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Scope of this workshop (1)

Two recent waves of innovations affecting science (= main drivers
of the expansion of the role of the mathematical sciences’):
High Performance Computing & Big Data
temphasized by the NRC
Currently, these themes are usually addressed rather independently —
but they are intrinsically linked:
« HPC needs Big Data for dealing with increasingly large data sets
v' Communication bottleneck on the path to exascale computing
v Develop novel ways of representing, reducing, reconstructing,
and transferring huge amounts of data (need new algorithms!)
« Big Data needs HPC for analyzing increasingly large data sets

v' Data analytics becomes ever more compute-intensive



S
Scope of this workshop (ll)

Only together can they pave the road towards a “predictive science.”

The fusion of HPC and Big Data is a new, emerging field with an
endless number of potential applications and an enormous game

changer potential.

The present Workshop aims at being a catalyst at this exciting frontier of
science by bringing together leading innovators and pioneers from:
« Applied Mathematics & Statistics
« Computer Science & Large-Scale Computing
« Machine Learning & Big Data

« Domain Sciences
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Timeliness of this workshop

The ambitious goal of this Workshop is to foster the “convergence” of
Big Data and HPC.

This is (also) a response to a call by the participants of several workshops
since 2013 on Big Data & Extreme-scale Computing (BDEC), supported,
e.g., by the science agencies of the G-8 countries (www.exascale.org).

Basic idea: We must begin to systematically map out and
account for the ways in which the major issues associated

with Big Data intersect with, impinge upon, and potentially

change the international plans that are now being laid for

E;grDR%ﬁéiV§CALE achieving exascale computing.
COMPUTING



Comparing “Numerically Intensive”
and “Data Intensive”
High Performance Computing

* Both numerically intensive (NI) and data
intensive (DI) approaches share the common
challenge of gaining scientific insights, making
prediction, and quantifying uncertainty
— NI primarily through first principles models

— DI primarily through statistical models

* Disclaimer: these labels are imperfect; the

right labels are a “work in progress”
D. Keyes



“‘Big Data Meets Computation”

From the Perspective of Plasma Physics




Our plasma universe
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Fusion energy research:
Sun in a (magnetic) bottle

www.physicst @ayorg
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Chancellor Angela Merkel starts up

Wendelstein 7-X on February 3, 2016

Max-Planck-Institut
fir Plasmaphysik
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ITER construction site (a global project

www.iter.org
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Towards whole-device modeling at exascale
4-year, $10M project (since 10/1/2016)

Interface

£ GENE

Jenko+ PoP 2000

ECP

From post-diction to prediction

EXASCALE COMPUTING PROJECT Many multi-scale, multi-physics problems to solve
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Pre-exascale computations with GENE

* Developed by an international team of physicists, GENE on top-level HPC resources

applied mathematicians, and computer Ranked #1 out of 68 proposals in
scientists led by FJ PRACE Early Access Call (2010)
’”l”[ ‘?x U.S. DEPARTMENT OF ENERGY
» Comprehensive physics & flexible geometries |NC|OTE
(unique feature; ranging from flux-tube
tokamaks to full-torus stellarators...) First grid-based (gyro-)kinetic code
to receive an INCITE Award (2016)
* Open source: http://genecode.org
« World-wide user base from ~40 scientific , Strong scaling of GENE on Titan
i ituti i i i Very good strong scaling from \
institutions (_mclu_d_lng all US Iabs_ and major 32 308 0 262,194 coros =
research universities active in fusion research) . ‘| (~90%of Titan) e
-
« Output to date: 150+ papers (20+ PRLs) I -
« Scales well on many leading HPC systems o gscmmay

Gyrokinetic Electromagnetic Numerical Experiment
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Optimized design of fusion experiments

Proof-of-principle: NCSX-like geometries, optimized for turbulent transport
via the generation of successive variations of magnetohydrodynamic equilibria,

using simple “cost functions” and ab initio plasma turbulence simulations

0.5
|

PRL 105, 095004 (2010)
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For many other aspects, see: http://irffm.cea.fr/ TMFDPVA15



Big Data Meets Computation:

Some Frontiers




=
Handling large amounts of scientific data

Scientific data from experiments and simulations
* Present-day datasets can easily be in the TB...PB range
« This number will continue to grow rapidly
* Need to develop novel ways of representing, reducing,

reconstructing, and transferring large datasets

Sunway TaihuLight
» ~10M cores

» ~0.1 Eflop/s

' DOE’s high-speed transatlantic link: > ~1 PB memory
340 gigabits-per-second (Gbps)
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Scalable lossy compression of scientific data

Data compression must be lossy and scalable

Treatment of scientific data is still in its infancy

Compression factors of key compressors (Cappello & Di 2016)

Benchmark S7Z ZFP | ZFP+Grzip ISA ISA+Gzip | SSEM“ FPZIP-40" Gzip | FPC
Blast2 110 6.48 36.2 4.56 46.2 39.7 229 77 11.4
Sedov 744 | 442 5.47 4.42 744 17 | 343 313 719
BlastBS 3.26 3.48 3.65 4.43 5.06 8.45 2.43 1.24 1.29
Eddy .13 2.5 2.61 4.34 5.1R8 N/A 2.56 55 3.890
Vortex 13.6 4.45 4,77 4.43 4.72 12 3.35 2.23 2.34
BrioWu 71.2 8.1 434 5 574 35.7 21.9 73 8.5
GALLEX 183.6 36.7 92.7 4.89 33.6 82.4 20.35 34.7 11.37
Maclaurin 116 10.2 14 4.1 547 7.44 384 2.03 2.08
Orbit 433 31.7 89 4.96 8.43 1.7 3.9 1.8 1.86
ShafranovShock 48 3.68 8.75 424 12.2 20.3 199 28 7.33
CICE 543 2.11 2.16 4.19 4.46 3.83 2.3 2.6 2.67
ATM 395 2.3 2.75 31 3.7 1.82 1.04 1.36 N/A
Hurricane 1.63 1.19 1.2 2.57 2.65 .11 2.07 1.16 N/A

Carry out data analytics directly on compressed data?
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Fast decompression of scientific data

Inpainting with Deep Neural Networks (Kohler+ 2014)

corrupted image reconstruction
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Minimizing data motion in simulations

The energy required to move data around accounts for a significant

portion of the energy consumption of modern supercomputers.

10000 — —

Traditional approach:

1000
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m now (45nm)

10 1 2018 (11nm in this case) Pre-exascale era:

Minimize data motion

A& Communication-avoiding algorithms



Working with variable precision

Impact of the floating-point precision and interpolation scheme
on the results of DNS of turbulence by pseudo-spectral codes
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Holger Homann, Jiirgen Dreher, Rainer Grauer * CPC 2007
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Example:

Turbulent energy spectra for
simulations w/ single precision
reduced by several bits;
statistical properties tend to

be pretty robust
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Approximate computing

Balancing accuracy and efficiency (closely related to resilience)

Quality metric(s) Corresponding applications/kernels

Relative difference/ Fluidanimate, blackscholes, swaptions (PARSEC), Barnes, water,

error from standard Cholesky, LU (Splash2), vpr, parser (SPEC2000), Monte Carlo, sparse

output matrix multiplication, Jacobi, discrete Fourier transform, MapReduce
programs (e.g., page rank, page length, project popularity, and so forth),
forward/inverse kinematics for 2-joint arm, Newton-Raphson method for
finding roots of a cubic polynomial, n-body simulation, adder, FIR filter,
conjugate gradient

PSNR and SSIM H.264 (SPEC2006), x264 (PARSEC), MPEG, JPEG, rayshade, image
resizer, image smoothing, OpenGL games (e.g., Doom 3)

Pixel difference Bodytrack (PARSEC), eon (SPEC2000), raytracer (Splash2), particle filter

(Rodinia), volume rendering, Gaussian smoothing, mean filter, dynamic
range compression, edge detection, raster image manipulation

Energy conservation
across scenes

Physics-based simulation (e.g., collision detection, constraint solving)

Classification/clustering | Ferret, streamcluster (PARSEC), k-nearest neighbor, k-means clustering,

accuracy generalized learning vector quantization (GLVQ), MLP, convolutional
neural networks, support vector machines, digit classification

Correct/incorrect Image binarization, jmeint (friangle intersection detection), ZXing (visual

decisions bar code recognizer), finding Julia set fractals, jMonkeyEngine (game
engine)

Ratio of error of initial 3D variable coefficient Helmholtz equation, image compression, 2D _

and final guess Poisson’s equation, preconditioned iterative solver S. Mit

Ranking accuracy

Bing search, supervised semantic indexing (SSI) document search

tal
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Inverse problems and deep learning

Plasma tomography: Use DNNs to reconstruct cross-section from projections

KBSV: ..
Main-vesel original tomogram network output

‘, vartical camera

better and faster
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Deep learning for plasma tomography using the bolometer system at
JET

Francisco A. Matos?, Diogo R. Ferreira®*, Pedro J. Carvalho®, JET Contributors'
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Real-time modeling via neural networks

Letter Nucl. Fusion 2015

Real-time capable first principle based
modelling of tokamak turbulent transport

J. Citrin!2, S. Breton?, F. Felici?, F. Imbeaux?, T. Aniel?, J.F. Artaud?,
B. Baiocchi?, C. Bourdelle?, Y. Camenen’ and J. Garcia®

Nonlinear multivariate regression of simulation data with a NN
» Proof-of-principle: input layer size N=5; 2 hidden layers of 40 neurons each
« ~5 orders of magnitude faster than conventional (reduced) transport models
« Simulates a 300 s ITER discharge in ~10 s
 First-principles based simulations would require ~108-° core-hours
* In practice, training set size limits N to N;,, ~ 10; use experimental data

Modeling of transport phenomena in tokamak plasmas with neural networks

O. Meneghini,"® C. J. Luna,? S. P. Smith,® and L. L. Lao® Phys. Plasmas 2014
:Oalc Ridge Associated Universities, 120 Badger Ave, Oak Ridge, Tennessee 37830, USA

“Arizona State University, 411 N. Central Ave, Phoenix, Arizona 85004, USA i

*General Atomics, San Diego, California 92186-5608, USA Based on experlmental data

N~20; 3 hidden layers of 30 neurons each
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Real-time control via neural networks

Most critical problem for MFE: avoid/mitigate large-scale major disruptions
+ Approach: Use of big-data-driven statistical/machine-learning predictions for the
occurrence of disruptions in JET

* Current Status: ~ 6+ years of R&D results (led by JET) using SVM-based ML on
zero-D time trace data executed on modemn clusters yielding ~ reported success
rates ranging from 80 up to 90% for JET, BUT > 98% with false alarm rate < 3%
actually needed for ITER (Reference — P. DeVries, et al.. June 2015)

* PPPL Team Goals incjude:

(i)  improve physics fidelity via development of new ML multi-D, time-dependent
are including better classifiers;

(i)  develop “portable” predictive software beyond JET to other devices and
eventually [TER; and

(i)  enhance execution speed of disruption analysis for very large datasets

via development & deployment of advanced ML software via SVM (Support
Vector Machine) & DRNN (Deep Recurrent Neural Network) methods W. Tang




IPAM Long Program (Fall 2018)
Science at Extreme Scales:
Where Big Data Meets

Large-Scale Computing
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Frank Jenko, UCLA/IPP
Computational Plasma Tandy Warnow, UIUC Joachim Buhmann, ETHZ

Physics & HPC Hans Bungartz, TUM CS & Bioengineering Machine Learning
CS & Applied Math

David Keyes, KAUST
Applied Math & HPC

Alan Lee, AMD
Corporate VP

Jeff Hittinger, LLNL : ~o\ R
Applied Math Claudia Draxl, HUB Emmanuel Candés, Stanford
Computational Materials Science Mathematics and Statistics
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Bridging scientific fields

Applied Mathematics & Statistics
Computer Science & Large-Scale Computing
Machine Learning & Big Data

Domain Sciences

 Materials Science

« Astrophysics & Cosmology
 Plasma Physics

» High-Energy Physics
 Weather & Climate
 (Geosciences

» Biophysics

* Bioinformatics & Genomics
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Four workshops

One theme, but looked at from
four different perspectives...

Two workshops (WS1 & WS4) will be methods-based, emphasizing
recent developments in mathematics & computer science regarding
computing and data analytics (together).

Two additional workshops (WS2 & WS3) will be centered around
(traditionally) compute-intense or data-driven application areas
as they start to explore the complementary side.



Workshop |

Topic: Big Data Meets Large-Scale Computing

This workshop will bring together analysts and developers of data and
computationally intensive applications interested in early exploitation
of extreme-scale computing platforms to define common ground and
seek new opportunities.

Examples of topics that will be discussed:
* requirements / relations of high-performance analytics and simulation
 scalable hierarchical algorithms for analytics and simulation
« detecting and exploiting data sparsity within large-scale data sets
« open problems, where no scalable methods yet exist



Workshop I

Topic: HPC-Driven Applications Go Big Data

Classical HPC applications — usually based on numerically solving
ODEs/PDEs — develop towards a data-centric approach.

This includes:
« patient-specific simulations in medicine
« data analytics of experimental/simulation data in plasma physics
« learning from simulation data in materials science

Similar developments take place in many other domain sciences —
including astrophysics & cosmology, weather prediction, climate research,
and biophysics — and shall be explored in the present workshop.

We will discuss the question: What are the requirements, implications,
opportunities, and limitations in this context?



Workshop Il

Topic: Big-Data-Driven Applications Go HPC

Typical data analytics applications, which are usually based much more
on a statistical (or discrete) apparatus than on numerical computations, will
develop in a direction with much more HPC relevance than today. This
includes, in particular, bioinformatics and social sciences.

The computational challenges arising in this context go far beyond the
“‘embarrassingly parallel” paradigm and will require more HPC topics to
be addressed in large-scale data analytics.

As in Workshop Il, but now starting from the Big Data perspective, we will
discuss the question: What are the requirements, implications, opportuni-
ties, and limitations in this context?
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Workshop |V

Topic: New Architectures and Algorithms

Physical limitations and consumer-driven markets are leading to disruptive
changes in computer architectures (even in the near term):

 more on-node parallelism provided by lightweight cores

 more complex and deeper memory hierarchies

New architectures call for new algorithms; active research areas include:
« communication-avoiding algorithms
« data compression and variable precision
« multi-level iterative techniques
* randomized and asynchronous algorithms
 integration of data analysis with simulation

We will explore the nexus of algorithms, architectures, Big Data, and HPC.
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Some key questions regarding BG & HPC

How to handle large scientific datasets from experiments

and / or simulations?

How to find an optimal balance between accuracy and

efficiency in large-scale simulations?

How to apply ML techniques to equation-based sciences?



