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A brief introduction of approximation theory

For a given function f : Rd → R and ε > 0, approximation is to
find a simple function g such that

‖f − g‖ < ε.

Function g : Rn → R can be as simple as g(x) = a · x. To make
sense of this approximation, we need to find a map
T : Rd 7→ Rn, such that

‖f − g ◦ T‖ < ε.

1 Classical approximation: T is independent of data and n
depends on ε.

2 Deep learning: T depends on the data and n can be
independent of ε (T is learned from data).
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Classical approximation
Linear approximation: Given a finite set of generators
{φ1, . . . , φn}, e.g. splines, wavelet frames, finite elements or
generators in reproducing kernel Hilbert spaces. Define

T = [φ1, φ2, . . . , φn]> : Rd 7→ Rn and g(x) = a · x.

The linear approximation is to find a ∈ Rn such that

g ◦ T =

n∑
i=1

aiφi ∼ f

It is linear because f1 ∼ g1, f2 ∼ g2 ⇒ f1 + f2 ∼ g1 + g2.

Nonlinear approximation: Given infinite generators Φ = {φi}∞i=1

and define

T = [φ1, φ2, . . . , ]
> : Rd 7→∈ R∞ and g(x) = a · x

The nonlinear approximation of f is to find a finitely supported a
such that g ◦ T ∼ f .
It is nonlinear because f1 ∼ g1, f2 ∼ g2 ; f1 + f2 ∼ g1 + g2 as
the support of the approximator g of f depends on f .
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Examples
Consider a function space L2(Rd), let {φi}∞i=1 be an orthonormal
basis of L2(Rd).

Linear approximation
For a given n, T = [φ1, . . . , φn]

> and g = a · x where aj = 〈f, φj〉. Denote
H = span{φ1, . . . , φn} ⊆ L2(Rd).
Then,

g ◦ T =

n∑
i=1

〈f, φi〉φi

is the orthogonal projection onto the space H and is the best approximation
of f from the space H.
g ◦ T provides a good approximation of f when the sequence {〈f, φj〉}∞j=1

decays fast as j → +∞.
Therefore,

1 Linear approximation provides a good approximation for smooth
functions.

2 When n =∞, it reproduces any function in L2(Rd).
3 Advantage: It is a good approximation scheme for d is small, domain is

simple, function form is complicated but smooth.
4 Disadvantage: if d is big and ε is small, n is huge.
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Examples

Nonlinear approximation

T = (φj)
∞
j=1 : Rd 7→ R∞ and g(x) = a · x and each aj is

aj =

{
〈f, φj〉, for the largest n terms in the sequence {|〈f, φj〉|}∞j=1

0, otherwise.

The approximation of f by g ◦ T depends less on the decay of
the sequence {|〈f, φj〉|}∞j=1. Therefore,

1 the nonlinear approximation is better than the linear
approximation when f is nonsmooth.

2 curse of dimensionality: if d is big and ε is small, n is huge.
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Both linear and nonlinear approximations are schemes to
approximate a class of function where T is fixed and it
essentially changes a basis in order to represent or
approximate a certain class of functions.

Both linear and nonlinear approximations do not suit for
approximating f when f is defined on a complex domain, e.g
manifold in a very high dimensional space.

However, in deep learning, T is constructed by given data that
is adaptive to the underlying function to be approximated. T
changes variables and maps domain of f to a feature domain
where approximation become simpler, robust, and efficient.

Deep learning approximation is to find map T that maps the
domain of f to a “simple/ better domain” so that simple
classical approximation can be applied.



Outline

1 A brief introduction of approximation theory

2 Deep learning: approximation of functions by composition

3 Approximation of CNNs and sparse coding

4 Approximation in feature space



Approximation for deep learning

Given data {(xi, f(xi))}mi=1.
1 The key of deep learning is to construct a T by the given

data.
2 T can simplify the domain of f through the change of

variables.
3 T maps the key features of the domain of f and f , so that
4 It is easy to find g s.t. g ◦ T gives a good approximation of
f .

What is the mathematics behind this?

Settings: construct a map T : Rd 7→ Rn and a simple function g
(e.g. g = a · x ) from data such that g ◦ T provides a good
approximation of f .



Approximation by compositions

Question 1: For arbitrarily given ε > 0, is there T : Rd 7→ R
such that ‖f − g ◦ T‖ ≤ ε?

Answer: Yes!

Theorem
Let f : Rd → R and g : Rn → R and assume Im(f) ⊆ Im(g). For
an arbitrarily given ε > 0, there exists T : Rd 7→ Rn such that

‖f − g ◦ T‖ ≤ ε

T can be explicitly written out in terms of f and g.

T can be complex. This leads to
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Approximation by compositions

Question 2: can T be a composition of simple maps? That is,
can we write T = T1 ◦ · · · ◦ TJ and each Ti, i = 1, 2, . . . , J is
simple, e.g. perturbation of identity.

Answer: Yes!

Theorem
Denote f : Rd → R and g : Rn → R. For an arbitrarily given
ε > 0, if Im(f) ⊆ Im(g), then there exists J simple maps
Ti, i = 1, 2, . . . , J such that T = T1 ◦ T2 . . . ◦ TJ : Rd 7→ Rn and

‖f − g ◦ T1 ◦ · · · ◦ TJ‖ ≤ ε

Ti, i = 1, 2, . . . , J can be written out explicitly in terms of T .



Approximation by compositions
Question 3: Can Ti, i = 1, 2, . . . , J be mathematically constructed by
some scheme?
Answer: Yes! Ti, i = 1, . . . , J can be constructed by solving the
minimization problem:

min
T1,T2,...,TJ

‖f − g ◦ T1 ◦ · · · ◦ TJ‖

A constructive proof is given in paper.

Question 4: Given training data {xi, f(xi)}mi=1, can we design
numerical scheme to find T̃i, i = 1, 2 . . . , J and g̃ such that

‖f − g̃ ◦ T̃1 ◦ · · · ◦ T̃J‖ ≤ ε, with high probability

by minimizing

1

m

m∑
i=1

(f(xi)− g̃ ◦ T̃1 ◦ · · · ◦ T̃J(xi))
2?

Answer: Yes! We do have designed deep neural networks for that.
Numerical simulations show it performs well.
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Ideas

One of the simplest ideas is

‖f − g̃ ◦ T̃1 ◦ · · · T̃J‖
≤‖f − g ◦ T1 ◦ · · · ◦ TJ‖+ ‖g ◦ T1 ◦ · · · ◦ TJ − g̃ ◦ T̃1 ◦ · · · T̃J‖

=: Bias + Variance

Li, Shen and Tai, Deep learning: approximation of functions by composition, 2018.



This theory is complete, but does not answer all questions!
For example, we do not have approximation order in terms of
the number of nodes yet.

There are many different machine learning architectures, e.g.
convolutional neural networks (CNNs) and sparse coding based
classifiers, are different from the architecture we designed here.

Next, we will present approximation theory of CNNs and sparse
coding based classifiers for image classification.
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Approximation for image classification
Binary classification

Ω = Ω0 ∪ Ω1 and Ω0 ∩ Ω1 = ∅.
Let f to be the oracle classifier, i.e. f : Ω ⊂ Rd → {0, 1} and

f(x) =

{
0, if x ∈ Ω0,
1, if x ∈ Ω1.

Construct feature map T and the classifier g such that

f − g ◦ T

is small.



Approximation for image classification

g is normally a fully connected layer followed by softmax
defined on feature space.
Construct a feature map T , so that g ◦ T approximates f
well, when constructing a fully connected layer to
approximate f from the data in image space is hard.

g ◦ T gives a good approximation of f if T satisfies

‖T (x)− T (y)‖ ≤ C‖x− y‖, ∀x, y ∈ Ω, (3.1)
‖T (x)− T (y)‖ > c‖x− y‖, ∀x ∈ Ω0, y ∈ Ω1. (3.2)

for some C, c > 0.

The above inequalities are not easy to prove for both CNNs and
sparse coding based classifiers especially when n ≤ d.
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Accuracy of image classification of CNNs
The CNNs achieve desired classification accuracy with high
probability!
All the numerical results confirmed it.

Settings:
Given J sets of convolution kernels {wi}Ji=1 and bias {bi}Ji=1.
A J layer convolutional neural network is a nonlinear function

g ◦ T

where
T (x) = σ(wJ ~ σ(wJ−1 ~ · · · (σ(w1 ~ x+ b1)) · · ·+ bJ−1) + bJ)

g(x) =

n∑
i=1

aiσ(w>i x+ bi), and σ(x) = max(0, x).

Normally, the convolutional kernels {wi}Ji=1 have small size.
Given m training samples {(xi, yi)}mi=1, T̃ and a g̃ are learned from

min
g,T

1

m

m∑
i=1

(yi − g ◦ T (xi))
2.
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Accuracy of image classification of CNNs

Question: Whether can we have a rigorous proof for this
statement?

Answer: Yes!

Theorem
For any given ε > 0 and sample data Z with sample size m, there
exists a CNN classifier whose filter size can be as small as 3, such
that the classifier accuracy A satisfies

P(A ≥ 1− ε) ≥ 1− η(ε,m),

η(ε,m)→ 0 as m→ +∞.

The difficult part is to prove the inequalities (3.1) and (3.2) for T̃ .

Bao, Shen, Tai, Wu and Xiang, Approximation and scaling analysis of convolutional
neural networks, 2017.



Accuracy of image classification of sparse coding
Given m training samples {(xi, yi)}mi=1, the sparse coding based
classifier learn D̃ and W̃ via solving the problem

min
‖dk‖=1,{ci}mi=1,W

1

m

m∑
i=1

{
‖xi −Dci‖2 + λ‖ci‖0 + γ‖yi −Wci‖2

}
There are numerical algorithms with global convergence property to
solve the above minimization.

The sparse coding based classifier is g̃ ◦ T̃ , where

g̃(x) = W̃x and T̃ (x) ∈ arg min
c
‖x− D̃c‖2 + λ‖c‖0.

There is no mathematical analysis of classification accuracy of g̃ ◦ T̃ ,
i.e. ‖f − g̃ ◦ T̃‖.
Bao, Ji, Quan, Shen, Dictionary learning for sparse coding: Algorithms and convergence analysis, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 38(7), (2016), 1356-1369.
Bao, Ji, Quan, Shen, L0 norm based dictionary learning by proximal methods with global convergence, IEEE
Conference Computer Vision and Pattern Recognition (CVPR), Columbus, (2014).
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Accuracy of image classification of sparse coding

Consider an orthogonal dictionary learning (ODL) scheme

min
D>D=I,{ci}mi=1,g

1

m

m∑
i=1

{
‖xi −Dci‖2 + λ‖ci‖1 + γ‖yi − g(ci)‖2

}
(3.3)

where g is a fully connected layer.
The numerical algorithm to solve the above problem has global
convergence property.

The classification accuracy is similar to the previous models.

Classification accuracies (%)
Dataset K-SVD D-KSVD IDL ODL

Face: Extended Yale B 93.10 94.10 95.72 96.12
Face: AR face 86.50 88.80 96.18 96.37

Object: Caltech101 68.70 68.60 72.29 72.54

For this model, we have mathematical analysis of accuracy.
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Sparse coding approximation of image classification

Let g̃ to be the fully connected layer and D̃ is the dictionary from
solving (3.3). Define

T̃ (x) = arg min
c
‖x− D̃c‖2 + λ‖c‖1.

The sparse coding based classifier from ODL model is g̃ ◦ T̃ .

Theorem
Consider the ODL model. For any given ε > 0 and sample data Z
with sample size m, there exists a sparse coding based classifier,
such that the classifier accuracy A satisfies

P(A ≥ 1− ε) ≥ 1− η(ε,m),

η(ε,m)→ 0 as m→ +∞.

To prove the two inequalities (3.1) and (3.2) of T̃ is not easy.
Bao, Ji and Shen, Classification accuracy of sparse coding based classifier, 2018.
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Data-driven tight frame is convolutional sparse coding
Given an image g, the data driven tight frame model solves

min
c,W

‖WT c− g‖22 + ‖(I −WWT )c‖22 + λ2‖c‖0

s.t. WTW = I.
(3.4)

WhenW>W = I, the rows ofW form a tight frame.

The minimization model (3.4) is equivalent to

min
c,W

‖Wg − c‖22 + λ2‖c‖0, s.t. W>W = I. (3.5)

By the structure ofW, each channel ofW corresponds to a
convolutional kernel.

To solve (3.5), we use ADM. For fixedW, c can be solved by
hard thresholding; For fixed c,W has an analytical solution and
easy to compute. Thanks the convolution structure ofW and the
tight frame property.

The iteration algorithm converges.



Data-driven tight frame is convolutional sparse coding
Given an image g, the data driven tight frame model solves

min
c,W

‖WT c− g‖22 + ‖(I −WWT )c‖22 + λ2‖c‖0

s.t. WTW = I.
(3.4)

WhenW>W = I, the rows ofW form a tight frame.

The minimization model (3.4) is equivalent to

min
c,W

‖Wg − c‖22 + λ2‖c‖0, s.t. W>W = I. (3.5)

By the structure ofW, each channel ofW corresponds to a
convolutional kernel.

To solve (3.5), we use ADM. For fixedW, c can be solved by
hard thresholding; For fixed c,W has an analytical solution and
easy to compute. Thanks the convolution structure ofW and the
tight frame property.

The iteration algorithm converges.
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Data-driven tight frame for image denoising

[1] Cai, Huang, Ji, Shen and Ye, Data-driven tight frame construction and image denois-
ing, Applied and Computational Harmonic Analysis, 37(1), (2014), 89-105.
[2] Bao, Ji and Shen, Convergence analysis for iterative data-driven tight frame construc-
tion scheme, Applied and Computational Harmonic Analysis, 38(3), (2015), 510-523.
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Back to classical approximation on feature domain
Classical approximation is still useful for approximation in
feature space.

Given noisy data {xi, yi}mi=1 with

yi = (Sf)(xi) + ni,

where {yi}mi=1 are samples of f with noise ni.

By applying some data fitting scheme, e.g., the wavelet
frame scheme, one obtains the denoised result

{y∗i }mi=1.

Let g be the function reconstructed by y∗i through some
approximation scheme.
Question:
1. What’s the error between g and f?
2. Can we have g −→ f when the sampling data is
sufficiently dense?
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Data fitting

Let Ω := [0, 1]× [0, 1] and f ∈ L2(Ω). Let φ be the tensor
product of B-spline functions and denote the scaled functions
by φn,α := 2nφ(2n · −α). Let (Sf)[α] = 2n〈f, φn,α〉.

Given noisy observations

y[α] = (Sf)[α] + nα, α = (α1, α2), 0 ≤ α1, α2 ≤ 2n − 1.

The data fitting problem is to recover f on Ω from y.
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Wavelet frame
Let φ be a refinable function and Ψ := {ψi, i = 1, . . . , r} be
the wavelet functions associated with φ in L2(R2).

Denote the scaled functions by

φn,α := 2nφ(2n · −α) and ψi,n,α := 2nψi(2
n · −α).

X(Ψ) := {ψi,n,α} is a tight frame if

‖f‖22 =
∑
i,n,α

|〈f, ψi,n,α〉|2, ∀f ∈ L2(R).

Unitary extension principle (UEP): Assume the masks hi
satisfy the following equalities

2
r∑
i=0

∑
k∈Z

hi(m+ 2k + `)hi(2k + `) = δm, for any m, ` ∈ Z,

X(Ψ) := {ψi,n,α} is a tight frame.
Ron and Shen, Affine systems in L2(Rd): the analysis of the analysis operator, Journal
of Functional Analysis, 148(2), (1997), 408-447.
Daubechies, Han, Ron and Shen, Framelets: MRA-based constructions of wavelet
frames, Applied and Computational Harmonic Analysis, 14(1), (2003), 1-46.
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Examples of spline wavelets from UEP

Piecewise linear refinable B-spline and the corresponding framelets.

Refinement mask h0 = [ 1
4
, 1
2
, 1
4
]. High pass filters h1 = [− 1

4
, 1
2
,− 1

4
] and h2 = [

√
2

4
, 0,−

√
2

4
].

Piecewise cubic refinable B-spline and the corresponding framelets.

Refinement mask h0 = [ 1
16
, 1
4
, 3
8
, 1
4
, 1
16

]. High pass filters h1 = [ 1
16
,− 1

4
, 3
8
,− 1

4
, 1
16

],

h2 = [− 1
8
, 1
4
, 0,− 1

4
, 1
8
], h3 = [

√
6

16
, 0,−

√
6

8
, 0,

√
6

16
] and h4 = [− 1

8
,− 1

4
, 0, 1

4
, 1
8
].

Discrete wavelet transformW:

{an,α := 〈f, φn,α〉}
W−→ {〈f, ψi,n,α〉}ri=0 = {hi ∗ an,α}ri=0,

where {hi} are the wavelet frame filters.
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Wavelet frame based data fitting scheme

Example: analysis-based wavelet approach for data fitting

Let f∗n be a minimizer of the model

En(f) := ‖f − y‖22 + ‖diag(λn)Wnf‖1,

where λ is a vector which scales the different wavelet
channels.

Let g∗n :=
∑

α∈In f
∗
n(α)φ(2n · −α).

What’s the bound of ‖g∗n − f‖L2(Ω)?
Does g∗n converge to f in L2(Ω) as n→∞?
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Regularity assumption of f : There exits β > −1 such that∑
α

|〈f, φ0,α〉|+
∑
n≥0

2βn
∑
i,α

|〈f, ψi,n,α〉| <∞.

Then for an arbitrary given 0 < δ < 1, the following
inequality

‖g∗n − f‖L2(Ω) ≤ C12−nmin{ 1+β
2
, 1
2
} log

1

δ
+ C2σ

2

holds with confidence 1− δ.
When n→∞, one can design a data fitting scheme such
that

lim
n→∞

E
(
‖g∗n − f‖L2(Ω)

)
= 0.

In this case, data is given on uniform grids.
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When the noisy data are obtained from nonuniform grids or
obtained by random sampling, can we have a similar
result?

Yes. It is technical but it has been carefully studied.

Cai, Shen and Ye, Approximation of frame based missing data recovery, Applied and Computational Harmonic

Analysis, 31(2), (2011), 185-204.

Yang, Stahl and Shen, An analysis of wavelet frame based scattered data reconstruction, Applied and

Computational Harmonic Analysis, 42(3), (2017), 480-507.

Yang, Dong and Shen, Approximation of analog signals from noisy data, manuscript, 2018.
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Thank you!

http://www.math.nus.edu.sg/∼matzuows/
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