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Another underlying idea that will accompany us 
  

Generative modeling of data sources enables  
o A systematic algorithm development, &   
o A theoretical analysis of their performance  
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Coding 
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3D Objects 

Medical Imaging 
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   Our Data is Structured 

o We are surrounded by various diverse 
sources of massive information 

o Each of these sources have an internal 
structure, which can be exploited 

o This structure, when identified, is the  
engine behind our ability to process this data 

Voice Signals 

Stock Market Biological Signals 

Videos 

Text Documents 

Radar Imaging 

Matrix Data 

     Social Networks 

Traffic info 

Seismic Data 
Still Images 
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   Models 

o A model: a mathematical  
description of the underlying  
signal of interest, describing our 
beliefs regarding its structure 

o The following is a partial list of  
commonly used models for images 

o Good models should be simple while 
matching the signals 
 

 

o Models are almost always imperfect 

Principal-Component-Analysis 

   Gaussian-Mixture 

Markov Random Field 

   Laplacian Smoothness 

DCT concentration 

   Wavelet Sparsity 

Piece-Wise-Smoothness 

   C2-smoothness 

Besov-Spaces 

   Total-Variation 

Beltrami-Flow 

 

Simplicity 
 

 

Reliability 
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   What This Talk is all About?  

Data Models and Their Use 
o Almost any task in data processing requires a model ς  

true for denoising, deblurring, super-resolution, inpainting, 
compression, anomaly-detection, sampling, recognition, 
separation, and more 

o Sparse and Redundant Representations offer a new and 
highly effective model ς we call it  

                                        Sparseland  

o We shall describe this and descendant versions of it that 
ƭŜŀŘ ŀƭƭ ǘƘŜ ǿŀȅ ǘƻ Χ deep-learning 
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Machine 
Learning 
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Mathematics 
Signal   

Processing 

   A New Emerging Model 

Sparseland 

Wavelet 
Theory 

Signal 
Transforms 

Multi-Scale 
Analysis 

Approximation 
Theory 

Linear  
Algebra 

Optimization 
Theory 

Denoising 

Interpolation 

Prediction 
Compression 

Inference (solving 
inverse problems) 

Anomaly 
detection Clustering 

Summarizing 

Sensor-Fusion Source-
Separation 

Segmentation 

Recognition 

Semi-Supervised 
Learning 

Identification 

Classification 

Synthesis 
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   The Sparseland  Model 

o Task: model image patches of                                               
size 8× 8 pixels 

o We assume that a dictionary of  
such image patches is given,  

containing 256 atom images 

o The Sparseland  model assumption:                          

every image patch can be                                              
described as a linear                                    

combination of few atoms 

1h 2h 3h 

ʅ 
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   The Sparseland  Model 

o We start with a 8-by-8 pixels patch and 
represent it using 256 numbers         
   ς This is a redundant representation 

o However, out of those 256 elements in the 
representation, only 3 are non-zeros  
    ς This is a sparse representation 

o Bottom line in this case: 64 numbers 
representing the patch are replaced by 6  
(3 for the indices of the non-zeros, and 3  
for their entries) 

Properties of this model:                      

        Sparsity and Redundancy 

1h 2h 3h 

ʅ 
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   Chemistry of Data 

1h 2h 3h 

ʅ 

o Our dictionary stands for the Periodic Table 
containing all the elements 

o Our model follows a similar rationale:                                            
Every molecule is built of few elements 

We could refer to the Sparseland   
model as the chemistry of information: 
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   Sparseland : A Formal Description 

M  m 

n 

A Dictionary 

o Every column in Ἆ 
(dictionary) is a  
prototype signal (atom) 

o The vector a is 
generated  
with few non-
zeros at arbitrary 
locations and  
values 

A sparse  
vector 

= n 

o This is a generative model 
that describes how (we 
believe) signals are created 

Ø 

ɻ 
Ἆ 
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   Difficulties with Sparseland 

o Problem 1: Given a signal, how                            
can we find its atom decomposition? 

o A simple example:  

Á There are 2000 atoms in the dictionary 

Á The signal is known to be built of 15 atoms 
 

                                                       possibilities  
 

Á If each of these takes 1nano-sec to test,                                      this 
will take ~7.5e20 years to finish !!!!!!  

o So, are we stuck?  

1h 2h 3h 

ʅ 

2000
2.4e 37

15

å õ
º +æ ö

ç ÷
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   Atom Decomposition Made Formal 

Greedy methods 

Thresholding/OMP 

Relaxation methods 

Basis-Pursuit 

ÁL0 ς counting number of 
non-zeros in the vector 

ÁThis is a projection onto  

the Sparseland model 

ÁThese problems are known 
to be NP-Hard problem 

Approximation Algorithms 

ÍÉÎ ɻ   ÓȢÔȢ Ἆɻ Ù ʀ 

ÍÉÎ ɻ   ÓȢÔȢ Ø Ἆɻ 

m 

n =Ἆ 

Ø ɻ 
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   Pursuit Algorithms  

Michael Elad 
The Computer-Science Department  
The Technion 

Basis Pursuit 
 

Change the L0 into L1  
and then  the problem 
becomes convex and 
manageable  

Matching Pursuit 
 

 Find the support greedily, 

one element at a time 

Thresholding 
 

Multiply Ù by Ἆἢ  
and apply shrinkage: 

ɻ ע ἎἢÙ  

ÍÉÎ ɻ   ÓȢÔȢ Ἆɻ Ù ʀ 

Approximation Algorithms 

ÍÉÎ ɻ    
ÓȢÔȢ  

      Ἆɻ Ù ʀ 

@



1h 2h 3h 

ʅ 
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   Difficulties with Sparseland 
o There are various pursuit algorithms 

o Here is an example using the Basis Pursuit (L1): 

 

 

 

 

 
 

o Surprising fact: Many of these algorithms are often  
accompanied by theoretical guarantees for their  
success, if the unknown is sparse enough 
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n=200; m=2000; s=15;   

D=randn(n,m);  

D=D*diag(1./diag(D'*D));  

   

a=zeros(m,1);  

pos=randperm(m);  

pos=pos(1:s);  

a(pos)=(rand(s,1)+1).*sign(randn(s,1));  

   

x=D*a;  

V=ones(2*m,1); 

aBP=linprog(V,[],[],[D, -D],x,0*V,V* 100); 

aBP=aBP(1:m)-aBP(m+1:end); 

    

figure(1); clf;  

plot(0:1:m,zeros(1,m+1),'b');  

hold on; 

h=plot(pos,a(pos),'ro');  

set(h,'MarkerFaceColor','r');  

axis([0 2000 -2.5 2.5]);  

   

plot(1:1:m,aBP); h=plot(pos,a(pos),'ro');  

set(h,'MarkerFaceColor','r');  
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   The Mutual Coherence 

o The Mutual Coherence ʈἎ  is the largest off-diagonal  
entry in absolute value 

o We will pose all the theoretical results in this talk using  
this property, due to its simplicity 

o You may have heard of other ways to characterize the 
dictionary (Restricted Isometry Property - RIP, Exact  
Recovery Condition - 9w/Σ .ŀōŜƭ ŦǳƴŎǘƛƻƴΣ {ǇŀǊƪΣ Χύ 

= o Compute 

Assume 
normalized 

columns 

Ἆ 

Ἆ  
ἎἎ 
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   Basis-Pursuit Success  

Comments:  
o If e=0  ɻ ɻ 
o This is a worst-case 

analysis ς better 
bounds exist  

o Similar theorems 
exist for many other 
pursuit algorithms 

Theorem: Given a noisy signal Ù Ἆɻ Ö where Ö ʀ 
and ɻ is sufficiently sparseȟ   

 
then Basis-Pursuit:   ÍÉÎ  ɻ    ÓȢÔȢ  Ἆɻ Ù  ʀ 

leads to a stable result:  ɻ ɻ  
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Donoho, Elad & Temlyakov όΨ06) 

ɻ 

 

M 

Ø 

ɻ 

Ἆ 
+ 

Ù 

Ö ʀ 

ÍÉÎ  ɻ   
ÓȢÔȢ  

Ἆɻ Ù  ʀ 

ÍÉÎ  ɻ   
ÓȢÔȢ  

Ἆɻ Ù  ʀ 
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   Difficulties with Sparseland 

1h 2h 3h 

ʅ 
o Problem 2: Given a family of signals, how do                      

we find the dictionary to represent it well? 

o Solution: Learn! Gather a large set of                                
signals (many thousands), and find the                                                          
dictionary that sparsifies them 

o Such algorithms were developed in the                               
past 10 years (e.g., K-SVD), and their                          
performance is surprisingly good 

o We will not discuss this matter further  
in this talk due to lack of time 
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   Difficulties with Sparseland 

1h 2h 3h 

ʅ 
o Problem 3: Why is this model suitable to                   

describe various sources? e.g., Is it good 
for ƛƳŀƎŜǎΚ !ǳŘƛƻΚ {ǘƻŎƪǎΚ Χ  

o General answer: Yes, this model is                                
extremely effective in representing                                    
various sources 

Á Theoretical answer: Clear connection  
to other models 

Á Empirical answer:  In a large variety of signal  
and image processing (and later machine  
learning), this model has been shown to lead  
to state-of-the-art results 

Michael Elad 
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   Difficulties with Sparseland ? 

o Problem 1: Given an image patch, how   
can we find its atom decomposition ? 

o Problem 2: Given a family of signals,                                    
how do we find the dictionary to                                        
represent it well? 

o Problem 3: Is this model flexible                                      
enough to describe various sources?                                   
E.gΦΣ Lǎ ƛǘ ƎƻƻŘ ŦƻǊ ƛƳŀƎŜǎΚ ŀǳŘƛƻΚ Χ  

1h 2h 3h 

ʅ 
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 A New Massive Open Online Course  
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o When handling images, Sparseland  is typically deployed on small 

overlapping patches due to the desire to train the model to fit the 
data better 

 

 
 

o The model assumption is: each patch in the image is believed to 
have a sparse representation w.r.t. a common local dictionary 

o ²Ƙŀǘ ƛǎ ǘƘŜ ŎƻǊǊŜǎǇƻƴŘƛƴƎ Ǝƭƻōŀƭ ƳƻŘŜƭΚ ¢Ƙƛǎ ōǊƛƴƎǎ ǳǎ ǘƻ Χ ǘƘŜ 
Convolutional Sparse Coding (CSC)  
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   Sparseland  for Image Processing 
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Joint work with 

Vardan Papyan Yaniv Romano Jeremias Sulam 
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Convolutional Sparse Coding (CSC)  

ἦ Äᶻɜ 

ά filters convolved with their 
sparse representations  

An image 
with ὔ 
pixels 

É-th feature-map:   
An image of the 
same size as ἦ  
holding the sparse 
representation 
related to the É-filter 

The É-th filter of  
small size ὲ 

29 
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o Here is an alternative global sparsity-based model formulation 

 
 

oἍᶰᴙ  is a banded and Circulant  
matrix containing a single atom  
with all of its shifts 

 

 

o ᶰᴙ  are the corresponding coefficients  
ordered as column vectors 

ἦ Ἅ  

CSC in Matrix Form 

ὲ 

ὔ 

Ἅ  

Ἅ Ễ  Ἅ
ể Ἆ  
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The CSC Dictionary 

Ἅ Ἅ Ἅ  

Ἆ  
ὲ 

Ἆ  

ά 
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= 

ἠἦ  

ὲ 

ςὲ ρά 

ἠἦ ὲ 

ςὲ ρά 

ἠ ἦ 

  

Why CSC? 

ἦ Ἆ  
stripe-dictionary 

Every patch has a sparse 
representation w.r.t. to the 

same local dictionary ( ) just 
as assumed for images 

stripe vector 

32 
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Classical Sparse Theory for CSC ?  

Theorem: BP is guaranteed to άǎǳŎŎŜŜŘέ ΧΦ if   

ÍÉÎ      ÓȢÔȢἧ Ἆ ʀ 

o Assuming that ά ς and ὲ φτ we have that ώ²ŜƭŎƘΣ Ω74] 
 

ʈ πȢπφσ 
 

o Success of pursuits is guaranteed as long as 

         ρ
Ἆ

ρ
Ȣ

τȢς 

o Only few (4) non-zeros GLOBALLY are  
allowed!!! This is a very pessimistic result! 
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The main question we aim to address is this:  
 

Can we generalize the vast theory of Sparseland to this  
new notion of local sparsity? For example, could we  
provide guarantees for success for pursuit algorithms? 

ά ς 

Moving to Local Sparsity: Stripes  

ÍÉÎ  ȟ  ÓȢÔȢ ἧ Ἆ ʀ 

Љȟ  Norm:   ȟ ÍÁØ   

  ȟ  is low  all   are sparse  every 

patch has a sparse representation over  

34 
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Success of the Basis Pursuit  

36 

Theorem: For 9 $ɜ %, if ʇ τ% ȟ  , if  

ȟ
Ἳ

Ἆ
 

then Basis Pursuit performs very-well: 

1.  The support of ɜ  is contained in that of ɜ 

2.  ɜ ɜ χȢυ% ȟ  

3.  Every entry greater than χȢυ% ȟ  is found 

4.  ɜ  is unique 

ɜ ÍÉÎ   
ρ

ς
9 $ɜ ʇɜ  

Papyan, Sulam 
ϧ 9ƭŀŘ όΨ17) 

Recent works tackling the 
convolutional sparse coding 

problem via BP 
[Bristow, Eriksson & Lucey Ψ13] 

[Wohlberg Ψ14] 
[Kong & Fowlkes Ψ14] 
[Bristow & Lucey Ψ14] 

[Heide, Heidrich & Wetzstein Ψ15] 
[~ƻǊŜƭ & ~ǊƻǳōŜƪ Ψ16] 

Local noise 
(per patch)  
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Ὢἦȟἥ ȟἪ 2Å,5Ἢ ἥ  2Å,5Ἢ ἥ ἧ  Ὢἦȟἥ ȟἪ 2Å,5Ἢ ἥ  2Å,5Ἢ ἥ ἧ  Ὢἦȟἥ ȟἪ 2Å,5Ἢ ἥ  2Å,5Ἢ ἥ ἧ  Ὢἦȟἥ ȟἪ 2Å,5Ἢ ἥ  2Å,5Ἢ ἥ ἧ  Ὢἦȟἥ ȟἪ 2Å,5Ἢ ἥ  2Å,5Ἢ ἥ ἧ  Ὢἦȟἥ ȟἪ 2Å,5Ἢ ἥ  2Å,5Ἢ ἥ ἧ  Ὢἦȟἥ ȟἪ 2Å,5Ἢ ἥ  2Å,5Ἢ ἥ ἧ  Ὢἧ 2Å,5Ἢ ἥ  2Å,5Ἢ ἥ ἧ  

Quick Recall: The Forward Pass 

Ἠ ᶰᴙ  

ά  

2Å,5 2Å,5 

ἥ ᶰᴙ  

ὲά  
ά  

ἥ ᶰᴙ  

ά  
ὲ 

Ἢ ᶰᴙ  

Ἢ ᶰᴙ  

ἧᶰᴙ  
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From CSC to Multi-Layered CSC 
ἦᶰᴙ  

ά  

ὲ 

Ἆ ᶰᴙ  

ὲά  
ά  

Ἆ ᶰᴙ  

ά  

ᶰᴙ  

ᶰᴙ  

ᶰᴙ  

Convolutional sparsity 
(CSC) assumes an 

inherent structure is 
present in natural 

signals 

We propose to impose the 
same structure on the 

representations themselves 

Multi -Layer CSC (ML-CSC) 
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Intuition: From Atoms to Molecules 
ἦᶰᴙ  Ἆ ᶰᴙ  Ἆ ᶰᴙ  

ᶰᴙ  

ᶰᴙ  

o We can chain the all the dictionaries  
into one effective dictionary 
Ἆ ἎἎἎ ϽϽϽἎ     ὀ Ἆ     

o This is a special Sparseland  (indeed, a CSC) model 
 

o However:  

Á A key property in this model: sparsity of the intermediate representations 

Á The effective atoms: atoms  molecules  cells  tissue  body-parts  Χ 

ᶰᴙ  
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A Small Taste: Model Training (MNIST) 

ἎἎἎ   (28×28) 
  

MNIST Dictionary: 
ÅD1:  32 filters of size 7×7, with stride of 2 (dense) 
ÅD2: 128 filters of size 5×5×32 with stride of 1 -  99.09 % sparse 
ÅD3: 1024 filters of size 7×7×128 ς 99.89 % sparse 

ἎἎ  (15×15) 
 

Ἆ  (7×7) 
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A Small Taste: Model Training (CiFAR) 
ἎἎἎ   (32×32) 

CIFAR Dictionary: 
ÅD1: 64 filters of size 5x5x3, stride of 2 

dense 
ÅD2: 256 filters of size 5x5x64, stride of 2 

82.99 % sparse 
ÅD3: 1024 filters of size 5x5x256  

90.66 % sparse 

ἎἎ  (13×13) Ἆ  (5×5×3) 
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ML-CSC: Pursuit 

o DeepςCoding Problem ἎἍἜ  (dictionaries are known): 

 &ÉÎÄ       ίȢὸȢ  

ἦ Ἆ ȟ ʇ

Ἆ ȟ ʇ

ể ể
Ἆ ȟ ʇ

   

 
o Or, more realistically for noisy signals,  

        &ÉÎÄ       ίȢὸȢ  

ἧ Ἆ ꜡ ȟ ʇ

Ἆ ȟ ʇ

ể ể
Ἆ ȟ ʇ
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A Small Taste: Pursuit 

ɜ 

ɜ 

ɜ 

ɜ 

9 

99.51% sparse 
(5 nnz) 

99.52% sparse 
(30 nnz) 

94.51 % sparse 
(213 nnz) 
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x=Ἆɜ 
 

x=ἎἎɜ 
 

x=ἎἎἎɜ 

x 


