Sparse Modeling

N
Image Processing and Deep Learning

Michael Elad

Computer Science Department
The Technion - Israel Institute of Technology

Haifa 32000, Israel

New Deep Learning Techniques
February 5-9, 2018

The research leading to these results has been received funding [EEEEss

[
¥ from the European union's Seventh Framework Program
(FP/2007-2013) ERC grant Agreement ERC-SPARSE- 320649




This Lecture

Sparseland CSC ML-CSC
Sparse Convolutional Multi-Layered

Representation Sparse » Convolutional
Theory Coding Sparse Coding

Sparsity-Inspired Models > Deep-Learning

Another underlying idea that will accompany us

Generative modeling of data sources enables
o A systematic algorithm development, &
o A theoretical analysis of their performance
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Our Data is Structured

Matrix Data
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o We are surrounded by various diverse
sources of massive information

o Each of these sources have an internal
structure, which can be exploited

o This structure, when identified, is the Voice Sign

als
engine behind our ability to process this data
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Models

o A model: a mathematical Principal-Component-Analysis

description of the underlying
signal of interest, describing our
beliefs regarding its structure

Gaussian-Mixture
Markov Random Field

Laplacian Smoothness

o The following is a partial list of 'DCT concentration
commonly used models for images ‘Wavelet Sparsity
o Good models should be simple while Piece-Wise-Smoothness
matching the signals
Simplicit ” Reliabilit
PREEY Y
: Beltrami-F|
o Models are almost always imperfect  —
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What This Talk is all About?

Data Models and Their Use

o Almost any task in data processing requires a model —
true for denoising, deblurring, super-resolution, inpainting,

compression, anomaly-detection, sampling, recognition,
separation, and more

o Sparse and Redundant Representations offer a new and
highly effective model — we call it

Sparseland

o We shall describe this and descendant versions of it that
lead all the way to ... deep-learning
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Multi-Layered Convolutional
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A New Emerging Model

Signal Machine
Processing Learning Mathematics
Wavelet e Approximation
Theory Theory
Analy5|s Sparse[and' Algebra

Optimization

Signal Theory
Transforms ‘
Semi-Supervised Interpolation Source- >egmentation  “go oo Fusion
Learning : ] —
!nference (solving Separation Classification SutiTE A
Compression inverse problems)

Prediction  Denoising Anomaly Synthesis

Recognition . ;
= * Clustering = |dentification ™ J€teClON  —

|
*= | Michael Elad 8
¥ The Computer-Science Department
The Technion




The Sparseland Model

o Task: model image patches of
size 8X8 pixels

o We assume that a dictionary of
such image patches is given,

containing 256 atom images

o The Sparse[am{ model assumption:

every image patch can be
described as a linear

combination of few atoms
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The Sparse[anc[ Model

Properties of this model:

Sparsity and Redundancy

o We start with a 8-by-8 pixels patch and
represent it using 256 numbers

— This is a redundant representation

o However, out of those 256 elements in the

representation, only 3 are non-zeros r‘-.;,_
2
o Bottom line in this case: 64 numbers ﬁ?i;
representing the patch are replaced by 6 am Bl
(3 for the indices of the non-zeros, and 3 :.ﬁuﬁ ;
for their entries) N T
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Chemistry of Data

We could refer to the Sparse[ana’
model as the chemistry of information:

o Our dictionary stands for the [ZEIglele I[N E]¢] [
containing all the elements

o Our model follows a similar rationale:
Every molecule is built of few elements

e
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Sparseland : A Formal Description

o Every columninD

(dictionary) is a
p m prototype signal (atom)

4
A

H [ (:1t o The vector ais
[ ]
- .  generated

n - :

8 with few non-

v L ) E X i zeros at arbitrary

A Dictionary SIGEEEES locations and
vector
D values

a o This is a generative model

that describes how (we
believe) signals are created
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Difficulties with Sparseland

o Problem 1: Given a signal, how

can we find its atom decomposition?

o Asimple example:

= There are 2000 atoms in the dictionary

= The signal is known to be built of 15 atoms

‘ (2(1)(5)Oj ~2.4e + 37 possibilities

= |f each of these takes 1nano-sec to test,

o So, are we stuck?
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Atom Decomposition Made Formal

Al N

min, ||ally s.t. x = Da

! . D

VN p

ming ||afly s.t. [|[Da—yll, < ¢ m ; X‘
(04

A

AN EEEEEEEEEETE
g

Approximation Algorithms

y’ -
&' (’A ‘%' \ = This is a projection onto

: e the Sparseland model
Relaxation methods Greedy m

" L,—counting number of
non-zeros in the vector

ethods
= These problems are known

Basis-Pursuit Thresholding/OMP to be NP-Hard problem
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Pursuit Algorithms

ming [[allp s.t. |[Da—yll; <€

Approximation Algorithms

Basis Pursuit Matching Pursuit Thresholding

Change the Ly into L, Find the support greedily, Multiply y by DT

and then the problem one element at a time and apply shrinkage:
becomes convex and g P e ey a=2P ﬁ{DTy}
manageable SEEdHfEEEtE R ,\

T e
) T I O
T e
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Difficulties with Sparseland

o There are various pursuit algorithms

o Here is an example using the Basis Pursuit (L,):

400 600 800 1000 1200 1400 1600 1800 2000

o Surprising fact: Many of these algorithms are often
accompanied by theoretical guarantees for their
success, if the unknown is sparse enough
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The Mutual Coherence

o Compute ‘ D ]z
DT Assume '-._
normalized "ul
columns DTD

o The Mutual Coherence u(D) is the largest off-diagonal
entry in absolute value

o We will pose all the theoretical results in this talk using
this property, due to its simplicity

o You may have heard of other ways to characterize the
dictionary (Restricted Isometry Property - RIP, Exact
Recovery Condition - ERC, Babel function, Spark, ...)
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Basis-Pursuit Success

Theorem: Given a noisy signal y = Da + v where ||v]||, < ¢
and «a is sufficiently sparse, i | |
ladlo < (1+

Allg < — —
) L
then Basis-Pursuit: min, ||af|; s.t. ||[Da—vy|, <€

4.2
1—p(4|lallp—1)

leads to a stable result: || — a|5 <

Donoho, Elad & Temlyakov (‘06)
Comments:
o Ife=0 >0 =0«
O o Thisisa worst-case

0 || g i il g anois
= o 0 analysis — better
E bounds exist
9‘/[ ' IDox — y||2 < ¢ o Similar theorems
L exist for many other

V][, < ¢ pursuit algorithms
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Difficulties with Sparseland

o Problem 2: Given a family of signals, how do
we find the dictionary to represent it well? I
2

o Solution: Learn! Gather a large set of
signals (many thousands), and find the

dictionary that sparsifies them e e
= —=m=o m— 1
o Such algorithms were developed in the .‘b"‘.'!- =r- r. -
past 10 years (e.g., K-SVD), and their EEE - "L"n‘ Ty
performance is surprisingly good Ez-s ,ﬁﬁ?;sg
o We will not discuss this matter further - A . -lL)
in this talk due to lack of time . iy
B T WA
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Difficulties with Sparseland

o Problem 3: Why is this model suitable to
describe various sources? e.g., Is it good : K
for images? Audio? Stocks? ...

o General answer: Yes, this model is
extremely effective in representing p e ==
various sources S rerrmscr

1L *D e
; . H -y o’
- Theorr‘etlcal z(ajnTwer. Clear connection ;EE ':‘}s"nw.
to other models - .
hd A A Ry
. : : E A 13 ] L -
=  Empirical answer: In a large variety of signal m« - JdIIIL T
and image processing (and later machine » ﬂ:'..a‘..."
- - M -EAMNAS -
learning), this model has been shown to lead = MM, <
to state-of-the-art results & A0 . 81N,
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Difficulties with Sparseland ?
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A New Massive Open Online Course

e‘ x Courses « Programs - Schoo

¥ Israel X

Sparse Representations in Signal. RN
and Image Processing ‘

Learn the theory, tools and algorithms of sparse
representations and their impact on signal and image
processing.

Start the Professional Certificate Program

22



Spdi’se[dnc[ for Image Processing

o When handling images, Sparse[anc[ is typically deployed on small

overlapping patches due to the desire to train the model to fit the
data better

= .
o The model assumption is: each patch in the image is believed to
have a sparse representation w.r.t. a common local dictionary

o What is the corresponding global model? This brings us to ... the
Convolutional Sparse Coding (CSC)
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Convolutional
Sparse Modeling

Joint work with
R |

Yaniv Romano Vardan Papyan Jeremias Sulam
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Convolutional Sparse Coding (CSC)

m filters convolved with their i-th feature-map:
sparse representations An image of the
\L same size as X
gl holding the sparse
m representation
i s . related to the i-filter
HHHHHFHHH SR [X] — dl % [Fl] T -
An image P
with N i=1 S
pixels e
P i
P The i-th filterof . @ & .
N » P
rAzle smallsizen

Michael Elad 29
The Computer-Science Department
The Technion



CSC in Matrix Form

o Here is an alternative global sparsity-based model formulation

), €= E Crt = : | = DI
i=1 rm
o C!' € R¥*N is 3 banded and Circulant o e—
. . . . [ FREEEN
matrix containing a single atom | . “EECE
) . i n\|mem CEE
with all of its shifts SemEm .
= [ [ [ [l
|| = [ ] [
- » Cl = | ™=
[ | — B T (e
g T T e
B TR T T
COHENEEN
i N h di Ffici M MEE
oI € R" are the corresponding coefficients jﬁ@égiéi
ordered as column vectors \< o
N
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The CSC Dictionary

| | |
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7
stripe—dictionary/stripe vector J
X=DI -
/ Every patch has a sparse

R;X = Qy; representation w.r.t. to the
same local dictionary (€2) just
Riy1X = Qvyjq

Vi

as assumed for images
g Michael Elad
The Computer-Science Department
The Technion
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Classical Sparse Theory for CSC ?

mrin IT|lg s.t.|]|[Y—=DIJ, <¢

Theorem: BP is guaranteed to “succeed” .... if ||[T||y < %(1 + ﬁ)

o Assuming that m = 2 and n = 64 we have that [welch, '74]
u=0.063

o Success of pur :
The classiC S
-\-_ p \I\d

does N
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Moving to Local Sparsity: Stripes

m = 2
£0,0 Norm: [|T'|[g o, = max |lyillo :
bmln IT|[3,0 s-t. [[Y—=DT; < '
» IT|]3, 0 is low — all y; are sparse — every ;
. A
patch has a sparse representation over () (=

. . . . Yierd o (Vi
The main question we aim to address is this: g
\I
Can we generalize the vast theory of Sparse[ancfto this :
new notion of local sparsity? For example, could we E

provide guarantees for success for pursuit algorithms? F
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Success of the Basis Pursuit

1 )
. 1 B ) Local noise
FBP = mrln 2 ”Y DF”Z + }\llrlll / \(per patch)

Theorem: ForY = DI+ E, if A = 4||E||12),Oo if

IT1[5,00 < 1<1 + L)
3 u(D)
then Basis Pursuit performs very-well:
» 1. The support of [gp is contained in that of I’
2. |Ifgp —Tlleo < 75lIEll3 o

3. Every entry greater than 7.5||E||12) -, is found Papyan, Sulam

_ _ & Elad (17)
4. TIgpisunique

Michael Elad 36
The Computer-Science Department
The Technion




¥

Michael Elad
The Computer-Science Department
The Technion

40



Quick Recall: The Forward Pass

Z, e R"™2 b, e RV™z W, € RV"2xNm

= ReLU <

.

nimq

m;

b, € RVN™

&3 ReLU<

o

f(Y) = ReLU(b, + W ReLU(b; + W/Y))

wil‘ = RlexN

no

Y eRN

&3

\
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From CSC to Multi-Layered CSC

XeRY D; e R¥V™ T € RV™ We propose to impose the
m, same structure on the
representations themselves

[

Fl € ]Rle D2 € ]RleXNmZ FZ = ]RNmZ

_ m ]
Convolutional sparsity My
(CSC) assumes an !
inherent structure is = my {

present in natural
sighals

» Multi-Layer CSC (ML-CSC)
Michael Elad 45
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Intuition: From Atoms to Molecules

XeRY  D; e RVN™ T, e@ERIMNT: T, € RV™

 —
 —

o We can chain the all the dictionaries
into one effective dictionary
Deff = D1DyD3 - D — X = Degr Ik

o This is a special Sparseland (indeed, a CSC) model
N iy

o However: Y'r, € RVN™

= A key property in this model: sparsity of the intermediate representations

» The effective atoms: atoms
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A Small Taste: Model Training (MNIST

MNIST Dictionary:

*D;: 32 fiIter £2 (dense)

*D,: 128 fj ' Sf 1- 99.09 % sparse
*D3: 10 o A h \arse

/’,
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A Small Taste: Model Training (CiFAR)

D, (5x5x3)
AMEESNMETR
FEFaLBREMN
EnEESyNEN
HUEEEDE R
FRHEEEEN
mEYRammM

D1D2 (13)(13)

ENFASDsaEFCECEE™m
REMOTFOEEFEL L am
L Dl Tt o
ShEFENNLFMEOONAEE
LEYFEscHRnIEnRGNM
~ANC A T o g

WIE " ES L — = SO E I.A'ljln.vinl

/

D,D,D, (32x32)

ERC e SN I EE SO e SN 2 = Y S DN
EDPl e oGSk aass - SR NDEPZRAD
N e P e ks o T ] e
SEM Dglcl 2 el EPT L EEE DE WA EL
s GEBAHSE ST Ao 4= BN S AN SN S 2

e HaaE. uo s

B0
mﬂ-ﬁﬂﬂ!ﬂ!I7IKIEI'IWEI!HII'HI
riieEgu@ialRRhsSatlMEESSO0™EEL00

~EElEC YR TUIEN> K ™05 0l K
iAol 1%l (i gt (1S IO el ™ | A1~ )
IE_!ﬂﬂ!.QINEIII!I.I.!EI-S.! -
ENCREAN-NaT TSN IN SRS AN=
!H-IIEIE!I!IH.ﬂlh.ﬂ!]‘lmﬂ!!ﬂlﬁﬂ
w EVERNPLEETGRSPRSLEs  BNNSE el
l.ﬂﬂsﬂ!il!llE.Il!lﬂ'ﬂﬂ.ilﬂ.ﬂ!ﬂ"
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ML-CSC: Pursuit

o Deep—Coding Problem (DCP, ) (dictionaries are known):
([ X=D,I} IT1 5,00 < 24 )
Ih =D, IT2115.00 < A7

k-1 = DxlIk ITkll5.00 < Ak )

o Or, more realistically for noisy signals,
(lY-D,Lill, <€ IT1115,00 < A1)

= S <
Flnd {F]}]K_:l s. t. < F]_ .DZFZ ”FZHO,(.)O — )\2

L FK—l — DKF}( ”FK”?),oo = AKJ
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A Small Taste: Pursuit

I
94.51 % sparse

2
99.52% sparse
i

. (30 nnz)

99.51% sparse
(5 nnz)
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The simplest pursuit algorithm (single-layer case) is
the THR algorithm, which operates on a given input signal Y by:

10
_ —— Hg(z) - Hard |
= 8 B
Y ],)F +E Ss(z) - Soft / |
and I' is sparse 611 » S%(2) - Soft Nonnegative i
4 |
e
2 b
0
[ =P;(DY) »

—1910 -8 -6 -4 -2 0 2 4 6 8 10
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Consider this for Solving the DCP

o Layered thresholding (LT):
Estimate I'; via the THR algorithm

i K
(DCP{): Find {1“]-}]_=1 s.t.

A (MY —DiNill; <€ NTllfe <2y
T — T T = S <
=7, (017, 000) | nonm |
N Y . :
N N S
Estimate I', via the THR algorithm | Tk-1 = Dxlx ITicll0,00 = }\KJ

o Now let’s take a look at how Conv. Neural Network operates:
f(Y) = ReLU(b, + W3 ReLU(b; + W[Y))

The layered (soft nonnegative)
thresholding and the CNN forward pass
algorithm are the very same thing !!!
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Theoretical Path
hq";l‘lﬂﬂ]‘r‘“"flr] 'F‘.h‘\“\k‘u" YH#W'M[W

X =D ' I . (DCP;éE) . {f,}K
I =D, if.
F Layered THR 1=1
. =D X Y (Forward Pass)
Maybe other?

I is Ly o Sparse

Armed with this view of a generative source model, we
may ask new and daring theoretical questions

= | Michael Elad 52
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Success of the Layered-THR

»

1

Theorem:IfIII‘iII?)OO<l 1+ — |Fi::{| —— 'srilr;ax
' 2 u(D;) T ;) [rP]

then the Layered Hard THR (with the proper thresholds)
finds the correct supports and ||} — I‘i||}23Oo < ¢!, where

we have defined € = ||E||g’oo and

el = J INIE - (670 + p(D) (T e — 1)ITma%))

Papyan, Romano & Elad (‘17)

Problems:

1. Contrast

2. Error growth

3. Error even if no noise
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Layered Basis Pursuit (BP)

o We chose the Thresholding algorithm
due to its simplicity, but we do know
that there are better pursuit methods
— how about using them? .

o Lets use the Basis Pursuit instead ...

1
% = Hll,in > Y — D3 115 + A4 1Ty |
1

) K
(DCPY): Find {Fi},-=1 s.t.

(IY =Dyl < &
I =D,I

| Tk-1 = Dklk

1

2
;°" = mln ” [ °" — D,I, |2+7\2||F2||1

“I‘lllg,oo =< }\1\
”I‘leg,oo = )\2

~N"

||FK”(S),OO < }\Kj

Deconvolutional networks
[Zeiler, Krishnan, Taylor & Fergus ‘10]
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Success of the Layered BP

u(Dl)) -

then the Layered Basis Pursuit performs very well:

Kl'heorem: Assuming that [|Ti[|g ., < (1 +

1. The support of I‘LBP is contained in that of I

» 2. The error is bounded: |I‘LBP F-||pmS£i,where
el = 75EIE T, I,

3. Every entry in I greater than

_ Problems:
si/\/llFillg,mwill be found 1. Contmst
2. Error growth
Papyan, Romano & Elad (‘17) 3. Errereven-H-re-neise
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Layered lterative Thresholding

Layered BP: I‘]-LBP—mln || LBP Djrj”i"'Ei“Fi'h ]

.

Layered Iterative Soft-Thresholding:

t F]t = SEj/Cj (th_l + D;r(/l;]_l — D]-I'jt_l))

Note that our suggestion
implies that groups of layers Can be seen as a very deep

share the same dictionaries recurrent neural network

Michael Elad [Gregor & LeCun ‘10] 5
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What About Learning?

Sparseland CSC ML-CSC
Sparse Convolutional » Multi-Layered

Representation Sparse Convolutional
Theory Coding Sparse Coding

o All these models rely on proper Dictionary Learning Algorithms to
fulfil their mission:

=  Sparseland: We have unsupervised and supervised such algorithms, and a
beginning of theory to explain how these work

= (CSC: We have few and only unsupervised methods, and even these are not
fully stable/clear

= ML-CSC: One algorithm has been proposed (unsupervised) — see ArxiV
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Where are the Labels?

Answer 2:
o Wéatd, nbismaeddbbels thbeaasg eeretthimg ave
M . shiothesifeotohd eamespendiegllabsd bin: which
we oper n signals, not pgcessarily in the
X = D.T X context 1@ Ologm%%"{” =1 Wy 1] l‘f
-l o This assumes that knowing the representations
I = D,I5

(or maybe their supports?) suffice for

5 - identifying the label
I'x-1 = Dklk

L(X) o Thus, a successful pursuit algorithm can lead to
an accurate recognition if the network is
I is Ly o Sparse augmented by a FC classification layer

We presented the ML-CSC as a
machine that produces signals X

= | Michael Elad 52
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Time to Conclude

Michael Elad
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This Talk

Take Home Message 1:
Generative modeling of data
sources enables algorithm
development along with

the

A novel interpretation
and theoretical
understanding of CNN

ms.| performanc

ically analyzing
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Novel View of
Convolutional
Sparse Coding

Multi-Layer
Convolutional
Sparse Coding

T ]
o
e

I

Hal

.,
I

—

IN_[OW | |

e Hame-vlessage 5.

The desire to
model data

X=DI4 iy
See
I = D,I5 i

The, Multizlayer
Convolutional Sparse

Coding model could be

a new platform for
understanding and

sin@lisdediamEgping deep-

gt sitagsimaliggrning solutions
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functiidenoising
“dict VeClOlpatches
IC IO aryDg%O 0

e arse plxelsest'manon
np?;ﬁy’ﬁl you Qt d atm&w

inequality
separation

cardinality |
Sparse- Lan%on_ze"r~ MMSE noqge
random I o
Compressmn i
thresholdmg W
' redund?nt . boundsupport S|gna|
-SVD .
inpaintin value noise
shr‘rgkage ° OMP MAP
I -
local Ilnweavael[;t

More on these (including these slides and the relevant papers) can be
found in http://www.cs.technion.ac.il/~elad
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