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Neural Networks and Overfitting

Deep neural networks (DNNs) have achieved great success in machine learning
research and commercial applications. When large amounts of training data are
available, the capacity of DNNs can easily be increased by adding more units or
layers to extract more effective high-level features.

However, big networks with millions of parameters can easily overfit even the
largest of datasets. As a result, the learned network will have low error rates on
the training data, but generalizes poorly onto the test data.

Deep Neural Network Overfitting
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Regularizations

Many widely-used network regularizations are data-independent.

Weight decay
Parameter sharing
DropOut
DropConnect
Early stopping
. . . . . .

Most of the data-dependent regularizations are motivated by the empirical
observation that data of interest typically lie close to a manifold.

Tangent distance algorithm
Tangent prop algorithm
Manifold tangent classifier
. . . . . .
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LDMNet: Low Dimensional Manifold Regularized Neural Networks

Low Dimensional Manifold Regularized Neural Networks (LDMNet)
incorporates a feature regularization method that focuses on the geometry of
both the input data and the output features.

Input data xi Output features ξi Manifold M

MP

{xi}N
i=1 ⊂ Rd1 are the input data. {ξi = fθ(xi )}N

i=1 ⊂ Rd2 are the output
features.
P = {(xi , ξi )}N

i=1 ⊂ Rd is the collection of the data-feature concatenation
(xi , ξi ).
M⊂ Rd is the underlying manifold, discretely sampled by the point cloud
P.
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Input data xi Output features ξi Manifold M

MP

The input data {xi}N
i=1 typically lie close to a collection of low dimensional

manifolds, i.e. {xi}N
i=1 ⊂ N = ∪L

l=1Nl ⊂ Rd1 .
The feature extractor, fθ, of a good learning algorithm should be a smooth
function over N .
Therefore the concatenation of the input data and output features,
P = {(xi , ξi )}N

i=1, should sample a collection of low dimensional manifolds
M = ∪L

l=1Ml ⊂ Rd , where d = d1 + d2, and Ml = {(x, fθ(x))}x∈Nl
is the

graph of fθ over Nl .
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LDMNet: Low Dimensional Manifold Regularized Neural Networks

We suggest that network overfitting occurs when dim(Ml ) is too large after
training. Therefore, to reduce overfitting, we explicitly use the dimensions of
Ml as a regularizer in the following variational form:

min
θ,M

J(θ) + λ

|M|

∫
M

dim(M(p))dp

s.t. {(xi , fθ(xi ))}N
i=1 ⊂M,

where for any p ∈M = ∪L
l=1Ml , M(p) denotes the manifold Ml to which p

belongs, and |M| =
∑L

l=1 |Ml | is the volume of M.
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Feature of the MNIST Dataset

10,000 test data Weight decay

DropOut LDMNet

Figure: Test data of MNIST and their features learned by the same network with
different regularizers. All networks are trained from the same set of 1,000 images.
Data are visualized in two dimensions using PCA, and ten classes are distinguished by
different colors.
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Dimension of a Manifold

Question: How do we calculate dim(M(p)) from the point cloud
P = {(xi , fθ(xi ))}N

i=1 ⊂M

Theorem

Let M be a smooth submanifold isometrically embedded in Rd . For any
p = (pi )d

i=1 ∈M,

dim(M) =
d∑

i=1

|∇Mαi (p)|2 ,

where αi (p) = pi is the coordinate function, and ∇M is the gradient operator
on the manifold M. More specifically, ∇Mαi =

∑k
s,t=1 g st∂tαi∂s , where k is

the intrinsic dimension of M, and g st is the inverse of the metric tensor.
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Dimension of a Manifold

Sanity check:

If M = S1, then k = dim(M) = 1, d = dim(R2) = 2, and
x = ψ(θ) = (cos θ, sin θ)t is the coordinate chart.
The metric tensor g = g11 =

〈
∂ψ
∂θ
, ∂ψ
∂θ

〉
= 1 = g11.

The gradient of αi , ∇Mαi = g11∂1αi∂1 = ∂1αi∂1 can be viewed as a vector in
the ambient space R2:

∇j
Mαi = ∂1ψ

j∂1αi

Therefore, we have

∇Mα1 =
〈
∂1ψ

1∂1α1, ∂1ψ
2∂1α1

〉
=
〈

sin2 θ,− cos θ sin θ
〉
,

∇Mα2 =
〈
∂1ψ

1∂1α2, ∂1ψ
2∂1α2

〉
=
〈
− sin θ cos θ, cos2 θ

〉
.

Hence ‖∇Mα1‖2 + ‖∇Mα2‖2 = sin2 θ + cos2 θ = 1
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min
θ,M

J(θ) + λ

|M|

∫
M

dim(M(p))dp (1)

s.t. {(xi , fθ(xi ))}N
i=1 ⊂M,

Using Theorem 1, the above variational functional can be reformulated as

min
θ,M

J(θ) + λ

|M|

d∑
j=1

‖∇Mαj‖2
L2(M) (2)

s.t. {(xi , fθ(xi ))}N
i=1 ⊂M

where
∑d

j=1 ‖∇Mαj‖2
L2(M) corresponds to the L1 norm of the local dimension.

How do we solve (2)? Alternate direction of minimization with respect to M
and θ.
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Alternate Direction of Minimization

min
θ,M

J(θ) + λ

|M|

d∑
j=1

‖∇Mαj‖2
L2(M)

s.t. {(xi , fθ(xi ))}N
i=1 ⊂M

Given (θ(k),M(k)) at step k satisfying {(xi , fθ(k) (xi ))}N
i=1 ⊂M(k), step k + 1

consists of the following
Update θ(k+1) and the perturbed coordinate functions
α(k+1) = (α(k+1)

1 , · · · , α(k+1)
d ) as the minimizers of (3) with the fixed M(k):

min
θ,α

J(θ) + λ

|M(k)|

d∑
j=1

‖∇M(k)αj‖2
L2(M(k)) (3)

s.t. α(xi , fθ(k) (xi )) = (xi , fθ(xi )), ∀i = 1, . . . ,N

Update M(k+1):

M(k+1) = α(k+1)(M(k)) (4)
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Alternate Direction of Minimization

Update θ(k+1) and α(k+1) = (α(k+1)
1 , · · · , α(k+1)

d ) with the fixed M(k):

min
θ,α

J(θ) + λ

|M(k)|

d∑
j=1

‖∇M(k)αj‖2
L2(M(k))

s.t. α(xi , fθ(k) (xi )) = (xi , fθ(xi )), ∀i = 1, . . . ,N

Update M(k+1):

M(k+1) = α(k+1)(M(k))

The manifold update is trivial to implement, and the update of θ and α is an
optimization problem with nonlinear constraint, which “can” be solved via the
alternating direction method of multipliers (ADMM).
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Alternate Direction of Minimization

min
θ,α

J(θ) + λ

|M(k)|

d∑
j=1

‖∇M(k)αj‖2
L2(M(k))

s.t. α(xi , fθ(k) (xi )) = (xi , fθ(xi )), ∀i = 1, . . . ,N
Solve the variationl problem using ADMM. More specifically,

α
(k+1)
ξ = arg min

αξ

d∑
j=d1+1

‖∇M(k)αj‖L2(M(k))

+ µ|M(k)|
2λN

N∑
i=1

‖αξ(xi , fθ(k) (xi ))− (fθ(k) (xi )− Z (k)
i )‖2

2.

θ(k+1) = arg min
θ

J(θ) + µ

2N

N∑
i=1

‖α(k+1)
ξ (xi , fθ(k) (xi ))− (fθ(xi )− Z (k)

i )‖2
2.

Z (k+1)
i =Z (k)

i + α
(k+1)
ξ (xi , fθ(k) (xi ))− fθ(k+1) (xi ),

where α = (αx ,αξ) = ((α1, . . . , αd1 ), (αd1+1, . . . , αd )), and Zi is the dual
variable.
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ADMM

α
(k+1)
ξ = arg min

αξ

d∑
j=d1+1

‖∇M(k)αj‖L2(M(k))

+ µ|M(k)|
2λN

N∑
i=1

‖αξ(xi , fθ(k) (xi ))− (fθ(k) (xi )− Z (k)
i )‖2

2. (5)

θ(k+1) = arg min
θ

J(θ) + µ

2N

N∑
i=1

‖α(k+1)
ξ (xi , fθ(k) (xi ))− (fθ(xi )− Z (k)

i )‖2
2. (6)

Z (k+1)
i =Z (k)

i + α
(k+1)
ξ (xi , fθ(k) (xi ))− fθ(k+1) (xi ), (7)

Among (5),(6) and (7), (7) is the easiest to implement, (6) can be solved by
stochastic gradient descent (SGD) with modified back propagation, and (5)
can be solved by the point integral method (PIM) [Z. Shi, J. Sun].
Shi, Z., and Sun, J. (2013). Convergence of the point integral method for the poisson equation on manifolds ii: the dirichlet boundary.
arXiv preprint arXiv:1312.4424
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Back Propagation for the θ Update

θ(k+1) = arg min
θ

J(θ) + µ

2N

N∑
i=1

‖α(k+1)
ξ (xi , fθ(k) (xi ))− (fθ(xi )− Z (k)

i )‖2
2.

= arg min
θ

1
N

N∑
i=1

`(fθ(xi ), yi ) + 1
N

N∑
i=1

Ei (θ), (8)

where Ei (θ) = µ
2 ‖α

(k+1)
ξ (xi , fθ(k) (xi ))− (fθ(xi )− Z (k)

i )‖2
2. The gradient of the

second term with respect to the output layer fθ(xi ) is:

∂Ei

∂fθ(xi )
= µ

(
fθ(xi )− Z (k)

i − α
(k+1)
ξ (xi , fθ(k) (xi ))

)
(9)

This means that we need to only add the extra term (9) to the original gradient,
and then use the already known procedure to back-propagate the gradient.
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Point Integral Method for the α Update

α
(k+1)
ξ = arg min

αξ

d∑
j=d1+1

‖∇M(k)αj‖L2(M(k))

+ µ|M(k)|
2λN

N∑
i=1

‖αξ(xi , fθ(k) (xi ))− (fθ(k) (xi )− Z (k)
i )‖2

2.

Note that the objective funtion above is decoupled with respect to j, and each
αj update can be cast into:

min
u∈H1(M)

‖∇Mu‖2
L2(M) + γ

∑
q∈P

|u(q)− v(q)|2, (10)

where u = αj , M =M(k),P = {pi = (xi , fθ(k) (xi ))}N
i=1 ⊂M, and

γ = µ|M(k)|/2λN. The Euler-Lagrange equation of (10) is:
−∆Mu(p) + γ

∑
q∈P

δ(p − q)(u(q)− v(q)) = 0, p ∈M

∂u
∂n = 0, p ∈ ∂M
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Point Integral Method


−∆Mu(p) + γ

∑
q∈P

δ(p − q)(u(q)− v(q)) = 0, p ∈M

∂u
∂n = 0, p ∈ ∂M

In the point integral method (PIM) [Z. Shi, J. Sun], the key observation is the
following integral approximation:

∫
M

∆Mu(y)R̄
(
‖x − y‖2

4t

)
dy ≈− 1

t

∫
M

(u(x)− u(y)) R
(
‖x − y‖2

4t

)
dy

+ 2
∫
∂M

∂u
∂n (y)R̄

(
‖x − y‖2

4t

)
dτy .

The function R is a positive function defined on [0,+∞) with compact support
(or fast decay) and

R̄ =
∫ ∞

r
R(s)ds.
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Local Truncation Error

Theorem

Let M be a smooth manifold and u ∈ C 3(M), then∥∥∥∥−1
t

∫
M

(u(x)− u(y)) Rt(x, y)dy + 2
∫
∂M

∂u
∂n (y)R̄t(x, y)dτy

−
∫
M

∆Mu(y)R̄t(x, y)dy
∥∥∥∥

L2(M)
= O(t1/4),

where

Rt(x, y) = 1
(4πt)k/2 R

(
‖x − y‖2

4t

)
, R̄t(x, y) = 1

(4πt)k/2 R̄
(
‖x − y‖2

4t

)
.
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Point Integral Method for the α Update


−∆Mu(p) + γ

∑
q∈P

δ(p − q)(u(q)− v(q)) = 0, p ∈M

∂u
∂n = 0, p ∈ ∂M

After convolving the above equation with the heat kernel
Rt(p, q) = Ct exp

(
− |p−q|2

4t

)
, we know the solution u should satisfy

−
∫
M

∆Mu(q)Rt(p, q)dq + γ
∑
q∈P

Rt(p, q) (u(q)− v(q)) = 0. (11)

Combined with Theorem 2 and the Neumann boundary condition, this implies
that u should approximately satisfy∫

M
(u(p)− u(q)) Rt(p, q)dq + γt

∑
q∈P

Rt(p, q) (u(q)− v(q)) = 0 (12)
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Point Integral Method for the α Update

∫
M

(u(p)− u(q)) Rt(p, q)dq + γt
∑
q∈P

Rt(p, q) (u(q)− v(q)) = 0

Assume that P = {p1, . . . , pN} samples the manifold M uniformly at random,
then the above equation can be discretized as

|M|
N

N∑
j=1

Rt,ij (ui − uj ) + γt
N∑

j=1

Rt,ij (uj − vj ) = 0, (13)

where ui = u(pi ), and Rt,ij = Rt(pi , pj ). Combining the definition of γ in (10),
we can write (13) in the matrix form(

L + µ

λ̃
W
)

u = µ

λ̃
Wv , λ̃ = 2λ/t, (14)

where λ̃ can be chosen instead of λ as the hyperparameter to be tuned,
u = (u1, . . . , uN)T , W is an N × N matrix

Wij = Rt,ij = exp
(
−|pi − pj |2

4t

)
, (15)

and L is the graph Laplacian of W :

Lii =
∑
j 6=i

Wij , and Lij = −Wij if i 6= j. (16)Wei Zhu Duke University LDMNet: Low Dimensional Manifold Regularized Neural Networks
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Algorithm for Training LDMNet

Algorithm 1 LDMNet Training

Input: Training data {(xi , yi )}N
i=1 ⊂ Rd1 × R, hyperparameters λ̃ and µ, and a

neural network with the weights θ and the output layer ξi = fθ(xi ) ∈ Rd2 .
Output: Trained network weights θ∗.

1: Randomly initialize the network weights θ(0). The dual variables Z (0)
i ∈ Rd2

are initialized to zero.
2: while not converge do
3: 1. Compute the matrices W and L as in (15) and (16) with pi =

(xi , fθ(k) (xi )).
4: 2. Update α(k+1) in (5): solve the linear systems (14), where

ui = αj (pi ), vi = fθ(k) (xi )j − Z (k)
i,j .

5: 3. Update θ(k+1) in (6): run SGD for M epochs with an extra gradient
term (9).

6: 4. Update Z (k+1) in (7).
7: 5. k ← k + 1.
8: end while
9: θ∗ ← θ(k).
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Complexity Analysis

The additional computation in Algorithm 1 comes from the update of weight
matrices and solving the linear system from PIM once every M epochs of SGD.

The weight matrix W is truncated to only 20 nearest neighbors. To identify
those nearest neighbors, we first organize the data points {p1, . . . , pN} ⊂ Rd

into a k-d tree. Nearest neighbors can then be efficiently identified because
branches can be eliminated from the search space quickly. Modern algorithms
to build a balanced k-d tree generally at worst converge in O(N log N) time,
and finding nearest neighbours for one query point in a balanced k-d tree takes
O(log N) time on average. Therefore the complexity of the weight update is
O(N log N).

Since W and L are sparse symmetric matrices with a fixed maximum number
of non-zero entries in each row, the linear system can be solved efficiently with
the preconditioned conjugate gradients method. After restricting the number of
matrix multiplications to a maximum of 50, the complexity of the α update is
O(N).
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Experimental Setup

We compare the performance of LDMNet to widely-used network regularization
techniques, weight decay and DropOut, using the same underlying network
structure.

Unless otherwise stated, all experiments use mini-batch SGD with momentum
on batches of 100 images. The momentum parameter is fixed at 0.9. The
networks are trained using a fixed learning rate r0 on the first 200 epochs, and
then r0/10 for another 100 epochs.

For LDMNet, the weight matrices and α are updated once every M = 2 epochs
of SGD. For DropOut, the corresponding DropOut layer is always chosen to
have a drop rate of 0.5. All other network hyperparameters are chosen
according to the error rate on the validation set.
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MNIST

The MNIST handwritten digit dataset contains approximately 60,000 training
images (28× 28) and 10,000 test images.

Layer Type Parameters

1 conv size: 5× 5× 1× 20
stride: 1, pad: 0

2 max pool size: 2× 2, stride: 2, pad: 0

3 conv size: 5× 5× 20× 50
stride: 1, pad: 0

4 max pool size: 2× 2, stride: 2, pad: 0

5 conv size: 4× 4× 50× 500
stride: 1, pad: 0

6 ReLu (DropOut) N/A
7 fully connected 500× 10
8 softmaxloss N/A

Table: Network structure in the MNIST experiments. The outputs of layer 6 are the
extracted features, which will be fed into the softmax classifier (layer 7 and 8).
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MNIST

training per
class

weight
decay DropOut LDMNet

50 91.32% 92.31% 95.57%
100 93.38% 94.05% 96.73%
400 97.23% 97.95% 98.41%
700 97.67% 98.07% 98.61%

1000 98.06% 98.71% 98.89%
3000 98.87% 99.21% 99.24%
6000 99.15% 99.41% 99.39%

Loss Accuracy
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MNIST

10,000 test data Weight decay

DropOut LDMNet

Figure: Test data of MNIST and their features learned by the same network with
different regularizers. All networks are trained from the same set of 1,000 images.
Data are visualized in two dimensions using PCA, and ten classes are distinguished by
different colors.
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SVHN and CIFAR-10

SVHN and CIFAR-10 are benchmark RGB image datasets, both of which
contain 10 different classes.

SVHN CIFAR-10
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SVHN and CIFAR 10

Layer Type Parameters

1 conv size: 5× 5× 3× 96
stride: 1, pad: 2

2 ReLu N/A
3 max pool size: 3× 3, stride: 2, pad: 0

4 conv size: 5× 5× 96× 128
stride: 1, pad: 2

5 ReLu N/A
6 max pool size: 3× 3, stride: 2, pad: 0

7 conv size: 4× 4× 128× 256
stride: 1, pad: 0

8 ReLu N/A
9 max pool size: 3× 3, stride: 2, pad: 0

10 fully connected output: 2048
11 ReLu (DropOut) N/A
12 fully connected output: 2048
13 ReLu (DropOut) N/A
14 fully connected 2048× 10
15 softmaxloss N/A

Table: Network structure in the SVHN and CIFAR-10 experiments. The outputs of
layer 13 are the extracted features, which will be fed into the softmax classifier (layer
14 and 15).
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SVHN and CIFAR 10

training per
class

weight
decay DropOut LDMNet

50 71.46% 71.94% 74.64%
100 79.05% 79.94% 81.36%
400 87.38% 87.16% 88.03%
700 89.69% 89.83% 90.07%

Table: SVHN: testing accuracy for different regularizers

training per
class

weight
decay DropOut LDMNet

50 34.70% 35.94% 41.55%
100 42.45% 43.18% 48.73%
400 56.19% 56.79% 60.08%
700 61.84% 62.59% 65.59%

full data 87.72% 88.21%

Table: CIFAR-10: testing accuracy for different regularizers.

Wei Zhu Duke University LDMNet: Low Dimensional Manifold Regularized Neural Networks



Introduction
LDMNet: Model, Algorithm, and Complexity Analysis

Experiments

MNIST
SVHN and CIFAR-10
NIR-VIS Heterogeneous Face Recognition

NIR-VIS Heterogeneous Face Recognition
The objective of the experiment is to match a probe image of a subject
captured in the near-infrared spectrum (NIR) to the same subject from a
gallery of visible spectrum (VIS) images. The CASIA NIR-VIS 2.0 benchmark
dataset is used to evaluate the performance.

Figure: Sample images of two subjects from the CASIA NIR-VIS 2.0 dataset after the
pre-procssing of alignment and cropping. Top: NIR. Bottom: VIS.
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NIR-VIS Heterogeneous Face Recognition

Despite recent breakthroughs for VIS face recognition by training DNNs from
millions of VIS images, such approach cannot be simply transferred to NIR-VIS
face recognition.

Unlike VIS face images, we have only limited number of availabe NIR
images.
The NIR-VIS face matching is a cross-modality comparison.

The authors in [Lezama et al., 2017] introduced a way to transfer the
breakthrough in VIS face recognition to the NIR spectrum. Their idea is to use
a DNN pre-trained on VIS images as a feature extactor, while making two
independent modifications in the input and output of the DNN.

Modify the input by “hallucinating” a VIS image from the NIR sample.
Learn an embedding of the DNN features at the output

Lezama, J., Qiu, Q., and Sapiro, G. (2017). Not afraid of the dark: Nir-vis face recognition via cross-spectral hallucination and low-rank
embedding. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
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NIR-VIS Heterogeneous Face Recognition

Modify the input by “hallucinating” a VIS image from the NIR sample.
Learn an embedding of the DNN features at the output

Figure: Proposed procedure in [Lezama et al., 2017]
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NIR-VIS Heterogeneous Face Recognition

We follow the second idea in [Lezama et al., 2017], and learn a nonlinear low
dimensional manifold embedding of the output features. we use the VGG-face
model as a feature extractor. We then put the 4,096 dimensional features into
a two-layer fully connected network to learn a nonlinear embedding using
different regularizations.

Layer Type Parameters
1 fully connected output:2000
2 ReLu (DropOut) N/A
3 fully connected output:2000
4 ReLu (DropOut) N/A

Table: Fully connected network for the NIR-VIS nonlinear feature embedding. The
outputs of layer 4 are the extracted features.
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NIR-VIS Heterogeneous Face Recognition

Accuracy (%)
VGG-face 74.51± 1.28
VGG-face + triplet [Lezama et al., 2017] 75.96± 2.90
VGG-face + low-rank [Lezama et al., 2017] 80.69± 1.02
VGG-face weight Decay 63.87± 1.33
VGG-face DropOut 66.97± 1.31
VGG-face LDMNet 85.02 ± 0.86
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NIR-VIS Heterogeneous Face Recognition

VGG-face Weight decay
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Conclusion

LDMNet is a general network regularization technique that focuses on the
geometry of both the input data and the output feature

LDMNet directly minimize the dimension of the manifolds without explicit
parametrization.

LDMNet significantly outperforms the widely-used network regularizers.

Limits: data augmentation, O(N log N) complexity.
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Thank you
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