(y)) \\ \mathcal{P}_i^* h_i(x) &= h_i(x_{\widehat{1-i}}) = \sum_{y \in \bar{\Omega}} 2\bar{w}(x_{\widehat{1-i}}, y) \left(\mathcal{P}_i f(x_{\widehat{1-i}}) - \mathcal{P}_i f(y) \right) \\ &= \sum_{y \in \bar{\Omega}} 2\bar{w}(x_{\widehat{1-i}}, y) \left(f(x) - f(y_{\widehat{i-1}}) \right) \\ &= \sum_{y \in \bar{\Omega}} 2\bar{w}(x_{\widehat{1-i}}, y_{\widehat{1-i}}) (f(x) - f(y)) \end{aligned}$$

Therefore

$$\sum_{i=1}^{d} \mathcal{P}_{i}^{*}(h_{i})(x) = \sum_{i=1}^{d} \sum_{y \in \overline{\Omega}} 2\overline{w}(x_{\widehat{1-i}}, y_{\widehat{1-i}})(f(x) - f(y))$$

Similarly,

$$\sum_{i=1}^{d} \mathcal{P}_{i}^{*}(g_{i})(x) = \sum_{i=1}^{d} \sum_{y \in \Omega} \bar{w}(x_{\widehat{1-i}}, y_{\widehat{1-i}})(f(x) - f(y))$$

E > < E >

Ξ.

Weighted Graph Laplacian Semi-local Patches

LDMM_WGL

The Euler-Lagrange equation becomes:

$$\begin{cases} \sum_{y \in \bar{\Omega}} \left(\sum_{i=1}^{d} 2\bar{w}(x_{\widehat{1-i}}, y_{\widehat{1-i}}) \right) (f(x) - f(y)) \\ + \mu \sum_{y \in \Omega} \left(\sum_{i=1}^{d} \bar{w}(x_{\widehat{1-i}}, y_{\widehat{1-i}}) \right) (f(x) - f(y)) = 0, \quad x \in \bar{\Omega} \setminus \Omega \\ f(x) = b(x), \qquad \qquad x \in \Omega \end{cases}$$

Let $\tilde{w}(x,y) = \sum_{i=1}^{d} \bar{w}(x_{\widehat{1-i}}, y_{\widehat{1-i}})$, then

$$2\sum_{y\in\bar{\Omega}}\tilde{w}(x,y)\left(f(x)-f(y)\right)+\mu\sum_{y\in\Omega}\tilde{w}(x,y)\left(f(x)-f(y)\right)=0,\quad x\in\bar{\Omega}\setminus\Omega$$

Weighted Graph Laplacian Semi-local Patches

LDMM_WGL

$$2\sum_{y\in\bar{\Omega}}\tilde{w}(x,y)\left(f(x)-f(y)\right)+\mu\sum_{y\in\Omega}\tilde{w}(x,y)\left(f(x)-f(y)\right)=0,\quad x\in\bar{\Omega}\setminus\Omega$$

Let $\Delta = \mathsf{diag}(\mathsf{sum}(ilde{W}_{12},2))$, then

$$2\tilde{L}_{11}\nu + 2\tilde{L}_{12}b + \mu(\Delta\nu - \tilde{W}_{12}b) = 0$$
$$(2\tilde{L}_{11} + \mu\Delta)\nu = \mu\tilde{W}_{12}b - 2\tilde{L}_{12}b$$

æ

Weighted Graph Laplacian Semi-local Patches

Semi-local Patches

The semi-local patches are obtained by adding local coordinates to the nonlocal patches with a weight $\lambda,$ i.e.

$$\bar{\mathcal{P}}f(x) = \left[\mathcal{P}f(x), \lambda x\right].$$

When $\lambda = 0$, semi-local patches are just nonlocal patches. When $\lambda \to \infty$, the patches are completely determined by local coordinates. We choose a proper λ to help LDMM update the "true" metric on the manifold \mathcal{M} faster and more reliably.

イロト イポト イヨト イヨト

Weighted Graph Laplacian Semi-local Patches

LDMM_WGL with Semi-local Patches

2D Image Inpainting Image Denoising Hyperspectral Image Inpainting Reconstruction of PDE Solutions

Numerical Results

Stanley Osher LDMM in Image Reconstruction

イロト イヨト イヨト イヨト

2D Image Inpainting Image Denoising Hyperspectral Image Inpainting Reconstruction of PDE Solutions

2D Image Inpainting

ヘロン 人間 とくほと 人間とし

2D Image Inpainting Image Denoising Hyperspectral Image Inpainting Reconstruction of PDE Solutions

Image Denoising

2D Image Inpainting Image Denoising Hyperspectral Image Inpainting Reconstruction of PDE Solutions

Hyperspectral Image Inpainting

(日) (同) (三) (三)

2D Image Inpainting Image Denoising Hyperspectral Image Inpainting Reconstruction of PDE Solutions

Noisy and Incomplete Hyperspectral Images

・ロト ・ 同ト ・ ヨト ・ ヨト

2D Image Inpainting Image Denoising Hyperspectral Image Inpainting Reconstruction of PDE Solutions

3D Plasma Reconstruction

2D Image Inpainting Image Denoising Hyperspectral Image Inpainting Reconstruction of PDE Solutions

Shock Reconstruction

2D Image Inpainting Image Denoising Hyperspectral Image Inpainting Reconstruction of PDE Solutions

Shock Reconstruction with Granular Structure

2D Image Inpainting Image Denoising Hyperspectral Image Inpainting Reconstruction of PDE Solutions

Comparison of Compression Results

Every algorithm except for LDMM has access to the entire image. The budge is set to be 10% of the original data size.

2D Image Inpainting Image Denoising Hyperspectral Image Inpainting Reconstruction of PDE Solutions

Comparison of Super-resolution Results

The image is downsampled with a sampling spacing of 4 in each direction.

(日) (同) (三) (三)

2D Image Inpainting Image Denoising Hyperspectral Image Inpainting Reconstruction of PDE Solutions

Neutron Transport

メロト メポト メヨト メヨト

2D Image Inpainting Image Denoising Hyperspectral Image Inpainting Reconstruction of PDE Solutions

Comparison of Compression Results

Every algorithm except for LDMM has access to the entire image. The budge is set to be 10% of the original data size.

Stanley Osher LDMM in Image Reconstruction

2D Image Inpainting Image Denoising Hyperspectral Image Inpainting Reconstruction of PDE Solutions

Comparison of Super-resolution Results

The image is downsampled with a sampling spacing of 4 in each direction.

Stanley Osher LDMM in Image Reconstruction

(日) (同) (三) (三)

Conclusion and Future Work

Conclusion

- LDMM uses the dimension of the patch manifold to regularize the variational problem.
- The Laplace-Beltrami equation is solved via either the point integral method or the weighted graph Laplacian
- Weighted graph Laplacian is much more efficient for image inpainting, because the equation is solved on the image domain instead of the patch domain

Ongoing and future work

- Sparse dimensional manifold model (SDMM) for HSI processing.
- LDMM or SDMM with rotating patches with different resolutions.

(4月) (4日) (4日)