Sparse Modeling in Image Processing and Deep Learning

Michael Elad

Computer Science Department The Technion - Israel Institute of Technology Haifa 32000, Israel

New Deep Learning Techniques February 5-9, 2018

The research leading to these results has been received funding from the European union's Seventh Framework Program (FP/2007-2013) ERC grant Agreement ERC-SPARSE- 320649

This Lecture

Another underlying idea that will accompany us

Generative modeling of data sources enables
A systematic algorithm development, &
A theoretical analysis of their performance

Multi-Layered Convolutional Sparse Modeling

Our Data is Structured Matrix Data Text Documents **Stock Market Biological Signals** Social Networks Seismic Data Still Images Radar Imaging Videos • We are surrounded by various diverse Traffic info sources of massive information Each of these sources have an internal \bigcirc structure, which can be exploited \circ This structure, when identified, is the Voice Signals **3D Objects** engine behind our ability to process this data **Medical Imaging** Michael Elad

Models

- A model: a mathematical description of the underlying signal of interest, describing our beliefs regarding its structure
- The following is a partial list of commonly used models for images
- Good models should be simple while matching the signals

Models are almost always imperfect

What This Talk is all About?

Data Models and Their Use

- Almost any task in data processing requires a model true for denoising, deblurring, super-resolution, inpainting, compression, anomaly-detection, sampling, recognition, separation, and more
- Sparse and Redundant Representations offer a new and highly effective model – we call it

Sparseland

 We shall describe this and descendant versions of it that lead all the way to ... deep-learning

Multi-Layered Convolutional

Sparse Modeling

A New Emerging Model

The Sparseland Model

- Task: model image patches of size 8×8 pixels
- We assume that a dictionary of such image patches is given, containing 256 atom images
- The *Sparseland* model assumption:
 every image patch can be described as a linear
 combination of **few** atoms

The Sparseland Model

Properties of this model: Sparsity and Redundancy

- We start with a 8-by-8 pixels patch and represent it using 256 numbers

 This is a redundant representation
- However, out of those 256 elements in the representation, only 3 are non-zeros
 This is a sparse representation
- Bottom line in this case: 64 numbers representing the patch are replaced by 6 (3 for the indices of the non-zeros, and 3 for their entries)

Chemistry of Data

We could refer to the *Sparseland* model as the chemistry of information:

- Our dictionary stands for the Periodic Table containing all the elements
- Our model follows a similar rationale:
 Every molecule is built of few elements

Sparseland: A Formal Description

Difficulties with Sparseland

- Problem 1: Given a signal, how can we find its atom decomposition?
- A simple example:
 - There are 2000 atoms in the dictionary
 - The signal is known to be built of 15 atoms

 $\begin{pmatrix} 2000\\ 15 \end{pmatrix} \approx 2.4e + 37 \text{ possibilities}$

- If each of these takes 1nano-sec to test, will take ~7.5e20 years to finish !!!!!!
- o So, are we stuck?

Atom Decomposition Made Formal

Pursuit Algorithms

Difficulties with Sparseland

- There are various pursuit algorithms
- Here is an example using the Basis Pursuit (L_1) :

 Surprising fact: Many of these algorithms are often accompanied by theoretical guarantees for their success, if the unknown is sparse enough

The Mutual Coherence

 \circ Compute

- $\circ~$ The Mutual Coherence $\mu(D)$ is the largest off-diagonal entry in absolute value
- We will pose all the theoretical results in this talk using this property, due to its simplicity
- You may have heard of other ways to characterize the dictionary (Restricted Isometry Property - RIP, Exact Recovery Condition - ERC, Babel function, Spark, ...)

Basis-Pursuit Success

Theorem: Given a noisy signal $y = \mathbf{D}\alpha + v$ where $||v||_2 \le \varepsilon$ and α is sufficiently sparse, $||\alpha||_0 < \frac{1}{4}\left(1 + \frac{1}{\mu}\right)$

then Basis-Pursuit: $\min_{\alpha} \|\alpha\|_1$ s.t. $\|\mathbf{D}\alpha - y\|_2 \le \varepsilon$ leads to a stable result: $\|\widehat{\alpha} - \alpha\|_2^2 \le \frac{4\varepsilon^2}{1 - \mu(4\|\alpha\|_0 - 1)}$

Donoho, Elad & Temlyakov ('06)

Comments:

- $\circ \quad \text{If } \varepsilon=0 \to \widehat{\alpha} = \alpha$
- This is a worst-case analysis – better bounds exist
- Similar theorems exist for many other pursuit algorithms

Difficulties with Sparseland

- Problem 2: Given a family of signals, how do we find the dictionary to represent it well?
- Solution: Learn! Gather a large set of signals (many thousands), and find the dictionary that sparsifies them
- Such algorithms were developed in the past 10 years (e.g., K-SVD), and their performance is surprisingly good
- We will not discuss this matter further in this talk due to lack of time

Difficulties with Sparseland

- Problem 3: Why is this model suitable to describe various sources? e.g., Is it good for images? Audio? Stocks? ...
- General answer: Yes, this model is extremely effective in representing various sources
 - Theoretical answer: Clear connection to other models
 - Empirical answer: In a large variety of signal and image processing (and later machine learning), this model has been shown to lead to state-of-the-art results

Difficulties with Sparseland?

A New Massive Open Online Course

Courses - Programs - Schools & Partners About -

Search:

Sign In Register

_<u>/</u>Israel X

Sparse Representations in Signal and Image Processing

Learn the theory, tools and algorithms of sparse representations and their impact on signal and image processing.

Start the Professional Certificate Program

Courses in the Professional Certificate Program

processing. Learn mone

iparse Representations in Signal and Image Processing: Fundamentals aam about the field of sparse representations by understanding its fundamental heoretical and algorithmic foundations. aam more

Learn about the deployment of the sparse representation model to signal and image

Sparse Representations in Image Processing: From Theory to Practice

Starts on October 25, 2017

Enroll Now

Investid See to reverse email from receive and learn adout other offerings related to Sparse Representations in Signal and Image Processing Fundamentals.

Starts on February 28, 2018

Enroll Now

Inwards Recto receive ential from traditional and learn about other offerings related to Sparse Representations in image Processing from Theory to Practice.

Instructors

Michael Elad The Computer-Science Department The Technion

Yaniv Romano

Michael Elad

Sparseland for Image Processing

When handling images, Sparseland is typically deployed on small overlapping patches due to the desire to train the model to fit the data better

- The model assumption is: each patch in the image is believed to have a sparse representation w.r.t. a common local dictionary
- What is the corresponding global model? This brings us to ... the Convolutional Sparse Coding (CSC)

Multi-Layered Convolutional Sparse Modeling

Joint work with

Yaniv Romano

Vardan Papyan

Jeremias Sulam

Michael Elad The Computer-Science Department The Technion

Convolutional Sparse Coding (CSC)

i-th feature-map:
An image of the
same size as X
holding the sparse
representation
related to the i-filter

 \odot Here is an alternative global sparsity-based model formulation

$$\mathbf{X} = \sum_{i=1}^{m} \mathbf{C}^{i} \boldsymbol{\Gamma}^{i} = \begin{bmatrix} \mathbf{C}^{1} \cdots \mathbf{C}^{m} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Gamma}^{1} \\ \vdots \\ \boldsymbol{\Gamma}^{m} \end{bmatrix} = \mathbf{D} \boldsymbol{\Gamma}$$

 $\circ \mathbf{C}^{i} \in \mathbb{R}^{N \times N}$ is a banded and Circulant matrix containing a single atom with all of its shifts

 $\circ \mathbf{\Gamma}^{i} \in \mathbb{R}^{N}$ are the corresponding coefficients ordered as column vectors

The CSC Dictionary

Why CSC?

Classical Sparse Theory for CSC ?

$$\min_{\mathbf{\Gamma}} \|\mathbf{\Gamma}\|_0 \quad \text{s. t. } \|\mathbf{Y} - \mathbf{D}\mathbf{\Gamma}\|_2 \le \varepsilon$$

Theorem: BP is guaranteed to "succeed" if $\|\Gamma\|_0 < \frac{1}{4} \left(1 + \frac{1}{4}\right)$

 \odot Assuming that m=2 and n=64 we have that [Welch, '74]

 $\mu \ge 0.063$

Moving to Local Sparsity: Stripes

$$\ell_{0,\infty} \text{ Norm: } \|\Gamma\|_{0,\infty}^{s} = \max_{i} \|\gamma_{i}\|_{0}$$

$$\min_{\Gamma} \|\Gamma\|_{0,\infty}^{s} \text{ s.t. } \|\mathbf{Y} - \mathbf{D}\Gamma\|_{2} \leq \varepsilon$$

 $\|\Gamma\|_{0,\infty}^{s}$ is low \rightarrow all γ_{i} are sparse \rightarrow every patch has a sparse representation over Ω

The main question we aim to address is this:

Can we generalize the vast theory of *Sparseland* to this new notion of local sparsity? For example, could we provide guarantees for success for pursuit algorithms?

Yi+1

Success of the Basis Pursuit

$$\begin{split} \Gamma_{\rm BP} &= \min_{\Gamma} \quad \frac{1}{2} \| Y - D\Gamma \|_2^2 + \lambda \| \Gamma \|_1 \qquad \qquad \text{Local noise} \\ \text{(per patch)} \\ \text{Theorem: For } Y &= D\Gamma + E, \text{ if } \lambda = 4 \| E \|_{2,\infty}^p \text{, if} \\ \| \Gamma \|_{0,\infty}^s &< \frac{1}{3} \left(1 + \frac{1}{\mu(D)} \right) \\ \text{then Basis Pursuit performs very-well:} \\ 1. \quad \text{The support of } \Gamma_{\rm BP} \text{ is contained in that of } \Gamma \\ 2. \quad \| \Gamma_{\rm BP} - \Gamma \|_{\infty} \leq 7.5 \| E \|_{2,\infty}^p \\ 3. \quad \text{Every entry greater than } 7.5 \| E \|_{2,\infty}^p \text{ is found} \qquad \qquad \text{Papyan, Sulam} \\ 4. \quad \Gamma_{\rm RP} \text{ is unique} \end{split}$$

Multi-Layered Convolutional Sparse Modeling

Quick Recall: The Forward Pass

$$f(\mathbf{Y}) = \text{ReLU}(\mathbf{b}_2 + \mathbf{W}_2^{\mathrm{T}} \text{ReLU}(\mathbf{b}_1 + \mathbf{W}_1^{\mathrm{T}}\mathbf{Y}))$$

From CSC to Multi-Layered CSC

Intuition: From Atoms to Molecules

- A key property in this model: sparsity of the intermediate representations
- The effective atoms: atoms

A Small Taste: Model Training (MNIST)

A Small Taste: Model Training (CiFAR)

ML-CSC: Pursuit

• Deep–Coding Problem (DCP_{λ}) (dictionaries are known):

$$\begin{cases} \mathbf{X} = \mathbf{D}_{1}\mathbf{\Gamma}_{1} & \|\mathbf{\Gamma}_{1}\|_{0,\infty}^{s} \leq \lambda_{1} \\ \mathbf{\Gamma}_{1} = \mathbf{D}_{2}\mathbf{\Gamma}_{2} & \|\mathbf{\Gamma}_{2}\|_{0,\infty}^{s} \leq \lambda_{2} \\ \vdots & \vdots \\ \mathbf{\Gamma}_{K-1} = \mathbf{D}_{K}\mathbf{\Gamma}_{K} & \|\mathbf{\Gamma}_{K}\|_{0,\infty}^{s} \leq \lambda_{K} \end{cases}$$

• Or, more realistically for noisy signals,

Find
$$\{\mathbf{\Gamma}_{j}\}_{j=1}^{K}$$
 s.t.
$$\begin{cases} \|\mathbf{Y} - \mathbf{D}_{1}\mathbf{\Gamma}_{1}\|_{2} \leq \mathcal{E} & \|\mathbf{\Gamma}_{1}\|_{0,\infty}^{s} \leq \lambda_{1} \\ \mathbf{\Gamma}_{1} = \mathbf{D}_{2}\mathbf{\Gamma}_{2} & \|\mathbf{\Gamma}_{2}\|_{0,\infty}^{s} \leq \lambda_{2} \\ \vdots & \vdots \\ \mathbf{\Gamma}_{K-1} = \mathbf{D}_{K}\mathbf{\Gamma}_{K} & \|\mathbf{\Gamma}_{K}\|_{0,\infty}^{s} \leq \lambda_{K} \end{cases}$$

A Small Taste: Pursuit

ML-CSC: The Simplest Pursuit

Keep it simple! The simplest pursuit algorithm (single-layer case) is the THR algorithm, which operates on a given input signal Y by:

Consider this for Solving the DCP

 \odot Layered thresholding (LT): Estimate Γ_1 via the THR algorithm

$$\widehat{\boldsymbol{\Gamma}}_{2} = \mathcal{P}_{\beta_{2}} \left(\boldsymbol{D}_{2}^{\mathrm{T}} \mathcal{P}_{\beta_{1}} (\boldsymbol{D}_{1}^{\mathrm{T}} \boldsymbol{Y}) \right)$$

Estimate Γ_2 via the THR algorithm

 $\begin{pmatrix} \mathbf{D}\mathbf{C}\mathbf{P}_{\lambda}^{\mathcal{E}} \end{pmatrix}: \text{ Find } \left\{ \mathbf{\Gamma}_{j} \right\}_{j=1}^{K} s.t. \\ \begin{cases} \|\mathbf{Y} - \mathbf{D}_{1}\mathbf{\Gamma}_{1}\|_{2} \leq \mathcal{E} & \|\mathbf{\Gamma}_{1}\|_{0,\infty}^{s} \leq \lambda_{1} \\ \mathbf{\Gamma}_{1} = \mathbf{D}_{2}\mathbf{\Gamma}_{2} & \|\mathbf{\Gamma}_{2}\|_{0,\infty}^{s} \leq \lambda_{2} \\ \vdots & \vdots \\ \mathbf{\Gamma}_{K-1} = \mathbf{D}_{K}\mathbf{\Gamma}_{K} & \|\mathbf{\Gamma}_{K}\|_{0,\infty}^{s} \leq \lambda_{K} \end{pmatrix}$

○ Now let's take a look at how Conv. Neural Network operates: $f(\mathbf{Y}) = \text{ReLU}(\mathbf{b}_2 + \mathbf{W}_2^T \text{ReLU}(\mathbf{b}_1 + \mathbf{W}_1^T \mathbf{Y}))$

> The layered (soft nonnegative) thresholding and the CNN forward pass algorithm are the very same thing !!!

Theoretical Path

Armed with this view of a generative source model, we may ask new and daring theoretical questions

Success of the Layered-THR

Theorem: If $\|\Gamma_{i}\|_{0,\infty}^{s} < \frac{1}{2} \left(1 + \frac{1}{\mu(D_{i})} \cdot \frac{|\Gamma_{i}^{min}|}{|\Gamma_{i}^{max}|}\right) - \frac{1}{\mu(D_{i})} \cdot \frac{\varepsilon_{L}^{i-1}}{|\Gamma_{i}^{max}|}$ then the Layered Hard THR (with the proper thresholds) finds the correct supports and $\|\Gamma_{i}^{LT} - \Gamma_{i}\|_{2,\infty}^{p} \leq \varepsilon_{L}^{i}$, where we have defined $\varepsilon_{L}^{0} = \|E\|_{2,\infty}^{p}$ and $\varepsilon_{L}^{i} = \sqrt{\|\Gamma_{i}\|_{0,\infty}^{p}} \cdot (\varepsilon_{L}^{i-1} + \mu(D_{i})(\|\Gamma_{i}\|_{0,\infty}^{s} - 1)|\Gamma_{i}^{max}|)$

Papyan, Romano & Elad ('17)

The stability of the forward pass is guaranteed if the underlying representations are **locally** sparse and the noise is **locally** bounded

- 1. Contrast
- 2. Error growth
- 3. Error even if no noise

Layered Basis Pursuit (BP)

 $\boldsymbol{\Gamma}_{1}^{\text{LBP}} = \min_{\boldsymbol{\Gamma}_{1}} \frac{1}{2} \| \boldsymbol{Y} - \boldsymbol{D}_{1} \boldsymbol{\Gamma}_{1} \|_{2}^{2} + \lambda_{1} \| \boldsymbol{\Gamma}_{1} \|_{1}^{2}$

 $\boldsymbol{\Gamma}_{2}^{\text{LBP}} = \min_{\boldsymbol{\Gamma}_{2}} \frac{1}{2} \left\| \boldsymbol{\Gamma}_{1}^{\text{LBP}} - \boldsymbol{D}_{2} \boldsymbol{\Gamma}_{2} \right\|_{2}^{2} + \lambda_{2} \| \boldsymbol{\Gamma}_{2} \|_{1}$

 We chose the Thresholding algorithm due to its simplicity, but we do know that there are better pursuit methods – how about using them?

○ Lets use the Basis Pursuit instead ...

$$\begin{pmatrix} \mathbf{D}\mathbf{C}\mathbf{P}_{\lambda}^{\mathcal{E}} \end{pmatrix}: \text{ Find } \left\{ \mathbf{\Gamma}_{j} \right\}_{j=1}^{K} \quad s. t. \\ \begin{cases} \|\mathbf{Y} - \mathbf{D}_{1}\mathbf{\Gamma}_{1}\|_{2} \leq \mathcal{E} & \|\mathbf{\Gamma}_{1}\|_{0,\infty}^{s} \leq \lambda_{1} \\ \mathbf{\Gamma}_{1} = \mathbf{D}_{2}\mathbf{\Gamma}_{2} & \|\mathbf{\Gamma}_{2}\|_{0,\infty}^{s} \leq \lambda_{2} \\ \vdots & \vdots \\ \mathbf{\Gamma}_{K-1} = \mathbf{D}_{K}\mathbf{\Gamma}_{K} & \|\mathbf{\Gamma}_{K}\|_{0,\infty}^{s} \leq \lambda_{K} \end{cases}$$

[Zeiler, Krishnan, Taylor & Fergus '10]

Success of the Layered BP

Theorem: Assuming that $\|\Gamma_i\|_{0,\infty}^s < \frac{1}{3} \left(1 + \frac{1}{\mu(D_i)}\right)$ then the Layered Basis Pursuit performs very well:

- 1. The support of Γ_i^{LBP} is contained in that of Γ_i
- 2. The error is bounded: $\|\boldsymbol{\Gamma}_{i}^{LBP} \boldsymbol{\Gamma}_{i}\|_{2,\infty}^{p} \leq \varepsilon_{L}^{i}$, where $\varepsilon_{L}^{i} = 7.5^{i} \|\boldsymbol{E}\|_{2,\infty}^{p} \prod_{j=1}^{i} \sqrt{\|\boldsymbol{\Gamma}_{j}\|_{0,\infty}^{p}}$
- 3. Every entry in Γ_i greater than $\epsilon_L^i / \sqrt{\|\Gamma_i\|_{0,\infty}^p}$ will be found

Papyan, Romano & Elad ('17)

Problems:

- 1. Contrast
- 2. Error growth
- 3. Error even if no noise

Layered Iterative Thresholding

Layered BP:
$$\Gamma_{j}^{\text{LBP}} = \min_{\Gamma_{j}} \frac{1}{2} \left\| \Gamma_{j-1}^{\text{LBP}} - \mathbf{D}_{j} \Gamma_{j} \right\|_{2}^{2} + \xi_{j} \left\| \Gamma_{j} \right\|_{1}$$

Layered Iterative Soft-Thresholding:

t
$$\Gamma_{j}^{t} = S_{\xi_{j}/c_{j}} \left(\Gamma_{j}^{t-1} + \mathbf{D}_{j}^{T} (\widehat{\Gamma}_{j-1} - \mathbf{D}_{j} \Gamma_{j}^{t-1}) \right)$$

Note that our suggestion implies that groups of layers share the same dictionaries

Michael Elad The Computer-Science Department The Technion Can be seen as a very deep recurrent neural network [Gregor & LeCun '10]

What About Learning?

 All these models rely on proper Dictionary Learning Algorithms to fulfil their mission:

- Sparseland: We have unsupervised and supervised such algorithms, and a beginning of theory to explain how these work
- CSC: We have few and only unsupervised methods, and even these are not fully stable/clear
- ML-CSC: One algorithm has been proposed (unsupervised) see ArxiV

Where are the Labels?

Answer 2:

- Weado, the is meeded below because revented long ave shoth resident of the comespending llabed, by: which we operate on signals, not necessarily in the $L(\mathbf{X}) = sign\{c + \sum_{j=1}^{K} w_j^T \Gamma_j\}$
- This assumes that knowing the representations (or maybe their supports?) suffice for identifying the label
- Thus, a successful pursuit algorithm can lead to an accurate recognition if the network is augmented by a FC classification layer

We presented the ML-CSC as a machine that produces signals **X**

Time to Conclude

This Talk

states and the set of the set of

More on these (including these slides and the relevant papers) can be found in http://www.cs.technion.ac.il/~elad

