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PA N E L  D I S C U S S I O N

•1. There is a lot of low hanging fruit, we can use M.L. to 

• improve what we normally do 

• speed up accelerate what we normally do 

•2. More profound changes to how we approach physics 

• new capabilities to be exploited 

• attack previously intractable problems
4



Generative Models: Simulators

Variational Auto-Encoders
and Extensions
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Simulators can produce labeled training data for 
supervised learning 

(note: some simulation are very computationally expensive)



P H Y S I C S  AT  T H E  I N T E R S E C T I O N  

•We can leverage both the power of deep learning and inject 
our expert / domain knowledge

7

Discriminative or Generative? 

• Advantages generative models:
• Inject expert knowledge 
• Model causal relations
• Interpretable
• Data efficient
• More robust to domain shift
• Facilitate un/semi-supervised learning

-Deep Learning

-Kernel Methods

-Random Forests

-Boosting

-Bayesian Networks

-Probabilistic Programs

-Simulator Models

• Advantages discriminative models:
• Flexible map from input to target (low bias)
• Efficient training algorithms available 
• Solve the problem you are evaluating on.
• Very successful and accurate!
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N O TAT I O N  /  T E R M I N O L O G Y

PRED ICT ION

INFERENCE

x 
observed data 
simulated data

θ 
parameters of interest

forward modeling 
generation 
simulation

inverse problem 
measurement 

parameter estimation

p( x, z | θ, ν )

ν 
nuisance parameters

z 
latent variables



Quiz: 

The Standard Model has 19 parameters. 

The LHC has collected 1015 collisions. 

Is this a parametric or non-parametric problem?



PA R T I C L E  P H Y S I C S :  1 9  PA R A M E T E R S
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Symbol Description Value

me Electron mass 511 keV

mμ Muon mass 105.7 MeV

mτ Tau mass 1.78 GeV

mu Up quark mass 1.9 MeV

md Down quark mass 4.4 MeV

ms Strange quark mass 87 MeV

mc Charm quark mass 1.32 GeV

mb Bottom quark mass 4.24 GeV

mt Top quark mass 172.7 GeV

θ12 CKM 12-mixing angle 13.1°

θ23 CKM 23-mixing angle 2.4°

θ13 CKM 13-mixing angle 0.2°

δ CKM CP-violating Phase 0.995

g1 U(1) gauge coupling 0.357

g2 SU(2) gauge coupling 0.652

g3 SU(3) gauge coupling 1.221

θQCD QCD vacuum angle ~0

v Higgs vacuum expectation value 246 GeV

mH Higgs mass 125 GeV 

γ g

ZW
H

e
μ

τ

u

c
t d

s

b

νe
νμ

ντ

https://en.wikipedia.org/wiki/Cabibbo%E2%80%93Kobayashi%E2%80%93Maskawa_matrix
https://en.wikipedia.org/wiki/CP_violation
https://en.wikipedia.org/wiki/Vacuum_angle
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We begin with Quantum Field Theory1)
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We begin with Quantum Field Theory1)

Theory gives detailed 
prediction for high-
energy collisions

2)
hierarchical: 2 → O(10) → O(100) particles

Uses of Multivariate Methods

Complex final state of VBF H → WW → llEmiss
T well-suited for multivariate methods

Used 7 variables:
∆ηll, ∆φll, Mll, ∆ηjj, ∆φjj, Mjj, MT

Compared Neural Networks, Genetic Program-
ming, and Support Vector Regression

q

q

W

W

H
W+

W−

ν

l+

l−

ν̄

Ref. Cuts low-mH Cuts NN GP SVR
120 ee 0.87 1.25 1.72 1.66 1.44
120 eµ 2.30 2.97 3.92 3.60 3.33
120 µµ 1.16 1.71 2.28 2.26 2.08
Combined 2.97 3.91 4.98 4.57 4.26
130 eµ 4.94 6.14 7.55 7.22 6.59

Table 1: Expected significance in sigma after 30 fb−1 for two cut analyses and three multivariate analyses for
different Higgs masses and final state topologies.

March 14, 2006

University of Pennsylvania Seminar

Higgs Searches at the LHC:

Challenges, Prospects, and Developments (page 25)

Kyle Cranmer

Brookhaven National Laboratory
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We begin with Quantum Field Theory1)

Theory gives detailed 
prediction for high-
energy collisions

2)

The interaction of outgoing particles 
with the detector is simulated.  

3)
>100 million sensors

hierarchical: 2 → O(10) → O(100) particles



D E T E C T O R  S I M U L AT I O N

•Conceptually: Prob(detector response | particles ) 

•Implementation: Monte Carlo integration over micro-physics 

•Consequence: evaluation of the likelihood is intractable 

12



D E T E C T O R  S I M U L AT I O N

•Conceptually: Prob(detector response | particles ) 

•Implementation: Monte Carlo integration over micro-physics 

•Consequence: evaluation of the likelihood is intractable 

•The Crux: 

13

observed what happened  
in simulation 

Monte Carlo  
Sampling

p(x|✓) =
Z

dz p(x, z|✓)



PA R A M E T R I C  V S .  N O N - PA R A M E T R I C
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• num parameters < num data points 

• model is highly constrained & tractable
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PA R A M E T R I C  V S .  N O N - PA R A M E T R I C

•Parametric: 

• num parameters < num data points 

• model is highly constrained & tractable

•Non-Parametric 

• num parameters > num data points 

• model is very flexible, but tractable

•Implicit Models / Simulation-based inference / Likelihood-free inference 

• num parameters of simulator < num data points 

• but data distribution is very complicated and density is intractable 

• hard to identify the relevant “degrees of freedom” in the data (sufficient statistics) 

• model is highly constrained, but hard to leverage that structure 

• deep learning can help! learn a surrogate that captures relevant aspects of p(x|θ)

14



The Traditional Approach
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Figure 9: Distribution of the four-lepton reconstructed mass in the full mass range for the sum
of the 4e, 2e2µ and 4µ channels. Points with error bars represent the data, shaded histograms
represent the backgrounds, and the unshaded histogram the signal expectation for a mass hy-
pothesis of mH = 126 GeV. Signal and ZZ background are normalized to the SM expectation,
Z + X background to the estimation from data. The expected distributions are presented as
stacked histograms. No events are observed with m4` > 800 GeV.

Table 3: The number of observed candidate events compared to the mean expected background
and signal rates for each final state. Uncertainties include statistical and systematic sources.
The results are given integrated over the full mass measurement range m4` > 100 GeV and for
7 and 8 TeV data combined.

Channel 4e 2e2µ 4µ 4`
ZZ background 77 ± 10 191 ± 25 119 ± 15 387 ± 31
Z + X background 7.4 ± 1.5 11.5 ± 2.9 3.6 ± 1.5 22.6 ± 3.6
All backgrounds 85 ± 11 202 ± 25 123 ± 15 410 ± 31
mH = 500 GeV 5.2 ± 0.6 12.2 ± 1.4 7.1 ± 0.8 24.5 ± 1.7
mH = 800 GeV 0.7 ± 0.1 1.6 ± 0.2 0.9 ± 0.1 3.1 ± 0.2
Observed 89 247 134 470

Table 4: The number of observed candidate events compared to the mean expected background
and signal rates for each final state. Uncertainties include statistical and systematic sources.
The results are integrated over the mass range from 121.5 to 130.5 GeV and for 7 and 8 TeV data
combined.

Channel 4e 2e2µ 4µ 4`
ZZ background 1.1 ± 0.1 3.2 ± 0.2 2.5 ± 0.2 6.8 ± 0.3
Z + X background 0.8 ± 0.2 1.3 ± 0.3 0.4 ± 0.2 2.6 ± 0.4
All backgrounds 1.9 ± 0.2 4.6 ± 0.4 2.9 ± 0.2 9.4 ± 0.5
mH = 125 GeV 3.0 ± 0.4 7.9 ± 1.0 6.4 ± 0.7 17.3 ± 1.3
mH = 126 GeV 3.4 ± 0.5 9.0 ± 1.1 7.2 ± 0.8 19.6 ± 1.5
Observed 4 13 8 25

1 0 ⁸  S E N S O R S   →  1  R E A L - VA L U E D  Q U A N T I T Y

•Most measurements and searches for new particles at the LHC are based on the 
distribution of a single variable / feature / summary statistic 

• choosing a good variable (feature engineering) is a task for a skilled physicist 
and tailored to the goal of measurement or new particle search 

• likelihood p(x|θ) approximated using histograms (univariate density estimation)

16



H I G H  F I D E L I T Y  S I M U L AT I O N
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2.4 TeV!



H I G H  F I D E L I T Y  S I M U L AT I O N

•Detector is 44m long 

• Detector resolves details at <mm scale; Simulation accurate!

18
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•Detector is 44m long 

• Detector resolves details at <mm scale; Simulation accurate!
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Track reconstruction at LHC

15

Figure:  
ATLAS pixel model as described in simulation (left), tomography from vertices built from tracks for hadronic interactions (right)

Slide Credit: A. Salzburger (CERN) 



T H E  D I S C O V E R Y  O F  T H E  H I G G S  B O S O N
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Abstract
A grand challenge of the 21st century cosmol-
ogy is to accurately estimate the cosmological
parameters of our Universe. A major approach
in estimating the cosmological parameters is to
use the large scale matter distribution of the Uni-
verse. Galaxy surveys provide the means to map
out cosmic large-scale structure in three dimen-
sions. Information about galaxy locations is typ-
ically summarized in a “single” function of scale,
such as the galaxy correlation function or power-
spectrum. We show that it is possible to estimate
these cosmological parameters directly from the
distribution of matter. This paper presents the
application of deep 3D convolutional networks
to volumetric representation of dark-matter sim-
ulations as well as the results obtained using a
recently proposed distribution regression frame-
work, showing that machine learning techniques
are comparable to, and can sometimes outper-
form, maximum-likelihood point estimates using
“cosmological models”. This opens the way to
estimating the parameters of our Universe with
higher accuracy.

1. Introduction
The 21st century has brought us tools and methods to ob-
serve and analyze the Universe in far greater detail than
before, allowing us to deeply probe the fundamental prop-
erties of cosmology. We have a suite of cosmological ob-

Proceedings of the 33 rd
International Conference on Machine

Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

Figure 1. Dark matter distribution in three cubes produced using
different sets of parameters. Each cube is divided into small sub-
cubes for training and prediction. Note that although cubes in
this figure are produced using very different cosmological param-
eters in our constrained sampled set, the effect is not visually dis-
cernible.

servations that allow us to make serious inroads to the un-
derstanding of our own universe, including the cosmic mi-
crowave background (CMB) (Planck Collaboration et al.,
2015; Hinshaw et al., 2013), supernovae (Perlmutter et al.,
1999; Riess et al., 1998) and the large scale structure of
galaxies and galaxy clusters (Cole et al., 2005; Anderson
et al., 2014; Parkinson et al., 2012). In particular, large
scale structure involves measuring the positions and other
properties of bright sources in great volumes of the sky.
The amount of information is overwhelming, and modern
methods in machine learning and statistics can play an in-
creasingly important role in modern cosmology. For ex-
ample, the common method to compare large scale struc-
ture observation and theory is to compare the compressed
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Figure 9: Distribution of the four-lepton reconstructed mass in the full mass range for the sum
of the 4e, 2e2µ and 4µ channels. Points with error bars represent the data, shaded histograms
represent the backgrounds, and the unshaded histogram the signal expectation for a mass hy-
pothesis of mH = 126 GeV. Signal and ZZ background are normalized to the SM expectation,
Z + X background to the estimation from data. The expected distributions are presented as
stacked histograms. No events are observed with m4` > 800 GeV.

Table 3: The number of observed candidate events compared to the mean expected background
and signal rates for each final state. Uncertainties include statistical and systematic sources.
The results are given integrated over the full mass measurement range m4` > 100 GeV and for
7 and 8 TeV data combined.

Channel 4e 2e2µ 4µ 4`
ZZ background 77 ± 10 191 ± 25 119 ± 15 387 ± 31
Z + X background 7.4 ± 1.5 11.5 ± 2.9 3.6 ± 1.5 22.6 ± 3.6
All backgrounds 85 ± 11 202 ± 25 123 ± 15 410 ± 31
mH = 500 GeV 5.2 ± 0.6 12.2 ± 1.4 7.1 ± 0.8 24.5 ± 1.7
mH = 800 GeV 0.7 ± 0.1 1.6 ± 0.2 0.9 ± 0.1 3.1 ± 0.2
Observed 89 247 134 470

Table 4: The number of observed candidate events compared to the mean expected background
and signal rates for each final state. Uncertainties include statistical and systematic sources.
The results are integrated over the mass range from 121.5 to 130.5 GeV and for 7 and 8 TeV data
combined.

Channel 4e 2e2µ 4µ 4`
ZZ background 1.1 ± 0.1 3.2 ± 0.2 2.5 ± 0.2 6.8 ± 0.3
Z + X background 0.8 ± 0.2 1.3 ± 0.3 0.4 ± 0.2 2.6 ± 0.4
All backgrounds 1.9 ± 0.2 4.6 ± 0.4 2.9 ± 0.2 9.4 ± 0.5
mH = 125 GeV 3.0 ± 0.4 7.9 ± 1.0 6.4 ± 0.7 17.3 ± 1.3
mH = 126 GeV 3.4 ± 0.5 9.0 ± 1.1 7.2 ± 0.8 19.6 ± 1.5
Observed 4 13 8 25



The Problem: 
This doesn’t scale if x is high dimensional! 

How much are we loosing in feature engineering? 

What if we don’t know how to design a good feature?



Generative Models: Simulators
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C O M P U TAT I O N A L  T O P O G R A P H Y
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E P I D E M I O L O G Y  &  P O P U L AT I O N  G E N E T I C S
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L AT T I C E  F I E L D  T H E O R Y
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PHASES, PHASE TRANSITIONS, AND THE ORDER PARAMETER
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Ising ferromagnet in two dimensions
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L AT T I C E  Q C D

•Very expensive simulations, ~1000 examples with x∈ ℝ10⁹

26
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W H Y  S C I E N T I S T S  S H O U L D  C A R E

•Many areas of science have simulations based on some well-
motivated  mechanistic model. 

•However, the aggregate effect of many interactions between these 
low-level components leads to an intractable inverse problem. 

•The developments in machine learning and AI have the potential to 
effectively bridge the microscopic - macroscopic divide & aid in the 
inverse problem. 

• they can provide effective statistical models that describe 
macroscopic phenomena that are tied back to the low-level 
microscopic (reductionist) model 

• generative models and likelihood-free inference are two 
particularly exciting areas 

28





G O A L S  &  S T R AT E G I E S
•Goals:  

• Use machine learning to do better science 

•Strategies: 

• Import domain knowledge into models (inductive bias) 

• Export knowledge from learned models 

• Leverage machine learning for intractable inverse problems 

• Incorporate traditional scientific concerns into the learning paradigm 

• include impact of domain shift / systematics uncertainties into objective 

• maintain an actionable, scientifically-useful notion of “interpretability” 

• use real-world data for training when possible 

• be data efficient 

• Modify codebase to facilitate use of these techniques
30



S T R AT E G I E S  &  TA C T I C S
•Strategy: Import domain knowledge into models 

• Tactic: exploit symmetries in the data  

• Tactic: exploit geometric structure of the data 

• Tactic: exploit causal structure of the generative process 

• Tactic: exploit hierarchical / compositional structure 

• Tactic: exploit Markov property of the generative process 

• Tactic: exploit tangent space of statistical manifold 

•Strategy: Export knowledge from learned models 

• Tactic: learnable components that can be interpreted 

•Strategy: maintain an actionable, scientifically-useful notion of “interpretability” 

• Tactic: compose model from reusable components that perform a specific task and can 
be individually characterized & validated

31



S T R AT E G I E S  &  TA C T I C S
•Strategy: Leverage machine learning for intractable inverse problems 

• Tactic: Use the likelihood ratio trick to convert a discriminative classifier into  a density ratio 

• Tactic: Use autoregressive models & normalizing flows for conditional density estimation 

• Tactic:  Use universal probabilistic programming  

• Tactic: Approximate gradients of non-differentiable, black-box models (AVO, RELAX, …) 

•Strategy: include impact of systematics uncertainties into objective 

• Tactic: Design loss functions more relevant to scientific goals 

• Tactic: Adversarial training for continuous domain adaptation & fairness (“learning to pivot”) 

•Strategy: use real-world data for training when possible 

• Tactic: Weakly supervised learning  

•Strategy: be data efficient 

• Tactic: exploiting domain knowledge can dramatically reduce number of parameters

32



TA C T I C S  F O R  I N T R A C TA B L E  I N V E R S E  P R O B L E M S

• Approximate Bayesian 
Computation (ABC) 

• Probabilistic Programming 

• Adversarial Variational 
Optimization (AVO)

33

Use simulator  
(much more efficiently)

Learn simulator  
(with deep learning)

• Generative Adversarial Networks (GANs), 
Variational Auto-Encoders (VAE) 

• Likelihood ratio from classifiers (CARL) 

• Autoregressive models,  
Normalizing Flows

[image credit: A.P. Goucher]

https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/


Example:  

More Powerful Higgs Measurements



H I G H  D I M E N S I O N A L  E X A M P L E

•When looking for deviations from the standard model Higgs, 
we would like to look at all sorts of kinematic correlations 

• thus each observation x is high-dimensional

35
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FIG. 2: Distribution of the cos θ∗ (left), Φ1 (second from the left), cos θ1 and cos θ2 (second from the right), and Φ (right)
generated for mX = 250 GeV with the program discussed in the text (unweighted events shown as points with error bars) and
projections of the ideal angular distributions given in the text (smooth lines). The four sets of plots from top to bottom show
the models discussed in Table I for spin-zero 0+ and 0− (top), spin-one 1+ and 1− (second row from top), spin-two 2+m, 2+

L
,

and 2− (third row from top), and the bottom row shows distributions in background generated with Madgraph (points with
error bars) and empirical shape (smooth lines). The J+ distributions are shown with solid red points and J− distributions are
shown with open blue points, while the 2+m and 2+

L
are shown with red circles and green squares, respectively.

production angles in Fig. 3, where we plot the distributions of θ∗ and Φ1 production angles for the spin-zero particle
X . If these distributions are measured with the “ideal” (4π) detector, the results are flat. Hence, the non-trivial
shapes of these distributions shown in Fig. 3 are entirely due to an acceptance effect.
It is evident from Fig. 3 that the acceptance effects are very important in the analysis of data. They have to be

taken into account explicitly, otherwise the results of the analysis will be biased. This can be easily done in our MC
simulation program on an event-by-event basis using the acceptance function in Eq. (39), where we reject events if
at least one lepton exceeds the maximal pseudorapidity. It is also possible, but much harder, to incorporate this
acceptance function into the likelihood function that is discussed in the next section. However, as we explain now,

2

FIG. 1: Illustration of an exotic X particle production and decay in pp collision gg or qq̄ → X → ZZ → 4l±. Six angles fully
characterize orientation of the decay chain: θ∗ and Φ∗ of the first Z boson in the X rest frame, two azimuthal angles Φ and Φ1

between the three planes defined in the X rest frame, and two Z-boson helicity angles θ1 and θ2 defined in the corresponding
Z rest frames. The offset of angle Φ∗ is arbitrarily defined and therefore this angle is not shown.

discussed in Refs. [21–23] KK graviton decays into pairs of gauge bosons are enhanced relative to direct decays into
leptons. Similar situations may occur in “hidden-valley”-type models [24]. An example of a ”heavy photon” is given
in Ref. [25].
Motivated by this, we consider the production of a resonance X at the LHC in gluon-gluon and quark-antiquark

partonic collisions, with the subsequent decay of X into two Z bosons which, in turn, decay leptonically. In Fig. 1,
we show the decay chain X → ZZ → e+e−µ+µ−. However, our analysis is equally applicable to any combination of
decays Z → e+e− or µ+µ−. It may also be applicable to Z decays into τ leptons since τ ’s from Z decays will often be
highly boosted and their decay products collimated. We study how the spin and parity of X , as well as information
on its production and decay mechanisms, can be extracted from angular distributions of four leptons in the final state.
There are a few things that need to be noted. First, we obviously assume that the resonance production and

its decays into four leptons are observed. Note that, because of a relatively small branching fraction for leptonic Z
decays, this assumption implies a fairly large production cross-section for pp → X and a fairly large branching fraction
for the decay X → ZZ. As we already mentioned, there are well-motivated scenarios of BSM physics where those
requirements are satisfied.
Second, having no bias towards any particular model of BSM physics, we consider the most general couplings of the

particle X to relevant SM fields. This approach has to be contrasted with typical studies of e.g. spin-two particles
at hadron colliders where such an exotic particle is often identified with a massive graviton that couples to SM fields
through the energy-momentum tensor. We will refer to this case as the “minimal coupling” of the spin-two particle
to SM fields.
The minimal coupling scenarios are well-motivated within particular models of New Physics, but they are not

sufficiently general. For example, such a minimal coupling may restrict partial waves that contribute to the production
and decay of a spin-two particle. Removing such restriction opens an interesting possibility to understand the couplings
of a particle X to SM fields by means of partial wave analyses, and we would like to set a stage for doing that in this
paper. To pursue this idea in detail, the most general parameterization of the X coupling to SM fields is required.
Such parameterizations are known for spin-zero, spin-one, and spin-two particles interacting with the SM gauge
bosons [7, 8] and we use these parameterizations in this paper. We also note that the model recently discussed in
Refs. [21–23] requires couplings beyond the minimal case in order to produce longitudinal polarization dominance.
Third, we note that while we concentrate on the decay X → ZZ → l+1 l

−
1 l

+
2 l

−
2 , the technique discussed in this

paper is more general and can, in principle, be applied to final states with jets and/or missing energy by studying
such processes as X → ZZ → l+l−jj, X → W+W− → l+νjj, etc. In contrast with pure leptonic final states,
higher statistics, larger backgrounds, and a worse angular resolution must be expected once final states with jets and
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E X T E N D I N G  T H E  L I K E L I H O O D  R AT I O  T R I C K

•A binary classifier approximates 

•Which is one-to-one with the likelihood ratio  

•Can do the same thing for any two points θ₀ & θ₁ in 
parameter space Θ. I call this a parametrized classifier 

36

s(x; ✓0, ✓1) =
p(x|✓1)

p(x|✓0) + p(x|✓1)

K.C., G. Louppe, J. Pavez: Approximating Likelihood Ratios with Calibrated Discriminative Classifiers [arXiv:1506.02169]

s(x) =
p(x|H1)

p(x|H0) + p(x|H1)

p(x|y = 0)

p(x|y = 1)
= 1� 1

s(x)

p(x|H1)

p(x|H0)

http://arxiv.org/abs/1506.02169


C A L I B R AT I N G  T H E  L I K E L I H O O D - R AT I O  T R I C K

•The intractable likelihood ratio based on high-dimensional features x is: 

•We can show that an equivalent test can be made from 1-D projection 

•if the scalar map s: X → ℝ has the same level sets as the likelihood ratio 

•Estimating the density of                       via the simulator calibrates the ratio. 
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training
phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1Sometimes there is an additional Poisson term when expected number of signal and background events
is known.

2

s     

p
(s

)  
 

s(x; ✓0; ✓1) = monotonic[ p(x|✓0)/p(x|✓1) ]

p(x|✓0)
p(x|✓1)

p(x|✓0)
p(x|✓1)

=
p(s(x; ✓0, ✓1)|✓0)
p(s(x; ✓0, ✓1)|✓1)

s(x; ✓0, ✓1)

✓0✓1

K.C., G. Louppe, J. Pavez: Approximating Likelihood Ratios with Calibrated Discriminative Classifiers [arXiv:1506.02169]

http://arxiv.org/abs/1506.02169
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Figure ��: Inference from truth likelihood ratio and carl’s estimate for the fully di�erential case
with regression. Le�: scatter plot showing the di�erence between the exact expected
likelihood ratio for ��� randomly sampled points and θ1 and carl’s estimate. Right:
true (white) and approximate (cyan) likelihood contours, using a Gaussian Process for
interpolation. �e white and cyan dots show the exact and approximate maximum-
likelihood estimators.�e green and red dots show θobserved and θ1, respectively. Finally,
the small grey dots show the sampled parameter points at which the likelihood ratio
was evaluated.

��

True likelihood

Es
tim

at
ed

 li
ke

lih
o

o
d

Weak boson fusion, h → 4�
� Production vs decay

� hZZ decay vertex:
many angular structures

� Very clean

� Same operators as before:

OB = i
g
2
(Dµ�†

)(Dν�)Bµν OW = i
g
2
(Dµ�)†σ k

(Dν�)W k
µν

OBB = −
g′2
4
(�†�)Bµν Bµν

OWW = −
g2

4
(�†�)W k

µν W µν k

O� ,2 =
1
2
∂µ(�†�) ∂µ(�†�) OWW̃ = −

g2

4
(�†�)W k

µν W̃ µν k

� Setup as before, except:
� No backgrounds, no smearing
� L ⋅ ε = 100 fb−1
� Cuts: pT , j > 20 GeV, �η j � < 5.0, pT ,� > 10 GeV, �η� � < 2.5

W , Z

W , Z

h

Z

Z

q

q

q′
�−
�+
�−
�+

q′

��/��

work with Juan Pavez, Gilles Louppe, Cyril Becot, and Lukas Heinrich; Johann Brehmer, Felix Kling, and Tilman Plehn 
“Better Higgs Measurements Through Information Geometry” [arXiv:1612.05261] & CARL  [arxiv:1506.02169] 

(based on a 16-D observation x)

Equivalent to 3x more data!

http://arxiv.org/abs/1506.02169
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is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L

2 norm such that
P

I
2
i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many

– 4 –

is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L

2 norm such that
P

I
2
i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many
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Figure 2: An illustration of the deep convolutional neural network architecture. The first

layer is the input jet image, followed by three convolutional layers, a dense layer and an

output layer.

would be much slower. There are many options for a smaller set of channels. For example,

one could consider one channel for hadrons and one for leptons, or channels for positively

charged, neutral and negatively charged particles. To be concrete, in this study we take three

input channels:

red = transverse momenta of charged particles

green = the transverse momenta of neutral particles

blue = charged particle multiplicity

– 9 –

[image: Komiske, Metodiev, Schwartz arxiv:1612.01551]

[Oliveira et al arXiv:1511.05190]

[Baldi et al arXiv:1603.09349]

[Barnard et al arXiv:1609.00607]
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•Recursive Neural Networks showing great performance for 
Natural Language Processing tasks 

• neural network’s topology given by parsing of sentence!
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Analogy: 
word → particle 
parsing → jet algorithm



6

FIG. 3. Jet classification performance for various input rep-
resentations of the RNN classifier, using kt topologies for the
embedding. The plot shows that there is significant improve-
ment from removing the image processing step and that sig-
nificant gains can be made with more accurate measurements
of the 4-momenta.

FIG. 4. Jet classification performance of the RNN classifier
based on various network topologies for the embedding (par-
ticles scenario). This plot shows that topology is significant,
as supported by the fact that results for kt, C/A and desc-pT
topologies improve over results for anti-kt, asc-pT and random
binary trees. Best results are achieved for C/A and desc-pT
topologies, depending on the metric considered.

further supported by the poor performance of the random
binary tree topology. We expected however that a simple
sequence (represented as a degenerate binary tree) based
on ascending and descending pT ordering would not per-
form particularly well, particularly since the topology
does not use any angular information. Surprisingly, the
simple descending pT ordering slightly outperforms the
RNNs based on kt and C/A topologies. The descending
pT network has the highest pT 4-momenta near the root
of the tree, which we expect to be the most important.
We suspect this is the reason that the descending pT out-
performs the ascending pT ordering on particles, but this
is not supported by the performance on towers. A similar
observation was already made in the context of natural
languages [24–26], where tree-based models have at best
only slightly outperformed simpler sequence-based net-
works. While recursive networks appear as a principled
choice, it is conjectured that recurrent networks may in
fact be able to discover and implicitly use recursive com-
positional structure by themselves, without supervision.
d. Gating The last factor that we varied was

whether or not to incorporate gating in the RNN. Adding
gating increases the number of parameters to 48,761, but
this is still about 20 times smaller than the number of
parameters in the MaxOut architectures used in previ-
ous jet image studies. Table I shows the performance of
the various RNN topologies with gating. While results
improve significantly with gating, most notably in terms
of R✏=50%, the trends in terms of topologies remain un-
changed.
e. Other variants Finally, we also considered a num-

ber of other variants. For example, we jointly trained
a classifier with the concatenated embeddings obtained
over kt and anti-kt topologies, but saw no significant
performance gain. We also tested the performance of
recursive activations transferred across topologies. For
instance, we used the recursive activation learned with
a kt topology when applied to an anti-kt topology and
observed a significant loss in performance. We also con-
sidered particle and tower level inputs with an additional
trimming preprocessing step, which was used for the jet
image studies, but we saw a significant loss in perfor-
mance. While the trimming degraded classification per-
formance, we did not evaluate the robustness to pileup
that motivates trimming and other jet grooming proce-
dures.

B. Infrared and Collinear Safety Studies

In proposing variables to characterize substructure,
physicists have been equally concerned with classification
performance and the ability to ensure various theoretical
properties of those variables. In particular, initial work
on jet algorithms focused on the Infrared-Collinear (IRC)
safe conditions:

• Infrared safety. The model is robust to augmenting
e with additional particles {vN+1, . . . ,vN+K} with

Q C D - I N S P I R E D  R E C U R S I V E  N E U R A L  N E T W O R K S
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towers 

particles

images

• Generative process is a 
tree-like, ~stationary 
Markov Process 

• Physics algorithms exist 
to estimate the tree 

• Tree-RNN needs much 
less data to train!

kt anti-kt
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Neural Message Passing for Jet
Physics

Isaac Henrion, Johann Brehmer, Joan Bruna,
Kyunghyun Cho, Kyle Cranmer, Gilles Louppe,

Gaspar Rochette

Courant Institute & Center for Data Science

Talk:    https://dl4physicalsciences.github.io/files/nips_dlps_2017_slides_henrion.pdf
Paper: https://dl4physicalsciences.github.io/files/nips_dlps_2017_29.pdf

Isaac Henrion

https://dl4physicalsciences.github.io/files/nips_dlps_2017_slides_henrion.pdf
https://dl4physicalsciences.github.io/files/nips_dlps_2017_29.pdf


J E T S  A S  A  G R A P H

•Using message passing neural networks over a fully connected graph on the particles 

• Two approaches for adjacency matrix for edges 

• import physics knowledge by using metric of jet algorithms 

• learn adjacency matrix and export new jet algorithm

48
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Jet graphs

W jetQCD jet

C/A algorithm with α=0 
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Classification results

Model Iterations R✏=50%

Rec-NN (no gating) 1 70.4 ± 3.6
Rec-NN (gating) 1 83.3 ± 3.1

MPNN (directed) 1 89.4 ± 3.5
MPNN (directed) 2 98.3 ± 4.3
MPNN (directed) 3 85.9 ± 8.5

MPNN (identity) 3 74.5 ± 5.2

Relation Network 1 67.7 ± 6.8

1/FPR @ TPR = 50%

Significant improvement on W vs. QCD jet classification! 
This is with a learned adjacency matrix 

- what did it learn? Is that adjacency matrix useful? 
- we are working MPNN with QCD-motivated adjacency matrix



Example: 

Optimizing Non-Differentiable Simulators



N E W !  AV O

•Similar to W-GAN setup, but 
instead of using a neural network 
as the generator, use the actual 
simulation (eg. Pythia, GEANT)
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Adversarial Variational Optimization of Non-Di↵erentiable Simulators

Gilles Louppe
1 and Kyle Cranmer

1

1New York University

Complex computer simulators are increasingly used across fields of science as generative models
tying parameters of an underlying theory to experimental observations. Inference in this setup is
often di�cult, as simulators rarely admit a tractable density or likelihood function. We introduce
Adversarial Variational Optimization (AVO), a likelihood-free inference algorithm for fitting a non-
di↵erentiable generative model incorporating ideas from empirical Bayes and variational inference.
We adapt the training procedure of generative adversarial networks by replacing the di↵erentiable
generative network with a domain-specific simulator. We solve the resulting non-di↵erentiable mini-
max problem by minimizing variational upper bounds of the two adversarial objectives. E↵ectively,
the procedure results in learning a proposal distribution over simulator parameters, such that the
corresponding marginal distribution of the generated data matches the observations. We present
results of the method with simulators producing both discrete and continuous data.

I. INTRODUCTION

In many fields of science such as particle physics, epi-
demiology, and population genetics, computer simulators
are used to describe complex data generation processes.
These simulators relate observations x to the parame-
ters ✓ of an underlying theory or mechanistic model.
In most cases, these simulators are specified as proce-
dural implementations of forward, stochastic processes
involving latent variables z. Rarely do these simulators
admit a tractable density (or likelihood) p(x|✓). The
prevalence and significance of this problem has motivated
an active research e↵ort in so-called likelihood-free infer-
ence algorithms such as Approximate Bayesian Compu-
tation (ABC) and density estimation-by-comparison al-
gorithms [1–6].

In parallel, with the introduction of variational auto-
encoders [7] and generative adversarial networks [8],
there has been a vibrant research program around im-
plicit generative models based on neural networks [9].
While some of these models also do not admit a tractable
density, they are all di↵erentiable by construction. In ad-
dition, generative models based on neural networks are
highly parametrized and the model parameters have no
obvious interpretation. In contrast, scientific simulators
can be thought of as highly regularized generative mod-
els as they typically have relatively few parameters and
they are endowed with some level of interpretation. In
this setting, inference on the model parameters ✓ is often
of more interest than the latent variables z.

In this note, we develop two likelihood-free inference al-
gorithms for non-di↵erentiable, implicit generative mod-
els. The first allows us to perform empirical Bayes
through variational inference, and the second provides
a point estimator of the parameters ✓. We adapt the
adversarial training procedure of generative adversarial
networks [8] by replacing the implicit generative network
with a domain-based scientific simulator, and solve the
resulting non-di↵erentiable minimax problem by mini-
mizing variational upper bounds [10, 11] of the adver-
sarial objectives. The objective of both algorithms is to

match marginal distribution of the generated data to the
empirical distribution of the observations.

II. PROBLEM STATEMENT

We consider a family of parametrized densities p(x|✓)
defined implicitly through the simulation of a stochas-
tic generative process, where x 2 Rd is the data and ✓
are the parameters of interest. The simulation may in-
volve some complicated latent process where z 2 Z is a
latent variable providing an external source of random-
ness. Unlike implicit generative models defined by neural
networks, we do not assume z to be a fixed-size vector
with a simple density. Instead, the dimension of z and
the nature of its components (uniform, normal, discrete,
continuous, etc.) are inherited from the control flow of
the simulation code and may depend on ✓ in some in-
tricate way. Moreover, the dimension of z may be much
larger than the dimension of x.
We assume that the stochastic generative process that

defines p(x|✓) is specified through a non-di↵erentiable
deterministic function g(·;✓) : Z ! Rd. Operationally,

x ⇠ p(x|✓) ⌘ z ⇠ p(z|✓),x = g(z;✓) (1)

such that the density p(x|✓) can be written as

p(x|✓) =
Z

{z:g(z;✓)=x}
p(z|✓)µ(dz), (2)

where µ is a probability measure.
Given some observed data {xi|i = 1, . . . , N} drawn

from the (unknown) true distribution pr(x), our goal is to
estimate the parameters ✓⇤ that minimize the divergence
between pr(x) and the implicit model p(x|✓). That is,

✓⇤ = argmin
✓

⇢(pr(x), p(x|✓)), (3)

where ⇢ is some distance or divergence.

G. Louppe & K.C. arXiv:1707.07113

Catch me if you can

Leo is G Tom is D

5 / 13

•Continue to use a neural network 
discriminator / critic. 

•Difficulty: the simulator isn’t 
differentiable, but there’s a trick! 

•Allows us to efficiently fit /  
tune simulation with stochastic 
gradient techniques!

http://arxiv.org/abs/1707.07113


Example: 

Lattice Field Theory



L AT T I C E  Q U A N T U M  C H R O M O  D Y N A M I C S

•Very expensive simulations, ~1000 examples with x∈ ℝ10⁹
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L AT T I C E  Q C D

•Each of the 10⁷ lattice locations has data xᵢ ∈ ℝ³² with non-trivial data with continuous local symmetry.  

• space-time translation invariance → convolutional architecture 

• local gauge symmetry → design group-invariant convolutional filters 

• coarse graining & renormalization group → hierarchical convolutions shared weights 

• few very, large training examples → rethink minibatching & SGD

54[explainer ]

17

(a) SL

(b) CP

(c) SLCP

FIG. 13: Diagrams of the neural network structure used. In the first layer, SL, CP, or SLCP structures are
formed, e.g., in the CP case, products of the 18 di↵erent types of loops separated by lattice distance R < 13
(averaged in integer space bins of R) are allowed, for a total of 18⇥ 18⇥ 13 = 4212 loop products. The first
layer is followed by 3 fully connected hidden layers with 1024, 512, and 256 nodes. Each hidden layer uses
a tanh activation function, with dropouts between layers.

Bonus:  
Network discovered 

something unexpected, 
a feature that has a long 

auto-correlation time.

https://t.co/pbEvQmFmDv


Example: 

Systematics Uncertainty 
Continuous Domain Adaptation 

Fairness on Continuous Attributes



L E A R N I N G  T O  P I V O T  W I T H  A D V E R S A R I A L  N E T W O R K S

• Typically classifier f(x) trained to 
minimize loss Lf.  

• want classifier output to be 
insensitive to systematics 
(nuisance parameter ν) 

• introduce an adversary r that 
tries to predict ν based on f.  

• setup as a minimax game:

56G. Louppe, M. Kagan, K. Cranmer, Learning to Pivot with Adversarial Networks [arXiv:1611.01046]
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�1(f(X; ✓f ); ✓r)
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. . .

✓r

...

Z

p✓r (Z|f(X; ✓f ))

P(�1, �2, . . . )

Lr(✓f , ✓r)

FIG. 1. Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The adversary r
models the distribution p(z|f(X; ✓f ) = s) of the nuisance parameters as observed only through the output f(X; ✓f ) of the
classifier. By maximizing the antagonistic objective Lr(✓f , ✓r) (as part of minimizing Lf (✓f ) � �Lr(✓f , ✓r)), the classifier f
forces p(z|f(X; ✓f ) = s) towards the prior p(z), which happens when f(X; ✓f ) is independent of the nuisance parameter Z and
therefore pivotal.

parameters. This implies that f(X; ✓f ) and Z are inde-
pendent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is
imposed with respect to p(X|Z) where Y is marginalized
out. In some situations however (see e.g., Sec. VB), class
conditional independence of f(X; ✓f ) on the nuisance Z

is preferred, which can then be stated as requiring

p(f(X; ✓f ) = s|z, y) = p(f(X; ✓f ) = s|z0, y) (2)

for one or several specified values y 2 Y.

III. METHOD

Joint training of adversarial networks was first pro-
posed by [21] as a way to build a generative model capable
of producing samples from random noise z. More specif-
ically, the authors pit a generative model g : Rn 7! Rp

against an adversary classifier d : Rp 7! [0, 1] whose an-
tagonistic objective is to recognize real data X from gen-
erated data g(Z). Both models g and d are trained simul-
taneously, in such a way that g learns to produce samples
that are di�cult to identify by d, while d incrementally
adapts to changes in g. At the equilibrium, g models a
distribution whose samples can be identified by d only
by chance. That is, assuming enough capacity in d and
g, the distribution of g(Z) eventually converges towards
the real distribution of X.

In this work, we repurpose adversarial networks as a
means to constrain the predictive model f in order to
satisfy Eqn. 1. As illustrated in Fig. 1, we pit f against
an adversary model r := p✓r (z|f(X; ✓f ) = s) of pa-
rameters ✓r and associated loss Lr(✓f , ✓r). This model
takes as input realizations f(X; ✓f ) and produces as out-
put a function modeling the posterior probability den-

sity p✓r (z|f(X; ✓f ) = s). Intuitively, if p(f(X; ✓f ) = s|z)
varies with z, then the corresponding correlation can be
captured by r. By contrast, if p(f(X; ✓f ) = s|z) is invari-
ant with z, as we require, then r should perform poorly
and be close to random guessing. Training f such that
it additionally minimizes the performance of r therefore
acts as a regularization towards Eqn. 1.
If Z takes discrete values, then p✓r can be represented

e.g. as a probabilistic classifier R 7! R|Z| whose j
th out-

put (for j = 1, . . . , |Z|) is the estimated probability mass
p✓r (zj |f(X; ✓f ) = s). Similarly, if Z takes continuous
values, then we can model the posterior probability den-
sity p(z|f(X; ✓f ) = s) with a su�ciently flexible para-
metric family of distributions P(�1, �2, . . . ), where the
parameters �j depend on f(X, ✓f ) and ✓r. The adver-
sary r may take any form, i.e. it does not need to be
a neural network, as long as it exposes a di↵erentiable
function p✓r (z|f(X; ✓f ) = s) of su�cient capacity to rep-
resent the true distribution. Fig. 1 illustrates a concrete
example where p✓r (z|f(X; ✓f ) = s) is a mixture of gaus-
sians, as modeled with a mixture density network [10]).
The j

th output corresponds to the estimated value of
the corresponding parameter �j of that distribution (e.g.,
the mean, variance and mixing coe�cients of its compo-
nents). As in [10, 26], the estimated probability density
p✓r (z|f(X; ✓f ) = s) can then be evaluated for any z 2 Z
and any score s 2 S.
As with generative adversarial networks, we propose

to train f and r simultaneously, which we carry out by
considering the value function

E(✓f , ✓r) = Lf (✓f )� Lr(✓f , ✓r) (3)

that we optimize by finding the minimax solution

✓̂f , ✓̂r = argmin
✓f

max
✓r

E(✓f , ✓r). (4)

f(x)

p(⌫|f)
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As stated in Eqn. 1, the pivotal quantity criterion is
imposed with respect to p(X|Z) where Y is marginalized
out. In some situations however (see e.g., Sec. VB), class
conditional independence of f(X; ✓f ) on the nuisance Z

is preferred, which can then be stated as requiring

p(f(X; ✓f ) = s|z, y) = p(f(X; ✓f ) = s|z0, y) (2)

for one or several specified values y 2 Y.

III. METHOD

Joint training of adversarial networks was first pro-
posed by [21] as a way to build a generative model capable
of producing samples from random noise z. More specif-
ically, the authors pit a generative model g : Rn 7! Rp

against an adversary classifier d : Rp 7! [0, 1] whose an-
tagonistic objective is to recognize real data X from gen-
erated data g(Z). Both models g and d are trained simul-
taneously, in such a way that g learns to produce samples
that are di�cult to identify by d, while d incrementally
adapts to changes in g. At the equilibrium, g models a
distribution whose samples can be identified by d only
by chance. That is, assuming enough capacity in d and
g, the distribution of g(Z) eventually converges towards
the real distribution of X.

In this work, we repurpose adversarial networks as a
means to constrain the predictive model f in order to
satisfy Eqn. 1. As illustrated in Fig. 1, we pit f against
an adversary model r := p✓r (z|f(X; ✓f ) = s) of pa-
rameters ✓r and associated loss Lr(✓f , ✓r). This model
takes as input realizations f(X; ✓f ) and produces as out-
put a function modeling the posterior probability den-

sity p✓r (z|f(X; ✓f ) = s). Intuitively, if p(f(X; ✓f ) = s|z)
varies with z, then the corresponding correlation can be
captured by r. By contrast, if p(f(X; ✓f ) = s|z) is invari-
ant with z, as we require, then r should perform poorly
and be close to random guessing. Training f such that
it additionally minimizes the performance of r therefore
acts as a regularization towards Eqn. 1.
If Z takes discrete values, then p✓r can be represented

e.g. as a probabilistic classifier R 7! R|Z| whose j
th out-

put (for j = 1, . . . , |Z|) is the estimated probability mass
p✓r (zj |f(X; ✓f ) = s). Similarly, if Z takes continuous
values, then we can model the posterior probability den-
sity p(z|f(X; ✓f ) = s) with a su�ciently flexible para-
metric family of distributions P(�1, �2, . . . ), where the
parameters �j depend on f(X, ✓f ) and ✓r. The adver-
sary r may take any form, i.e. it does not need to be
a neural network, as long as it exposes a di↵erentiable
function p✓r (z|f(X; ✓f ) = s) of su�cient capacity to rep-
resent the true distribution. Fig. 1 illustrates a concrete
example where p✓r (z|f(X; ✓f ) = s) is a mixture of gaus-
sians, as modeled with a mixture density network [10]).
The j

th output corresponds to the estimated value of
the corresponding parameter �j of that distribution (e.g.,
the mean, variance and mixing coe�cients of its compo-
nents). As in [10, 26], the estimated probability density
p✓r (z|f(X; ✓f ) = s) can then be evaluated for any z 2 Z
and any score s 2 S.
As with generative adversarial networks, we propose

to train f and r simultaneously, which we carry out by
considering the value function

E(✓f , ✓r) = Lf (✓f )� Lr(✓f , ✓r) (3)

that we optimize by finding the minimax solution

✓̂f , ✓̂r = argmin
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FIG. 11. Profile of the paramterized NN responses
to background versus jet mass, where the parameterized
network was evaluated at di↵erent Z0 mass hypotheses.
Top shows the response of the adversarially-trained clas-
sifier, which minimizes correlation with jet mass; bottom
shows the response of a network trained in the traditional
manner, to optimize classification accuracy.

able of interest, the jet mass. This allows the classi-
fier to enhance signal to noise ratio while minimiz-
ing the tendency of the background distribution to
morph into a shape which is degenerate with the ob-
servable signal. When the background cannot be re-
liably predicted a priori, as is often the case, it is im-
portant to be able to constrain its rate in sidebands
surrounding the signal region. Therefore, avoiding
such degeneracy is critical to performing successful
measurements.

We note that, from Fig. 8, it is clear that ap-
plying su�ciently tight cuts to the adversarial clas-
sifier causes significant background morphing, par-
ticularly when compared to the ⌧21-based discrimi-
nants. However, the solid lines of Fig. 9 illustrate
the case where the background rate is uncertain
and hence benefits from sideband constraints. We
see that the optimal significance is realized for the
adversarial classifier at a relatively high signal e�-
ciency of roughly 90%, where the background mor-
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phing is quite limited (Fig. 7). Hence, the adversar-
ial classifier achieves its goal of optimizing the trade-
o↵ between correlation and discrimination power.

We also note that the decorrelation could poten-

9

FA I R  C L A S S I F I E R S

•Adversarial approach of 
“Learning to Pivot” can also be 
used to train a classifier that is 
independent from some other 
continuous variable.  

• fairness to continuous 
attribute 

• motivation for doing this is 
related to robustnesss to 
uncertainties and 
interpretability
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–  J A S O N  E I S N E R

“Of course, particle physicists are among the first 
to realize that nature is compositional.” 

“The world is compositional, or there is a god" 

–  YA N N  L E C U N
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Detector Simulation p(x | z3, ν₃):  
• detailed engineering (CAD) 
• in situ measurements of temperature, magnetic field, alignment, calibration constants 
• first-principles description of interaction of particles with matter 
• look up tables of measured interaction of particles with matter

p(x|θ) = ∫ p(x | z3, ν₃) p(z3 | z2, ν₂)  p(z2 | z1, ν₁) p(z₁ | θ) dzExploit Markov Property:
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C O M P O S I T I O N  &  R E D U C T I O N I S M
•The traditional reconstruction algorithms can be seen as attempt to invert the 
generative process (point estimate / regression) 

• generative model: θ → z1 → z2 → z2 → x 

• Sequential Inversion: x → ẑ₃(x) → ẑ2(ẑ₃) → ẑ1(ẑ2 ) 

•Key points:  

• can characterize & validate p(ẑ1 | z1), p(ẑ2 | z2), p(ẑ3 | z3) with simulation 

• these components are reusable (transfer learning) 

• e.g. an algorithm that looks for electrons in the data (segmentation & 
classification) and estimates their energy and momentum (regression). 

• Provides a notion of “interpretable” that is practical and actionable  

• Composition is at the heart of the reductionist paradigm of science 
64
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D I F F E R E N T I A B L E  R E D U C T I O N I S M

•The reconstruction algorithms can be seen as attempt to invert the 
generative process (point estimate / regression) sequentially 

• generative model: θ → z
1
 → z

2
 → z

2
 → x 

• Sequential Inversion: x → ẑ₃(x) → ẑ
2
(ẑ₃) → ẑ

1
(ẑ

2
 ) 

•Currently both generative model and inversion algorithms involve hand-
engineered, code not developed for auto-diff / back propagation 
(effectively not differentiable)  

• big gain from just reimplementing what we have in a Differentiable 
Programming framework 

•We can keep the compositional structure and gradually enhance each of 
the stages of the with deep learning components 

• A high-level form of inductive bias (innate structure) on the networks 

• jointly optimize & borrow power from all the tasks that use a certain 
component 

• maintain ability to characterize, validate , and interpret individual 
components 

• transition from deterministic point estimate to probabilistic 
components for improved uncertainty estimation
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C O N C L U S I O N
•The developments in machine learning have the potential to 
effectively bridge the microscopic - macroscopic divide & aid in the 
inverse problem. 

• leverage expert knowledge of the generative process 

• learn surrogates that extract relevant features for inference task  

•Several strategies to incorporate domain knowledge into the model 

• starting point: migrate current code bases to differentiable 
programming framework 

• gradually replace components with deep learning 

•Helpful to establish more actionable notions of “interpretability” 
67
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P R O B  P R O G :  H O W  D O E S  I T  W O R K ?

•In short: hijack the random number generators and use 
NN’s to perform a very smart type of importance sampling

70

Input: an inference 
problem denoted in 
a universal PPL
(Anglican, CPProb)

Output: a trained 
inference network, 
or “compilation 
artifact”
(Torch, PyTorch)

Le, Baydin and Wood. Inference Compilation and Universal Probabilistic Programming. AISTATS 2017. 
arXiv:1610.09900

Inference compilation
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Our current tools:
- CPProb

- A new C++ PPL coupled with large-scale simulations using, e.g., 
SHERPA and GEANT

- PyTorch inference compilation backend
- Dynamic computation graphs for NN artifacts

Designed to run on Cori at NERSC using Shifter
shifterimg -v pull docker:gbaydin/pytorch-infcomp:latest
shifterimg -v pull docker:gbaydin/sherpa-infcomp-full:latest

NERSC, Lawrence Berkeley National Lab

Probabilistic program analytics
allows us to pinpoint “interesting” addresses in execution traces 
and corresponding C++ code within SHERPA

A case study in SHERPA

Probabilistic programming with C++
Our new tool: CPProb
https://github.com/probprog/cpprob 

Instrumenting C++ code to allow tools like SHERPA and GEANT run 
with inference compilation

Interpretable Compiled Inference for Large-Scale

Scientific Simulations

Mario Lezcano Casado, Atılım Güneş Baydin, Tuan Anh Le, Frank Wood
⇤

Department of Engineering Science
University of Oxford

{lezcano,gunes,tuananh,fwood}@robots.ox.ac.uk

Lukas Heinrich, Gilles Louppe, Kyle Cranmer

Department of Physics & Center for Data Science
New York University

{kyle.cranmer,lukas.heinrich,g.louppe}@cern.ch

Wahid Bhimji, Prabhat

Lawrence Berkeley National Laboratory
{wbhimji,prabhat}@lbl.gov

Karen Ng

Intel
karen.y.ng@intel.com

Abstract

We consider the problem of Bayesian inference in the family of probabilistic
models implicitly defined by a stochastic generative model of the data. In scien-
tific fields ranging from population biology to cosmology, low-level mechanistic
components are composed to create complex generative models. These models
lead to intractable likelihoods and are typically non-differentiable, which poses
challenges for traditional approaches to inference. We extend previous work in
“inference compilation”, which combines universal probabilistic programming and
deep learning methods, to the real-world C++-based simulation codes. We illustrate
the scalability of the technique with a challenging inference problem from particle
physics aimed at establishing the properties of the recently discovered Higgs boson.
We highlight that inference based on the domain-specific simulator naturally emits
interpretable posterior samples with rich semantics.

1 Introduction

Complex simulations are used for stochastic generative models for data across a diverse segment
of the scientific community. These simulations typically lead to intractable likelihoods, which
yield traditional statistical inference algorithms irrelevant and motivate a new class of so-called
likelihood-free inference algorithms.

There are two broad strategies for this likelihood-free inference problem. In the first, one attempts
to learn the necessary ingredients for inference from examples drawn from the simulator. This
includes Bayesian neural networks, the variational autoencoder [??], extensions of these recognition
models such as MDN-SVI [Papamakarios and Murray, 2016], and approaches based on density ratio
estimation [Cranmer et al., 2015]. Alternatively, Approximate Bayesian computation (ABC) refers to
a large class approaches for sampling from the posterior distribution of these likelihood-free models
where the original simulator is used as part of the inference engine.

⇤for all the fish

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Slides from Atılım Güneş Baydin @ Hammers & Nails

& GEANT

https://dl4physicalsciences.github.io/files/nips_dlps_2017_30.pdf
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CaloGAN: Simulating 3D High Energy Particle

Showers in Multi-Layer Electromagnetic Calorimeters

with Generative Adversarial Networks

Michela Paganini
a,b

, Luke de Oliveira
a
, and Benjamin Nachman

a

aLawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
bDepartment of Physics, Yale University, New Haven, CT 06520, USA

E-mail: michela.paganini@yale.edu, lukedeoliveira@lbl.gov, bnachman@cern.ch

Abstract: Simulation is a key component of physics analysis in particle physics and nuclear physics.
The most computationally expensive simulation step is the detailed modeling of particle showers inside
calorimeters. Full detector simulations are too slow to meet the growing demands resulting from large
quantities of data; current fast simulations are not precise enough to serve the entire physics program.
Therefore, we introduce CaloGAN, a new fast simulation based on generative adversarial neural
networks (GANs). We apply the CaloGAN to model electromagnetic showers in a longitudinally
segmented calorimeter. This represents a significant stepping stone toward a full neural network-based
detector simulation that could save significant computing time and enable many analyses now and
in the future. In particular, the CaloGAN achieves speedup factors comparable to or better than
existing fast simulation techniques on CPU (100⇥-1000⇥) and even faster on GPU (up to ⇠ 105⇥))
and has the capability of faithfully reproducing many aspects of key shower shape variables for a variety
of particle types.
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Creating Virtual Universes Using Generative Adversarial Networks

Mustafa Mustafa⇤1, Deborah Bard1, Wahid Bhimji1, Rami Al-Rfou2, and Zarija Lukić1

1Lawrence Berkeley National Laboratory, Berkeley, CA 94720
2Google Research, Mountain View, CA 94043

Abstract

Inferring model parameters from experimental data is a grand challenge in many sciences, including cosmol-
ogy. This often relies critically on high fidelity numerical simulations, which are prohibitively computationally
expensive. The application of deep learning techniques to generative modeling is renewing interest in using high
dimensional density estimators as computationally inexpensive emulators of fully-fledged simulations. These
generative models have the potential to make a dramatic shift in the field of scientific simulations, but for that
shift to happen we need to study the performance of such generators in the precision regime needed for science
applications. To this end, in this letter we apply Generative Adversarial Networks to the problem of generating
cosmological weak lensing convergence maps. We show that our generator network produces maps that are
described by, with high statistical confidence, the same summary statistics as the fully simulated maps.

The scientific success of the next generation of sky
surveys (e.g. [1–5]) to test the current “standard model”
of cosmology (⇤CDM), hinges critically on the success
of underlying simulations. Answering questions in cos-
mology about the nature of cold dark matter, dark
energy and the inflation of the early universe, requires
relating observations of a large number of astrophysical
objects which trace the underlying matter density field,
to simulations of “virtual universes” with different cos-
mological parameters. Currently the creation of each
virtual universe requires an extremely computationally
expensive simulation on High Performance Computing
resources. In order to make this inverse problem prac-
tically solvable, constructing a computationally cheap
surrogate model or an emulator [6, 7] is imperative.

However, traditional approaches to emulators re-
quire the use of a summary-statistic which is to be em-
ulated. An approach that does not require such math-
ematical templates of the simulation outcome would
be of considerable value in the field. The ability to
emulate these simulations with high fidelity, in a frac-
tion of the computational time, would boost our ability
to understand the fundamental nature of the universe.
While in this letter we focus our attention on cosmol-
ogy, and in particular weak lensing convergence maps,
we believe that this approach is relevant to many areas
of science and engineering.

Recent developments in deep generative modeling
techniques open the potential to meet this need. The
density estimators in these models are built out of neu-
ral networks which can serve as universal approxima-
tors [8], thus having the ability to learn the underlying
distributions of data and emulate the observable with-
out being biased by the choice of summary-statistics,

⇤Corresponding author: mmustafa@lbl.gov

as in the traditional approach to emulators.
In this letter, we study the ability of a recent vari-

ant of generative models - Generative Adversarial Net-
works (GANs) [9] to generate weak lensing convergence
maps. The training and validation maps are produced
using N-body simulations of ⇤CDM cosmology. We
show that maps generated by the neural network ex-
hibit, with high statistical confidence, the same power
(Fourier) spectrum of the fully-fledged simulator maps,
as well as higher order non-Gaussian features, thus
demonstrating that such scientific data is amenable to
a GAN treatment for generation. The very high level
of agreement we achieve offers promise for building em-
ulators out of deep neural networks. We first present
our results and analysis then outline the future inves-
tigations which we think are critical to build such em-
ulators in the Discussion section.

Results
Gravitational lensing has potential to be one of the
most sensitive probes of the nature of dark energy [10],
and affects the shape and apparent brightness of every
galaxy we observe. Convergence (⌫) is the quantity
that defines the brightness of an observed object as it
is affected by the matter along the line of sight between
that galaxy and the observer. It can be interpreted as
a measure of the density of the universe observed from
a particular direction. A full N-body simulation cre-
ates convergence maps corresponding to many random
realizations of the same cosmological model. We set
out to train a GAN model on 256 ⇥ 256 pixels conver-
gence maps taken from these simulations. A descrip-
tion of the simulations and data preparation methods
is in the Methods section. Before we describe our re-
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Figure 1: Weak lensing convergence maps for a ⇤CDM cosmological model with �8 = 0.798, w = �1.0,
⌦m = 0.26 and ⌦⇤ = 0.74. Randomly selected maps from validation dataset (top) and GAN generated
examples (bottom).

sults we first outline the objective of generative models
and the GANs framework.

The central problem of generative models is the ques-
tion: given a distribution of data Pdata can one devise
a generator G such that the distribution of model gen-
erated data Pmodel = Pdata? Our information about
Pdata comes from the training dataset, typically an in-
dependent and identically distributed random sample
x1, x2, . . . , xn which is assumed to have the same dis-
tribution as Pdata. Achieving a high fidelity genera-
tion scheme amounts to the construction of a density
estimator of the training data. In the GANs frame-
work a generator function G is optimized to generate
samples that are indistinguishable from training data
as judged by a discriminator function D. D is opti-
mized to discriminate between training data and gen-
erated data. In the neural network formulation of this
framework the generator network G✓ parametrized by
network parameters ✓ and discriminator network Dw

parametrized by w are simultaneously optimized using
gradient-descent.

Of interest to us here is the generator G✓. Its param-
eters are optimized to map a vector z sampled from a
prior to the support of Pmodel. The only requirement
on the generator is that it is differentiable with respect
to its parameters and input (except at possibly finitely
many points). For the 256 ⇥ 256 convergence maps we
study, we choose a normal prior, so:

z ⇠ [N0(0, 1), . . . ,N63(0, 1)]

G✓ : z ! x ✏ R256⇥256.

The dimension of the vector z needs to be com-
mensurate with the support of the training conver-
gence maps Pdata in R256⇥256. Because the underly-
ing physics of the convergence maps is translation and
rotation invariant [11], we chose to construct the gener-
ator and discriminator networks mainly from convolu-
tional layers. To allow the network to learn the proper
correlations on the components of the input z early on,
the first layer of the generator network needs to be a
fully-connected layer. A well studied architecture that
meets these criteria is the Deep Convolutional Gener-
ative Adversarial Networks (DCGAN) [12]. DCGAN
is a set of empirically chosen architectural guidelines
and hyper-parameters which have been shown to be
robust to excel at a variety of tasks. We experimented
with DCGAN architectural parameters and we found
that most of the hyper-parameters optimized for natu-
ral images by the original authors perform well on the
convergence maps, for example, changing the learning
rates or the kernel sizes worsens the performance. We
used DCGAN with slight modifications to meet our
problem dimensions as described in the Methods sec-
tion.

2

Figure 8: Average ⇡
+ Geant shower (top), and average ⇡

+ CaloGAN shower (bottom), with
progressive calorimeter depth (left to right).

Figure 9: Five randomly selected e
+ showers per calorimeter layer from the training set (top) and the

five nearest neighbors (by euclidean distance) from a set of CaloGAN candidates.

Figure 10: Five randomly selected � showers per calorimeter layer from the training set (top) and the
five nearest neighbors (by euclidean distance) from a set of CaloGAN candidates.

Figure 11: Five randomly selected ⇡
+ showers per calorimeter layer from the training set (top) and

the five nearest neighbors (by euclidean distance) from a set of CaloGAN candidates.

– 10 –
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Figure ��: Inference from truth likelihood ratio and carl’s estimate for the fully di�erential case
with regression. Le�: scatter plot showing the di�erence between the exact expected
likelihood ratio for ��� randomly sampled points and θ1 and carl’s estimate. Right:
true (white) and approximate (cyan) likelihood contours, using a Gaussian Process for
interpolation. �e white and cyan dots show the exact and approximate maximum-
likelihood estimators.�e green and red dots show θobserved and θ1, respectively. Finally,
the small grey dots show the sampled parameter points at which the likelihood ratio
was evaluated.

Figure ��: ROC curves for the classi�cation between event samples based on θ0 and θ1 as de�ned
in Equation ��. Le�: calibrated classi�ers (with random forests as described in Ap-
pendix B). Right: regression (with a neural network as described in subsubsection B.�.�.

��

Figure ��: Inference from truth likelihood ratio and carl’s estimate for the fully di�erential case
with regression. Le�: scatter plot showing the di�erence between the exact expected
likelihood ratio for ��� randomly sampled points and θ1 and carl’s estimate. Right:
true (white) and approximate (cyan) likelihood contours, using a Gaussian Process for
interpolation. �e white and cyan dots show the exact and approximate maximum-
likelihood estimators.�e green and red dots show θobserved and θ1, respectively. Finally,
the small grey dots show the sampled parameter points at which the likelihood ratio
was evaluated.

��

Weak boson fusion, h → 4�
� Production vs decay

� hZZ decay vertex:
many angular structures

� Very clean

� Same operators as before:

OB = i
g
2
(Dµ�†

)(Dν�)Bµν OW = i
g
2
(Dµ�)†σ k

(Dν�)W k
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� Setup as before, except:
� No backgrounds, no smearing
� L ⋅ ε = 100 fb−1
� Cuts: pT , j > 20 GeV, �η j � < 5.0, pT ,� > 10 GeV, �η� � < 2.5
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Variational Optimization

min
✓

f(✓)  E✓⇠q(✓| )[f(✓)] = U( )

r U( ) = E✓⇠q(✓| )[f(✓)r log q(✓| )]

Piecewise constant � sin(x)
x q(✓| = (µ,�)) = N (µ, e�)

25 / 38
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•Like a GAN, but generative model is non-differentiable 
and the parameters of simulator have meaning
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29 / 38

Adversarial Variational Optimization

• Replace the generative network with a non-di↵erentiable
forward simulator g(z;✓).

• With VO, optimize upper bounds of the adversarial objectives:

Ud = E✓⇠q(✓| )[Ld] (1)

Ug = E✓⇠q(✓| )[Lg] (2)

respectively over � and  .

Credits: 1707.07113

26 / 38Operationally, we get the marginal model:

x ⇠ q(x| ) ⌘ ✓ ⇠ q(✓| ), z ⇠ p(z|✓),x = g(z;✓)

27 / 38

•We use Wasserstein distance, 
as in WGAN

•Effectively sampling from 
marginal model

G. Louppe & K.C. arXiv:1707.07113

http://arxiv.org/abs/1707.07113
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•the γ₁, γ₂, … are the mean, 
standard deviation, and amplitude 
for the Gaussian Mixture Model. 

• the neural network takes in f 
and predicts γ₁, γ₂, …
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2

Classifier f

X

✓f

f(X; ✓f )

Lf (✓f )

...

Adversary r

�1(f(X; ✓f ); ✓r)

�2(f(X; ✓f ); ✓r)

. . .

✓r

...

Z

p✓r (Z|f(X; ✓f ))

P(�1, �2, . . . )

Lr(✓f , ✓r)

FIG. 1. Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The adversary r
models the distribution p(z|f(X; ✓f ) = s) of the nuisance parameters as observed only through the output f(X; ✓f ) of the
classifier. By maximizing the antagonistic objective Lr(✓f , ✓r) (as part of minimizing Lf (✓f ) � �Lr(✓f , ✓r)), the classifier f
forces p(z|f(X; ✓f ) = s) towards the prior p(z), which happens when f(X; ✓f ) is independent of the nuisance parameter Z and
therefore pivotal.

parameters. This implies that f(X; ✓f ) and Z are inde-
pendent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is
imposed with respect to p(X|Z) where Y is marginalized
out. In some situations however (see e.g., Sec. VB), class
conditional independence of f(X; ✓f ) on the nuisance Z

is preferred, which can then be stated as requiring

p(f(X; ✓f ) = s|z, y) = p(f(X; ✓f ) = s|z0, y) (2)

for one or several specified values y 2 Y.

III. METHOD

Joint training of adversarial networks was first pro-
posed by [21] as a way to build a generative model capable
of producing samples from random noise z. More specif-
ically, the authors pit a generative model g : Rn 7! Rp

against an adversary classifier d : Rp 7! [0, 1] whose an-
tagonistic objective is to recognize real data X from gen-
erated data g(Z). Both models g and d are trained simul-
taneously, in such a way that g learns to produce samples
that are di�cult to identify by d, while d incrementally
adapts to changes in g. At the equilibrium, g models a
distribution whose samples can be identified by d only
by chance. That is, assuming enough capacity in d and
g, the distribution of g(Z) eventually converges towards
the real distribution of X.

In this work, we repurpose adversarial networks as a
means to constrain the predictive model f in order to
satisfy Eqn. 1. As illustrated in Fig. 1, we pit f against
an adversary model r := p✓r (z|f(X; ✓f ) = s) of pa-
rameters ✓r and associated loss Lr(✓f , ✓r). This model
takes as input realizations f(X; ✓f ) and produces as out-
put a function modeling the posterior probability den-

sity p✓r (z|f(X; ✓f ) = s). Intuitively, if p(f(X; ✓f ) = s|z)
varies with z, then the corresponding correlation can be
captured by r. By contrast, if p(f(X; ✓f ) = s|z) is invari-
ant with z, as we require, then r should perform poorly
and be close to random guessing. Training f such that
it additionally minimizes the performance of r therefore
acts as a regularization towards Eqn. 1.
If Z takes discrete values, then p✓r can be represented

e.g. as a probabilistic classifier R 7! R|Z| whose j
th out-

put (for j = 1, . . . , |Z|) is the estimated probability mass
p✓r (zj |f(X; ✓f ) = s). Similarly, if Z takes continuous
values, then we can model the posterior probability den-
sity p(z|f(X; ✓f ) = s) with a su�ciently flexible para-
metric family of distributions P(�1, �2, . . . ), where the
parameters �j depend on f(X, ✓f ) and ✓r. The adver-
sary r may take any form, i.e. it does not need to be
a neural network, as long as it exposes a di↵erentiable
function p✓r (z|f(X; ✓f ) = s) of su�cient capacity to rep-
resent the true distribution. Fig. 1 illustrates a concrete
example where p✓r (z|f(X; ✓f ) = s) is a mixture of gaus-
sians, as modeled with a mixture density network [10]).
The j

th output corresponds to the estimated value of
the corresponding parameter �j of that distribution (e.g.,
the mean, variance and mixing coe�cients of its compo-
nents). As in [10, 26], the estimated probability density
p✓r (z|f(X; ✓f ) = s) can then be evaluated for any z 2 Z
and any score s 2 S.
As with generative adversarial networks, we propose

to train f and r simultaneously, which we carry out by
considering the value function

E(✓f , ✓r) = Lf (✓f )� Lr(✓f , ✓r) (3)

that we optimize by finding the minimax solution

✓̂f , ✓̂r = argmin
✓f

max
✓r

E(✓f , ✓r). (4)

p(z|f)

f(x)

G. Louppe, M. Kagan, K. Cranmer, arXiv:1611.01046



Reinforcement / Active Learning  
+ Likelihood Free Inference
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decide which 
experiment to 
perform

perform experiment, 
gather data

updated knowledge 
based on analyzing 
data

statistical analysis



O P T I M I Z I N G  E X P E R I M E N T S

79beam energy

ex
p

ec
te

d
 in

fo
rm

at
io

n 
g

ai
n

h t t p s : / / g i t h u b . c o m / c r a n m e r / a c t i v e _ s c i e n c i n g

•Proof-of-principle algorithm can: 

• measure parameter of theory (eg. Weinberg angle in 
Standard Model of particle Physics) from raw data 

• optimize experiment (eg. beam energy) for most 
sensitive measurement
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https://github.com/cranmer/active_sciencing
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•Physics goes into the construction of a 
“Kernel” that defines M.L. model 

• Vocabulary of kernels + grammar for 
composition = powerful modeling
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Structure Discovery in Nonparametric Regression through Compositional Kernel Search

cylinders. Some of their discrete graph structures have
continous analogues in our own space; e.g. SE1 ⇥ SE2

and SE1 ⇥ Per2 can be seen as mapping the data to
a plane and a cylinder, respectively.

Grosse et al. (2012) performed a greedy search over a
compositional model class for unsupervised learning,
using a grammar and a search procedure which parallel
our own. This model class contained a large number
of existing unsupervised models as special cases and
was able to discover such structure automatically from
data. Our work is tackling a similar problem, but in a
supervised setting.

5. Structure discovery in time series

To investigate our method’s ability to discover struc-
ture, we ran the kernel search on several time-series.

As discussed in section 2, a gp whose kernel is a sum
of kernels can be viewed as a sum of functions drawn
from component gps. This provides another method
of visualizing the learned structures. In particular, all
kernels in our search space can be equivalently writ-
ten as sums of products of base kernels by applying
distributivity. For example,

SE⇥ (RQ+ Lin) = SE⇥RQ+ SE⇥ Lin.

We visualize the decompositions into sums of compo-
nents using the formulae given in the appendix. The
search was run to depth 10, using the base kernels from
Section 2.

Mauna Loa atmospheric CO2 Using our method,
we analyzed records of carbon dioxide levels recorded
at the Mauna Loa observatory. Since this dataset was
analyzed in detail by Rasmussen & Williams (2006),
we can compare the kernel chosen by our method to a
kernel constructed by human experts.
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Figure 3. Posterior mean and variance for di↵erent depths

of kernel search. The dashed line marks the extent of the

dataset. In the first column, the function is only modeled

as a locally smooth function, and the extrapolation is poor.
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show the yearly periodic structure.
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•We can inject our knowledge of physics into the machine learning models! 
We can extract knowledge learned from the data!
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FIG. 1: Three parameter covariance

FIG. 2: Gaussian Process covariance

in to the paper may be tricky

• essentially, does our Gaussian Process have features
we’d expect from JES/PDF e↵ects

To better construct a kernel, we can also include our un-
derstanding of detector e↵ects and physics e↵ects. We
look at the covariance matrix of the 3 parameter fit func-
tion by fitting the ATLAS dataset and using Markov
Chain Monte Carlo [cite emcee?] to sample the posterior
(Fig 1). One can see a visible structure in the covariance,
suggesting the inflexibility of the fit function causes an-
chor points which the fit pivots around. This hints that
the parametric fits have some sort of inherent structure
that is not grounded in any physical properties of the
distribution.

As a comparison, the covariance matrix created from
posterior samples from the Gaussian Process fit to the
ATLAS dataset show less correlation between points at
higher mass (Fig 2). The correlation seems constrained
to diagonal, with the o↵ diagonal dying o↵ quickly.

We can now look at two e↵ects; jet energy scale (JES)
and parton density function (PDF) e↵ects. JES e↵ects
smear out the spectrum due to uncertainty on the mea-
sured energy of the jet. To model this, we use a Gaus-
sian kernel of various widths and means to smear out our

FIG. 3: JES Covariance Structure

FIG. 4: PDF Covariance Structure

distribution, and create a covariance matrix from these
samples (Fig 3). One can see a high degree of correlation
across all points in the distribution.
PDF e↵ects were implemented in the paper [cite] by

taking the 8 TeV dijet analysis data [cite] and comput-
ing a covariance matrix from applying di↵erent PDF sets
(Fig 4).
For comparison, we also create a covariance from a

Sliding Window Fit (SWiFt). The SWiFt solution to
the problems with fitting at high luminosities is to fit the
parametric form within smaller segments of the distribu-
tion, and piece together a final background estimation
across the whole spectrum. This method should create a
covariance structure which is limited to the diagonal and
zero in the o↵ diagonal, as each fit includes only a small
portion of the distribution. Indeed this is what we see in
Figure 5.

Other related plots

• Covariance and correlations as a function of mjj i.e.
plotting each row of the correlation and covariance
matrix separately.
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+ Jet Energy Scale

+ Parton Density  
Functions

Final Kernel = 

Poisson fluctuations 

+ Mass Resolution=

+ 
…

+ 

QCD-Aware recursive neural networks
• arXiv:1702.00748• arXiv:1709.05681

Physics-aware Gaussian Processes

QCD-Aware graph convolutional neural networks
• NIPS2017 workshop [http://bit.ly/2AkwYRG] 

http://bit.ly/2AkwYRG


G R AV I TAT I O N A L  W AV E S  &  N E U T R I N O S

82

Live Demo: 
www.tiny.cc/DLGW

Detecting GW150914

Data not included in training

Trained with only non-spinning, 
non-eccentric simulations

~1s to analyze 4096s of data.

Masses correct within error bars

No False Alarms with two 
detectors!

23

Gravitational Waves

2

SXS

Source: ligo.org

Figure 13. Example bounding boxes predicted by the CNN for each of the five particle classes.
The blue box is the true bounding box. The red box is the network inferred bounding box. The
detection score and inferred class sits atop the red box. It’s interesting to note the network’s ability
to capture a shower-type particle’s ionization charge within the detection box

to 0.6. We note that our high-resolution image has a factor of two in wire and six in time
compression applied, and hence this might not be the highest separation achievable. It
may be interesting to repeat more studies across di↵erent downsizing levels (including no
downsizing) and study how this separation power changes. However, that is beyond the
scope of this publication.

4.6 Particle Detection Performance

The goal of the Faster-RCNN detection network is to provide a bounding box around the
energy deposition of the single particle. Typical detection examples can be seen in figure
13. In the figure, the ground truth bounding boxes are also shown. As done for all studies
in this section, this analysis used the same training and validation sample described in
section 4.1.

To quantify the Faster-RCNN detection performance on the single particle sample, we
compute the intersection over the union of the ground truth bounding box and the predicted
box with the highest network score. This is the standard performance metric used by object
detection networks to compare with one another. Intersection over union (IoU) is defined
for a pair of boxes in the following way: the intersection area between two boxes is first

– 26 –
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FIG. 4: Square ice and toric code models and their typical configurations. (A) The charge Qv in

the square ice Hamiltonian is defined as the sum over the spins on the bonds of a vertex v , while

the classical toric code Hamiltonian is defined as a sum over the product of spins on a plaquette

p. (B) and (C) portray ground state and high temperature spin configurations of the square ice

Hamiltonian, respectively. (D) A ground state configuration of the toric code Hamiltonian.
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Abstract—Understanding the nature of dark energy, the mys-
terious force driving the accelerated expansion of the Universe, is
a major challenge of modern cosmology. The next generation of
cosmological surveys, specifically designed to address this issue,
rely on accurate measurements of the apparent shapes of distant
galaxies. However, shape measurement methods suffer from
various unavoidable biases and therefore will rely on a precise
calibration to meet the accuracy requirements of the science
analysis. This calibration process remains an open challenge as
it requires large sets of high quality galaxy images. To this
end, we study the application of deep conditional generative
models in generating realistic galaxy images. In particular we
consider variations on conditional variational autoencoder and
introduce a new adversarial objective for training of conditional
generative networks. Our results suggest a reliable alternative
to the acquisition of expensive high quality observations for
generating the calibration data needed by the next generation
of cosmological surveys.

The last two decades have greatly clarified the contents of
the Universe, while leaving several large mysteries in our cos-
mological model. We now have compelling evidence that the
expansion rate of the Universe is accelerating, suggesting that
the vast majority of the total energy content of the Universe
is the so-called dark energy. Yet we lack an understanding
of what dark energy actually is, which provides one of the
main motivations behind the next generation of cosmological
surveys such as LSST (LSST Science Collaboration et al.,
2009), Euclid (Laureijs et al., 2011) and WFIRST (Green
et al., 2012). These billion dollar projects are specifically
designed to shed light on the nature of dark energy by
probing the Universe through the weak gravitational lensing

effect –i.e., the minute deflection of the light from distant
objects by the intervening massive large scale structures of the
Universe. On cosmological scales, this lensing effect causes
very small but coherent deformations of background galaxy
images, which appear slightly sheared, providing a way to
statistically map the matter distribution in the Universe. To
measure the lensing signal, future surveys will image and
measure the shapes of billions of galaxies, significantly driving
down statistical errors compared to the current generation of
surveys, to the level where dark energy models may become
distinguishable.

However, the quality of this analysis hinges on the accuracy
of the shape measurement algorithms tasked with estimating
the ellipticities of the galaxies in the survey. This point
is particularly crucial to the success of these missions, as
any unaccounted for measurement biases in their ensemble

averages would impact the final cosmological analysis and
potentially lead to false conclusions. In order to detect and/or
calibrate any such biases, future surveys will heavily rely on
image simulations, closely mimicking real observations but
with a known ground truth lensing signal.

Fig. 1: Illustration of the processes involved in the measurement
of weak gravitational lensing. The light from distant galaxies is
deflected by the matter in the Universe, causing a shearing of the
galaxy images, which are then further blurred by the atmosphere and
the telescope optics and finally pixelated into a noisy image by the
imaging sensor. Image credit: Mandelbaum et al. (2014), adapted
from Kitching et al. (2010).

Producing these image simulations, however, is challenging
in itself as they require high quality galaxy images as the
input of the simulation pipeline. Such observations can only be
obtained by extremely expensive space-based imaging surveys,
which will remain a scarce resource for the foreseeable future.
The largest current survey being used for image simulation
purposes is the COSMOS survey (Scoville et al., 2007), carried
out using the Hubble Space Telescope (HST). Despite being
the largest available dataset, COSMOS is relatively small, and
there is great interest in increasing the size of our galaxy
image samples to improve the quality of this crucial calibration
process.

In this work, we propose an alternative to the expensive
acquisition of more high quality calibration data using deep
conditional generative models. In recent years, these models
have achieved remarkable success in modeling complex high-
dimensional distributions, producing natural images that can
pass the visual Turing test. Two prominent approaches for
training these models are variational autoencoder (VAE)
(Kingma and Welling, 2013; Rezende et al., 2014) and gener-
ative adversarial network (GAN) (Goodfellow et al., 2014).
Our aim is to train a coditional variation of these models
using existing HST data and generate new galaxy images
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with a known ground truth lensing signal.
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Producing these image simulations, however, is challenging
in itself as they require high quality galaxy images as the
input of the simulation pipeline. Such observations can only be
obtained by extremely expensive space-based imaging surveys,
which will remain a scarce resource for the foreseeable future.
The largest current survey being used for image simulation
purposes is the COSMOS survey (Scoville et al., 2007), carried
out using the Hubble Space Telescope (HST). Despite being
the largest available dataset, COSMOS is relatively small, and
there is great interest in increasing the size of our galaxy
image samples to improve the quality of this crucial calibration
process.

In this work, we propose an alternative to the expensive
acquisition of more high quality calibration data using deep
conditional generative models. In recent years, these models
have achieved remarkable success in modeling complex high-
dimensional distributions, producing natural images that can
pass the visual Turing test. Two prominent approaches for
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ative adversarial network (GAN) (Goodfellow et al., 2014).
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Fig. 2: Samples from the GALAXY-ZOO dataset and generated samples using conditional generative adversarial network of Section III. Each
synthetic image is a 128⇥ 128 colored image (here inverted) produced by conditioning on the same set of features y 2 [0, 1]37 as its real
pair. These instances are selected from the test-set and were unavailable to the model during the training.

conditioned on statistics of interest such as the brightness or
size of the galaxy. This will allow us to synthesize calibration
datasets for specific galaxy populations, with objects exhibit-
ing realistic morphologies.

In the following, Section I gives a brief background on the
image generation for calibration and its significance for mod-
ern cosmology. We then review the current approaches to deep
conditional generative models and introduce new techniques
for our problem setting in Sections II and III. In Section IV we
assess the quality of the generated images by comparing the
conditional distributions of shape and morphology parameters
between simulated and real galaxies, and find good agreement.

I. WEAK GRAVITATIONAL LENSING

In the weak regime of gravitational lensing, the distortion of
background galaxy images can be modeled by an anisotropic
shear, noted �, whose amplitude and orientation depend on
the matter distribution between the observer and these distant
galaxies. This shear affects in particular the apparent ellipticity
of galaxies, denoted e. Measuring this weak lensing effect is
made possible under the assumption that background galaxies
are randomly oriented, so that the ensemble average of the
shapes would average to zero in the absence of lensing. Their
apparent ellipticity e can then be used as a noisy but unbiased
estimator of the shear field �: E[e] = �. The cosmological
analysis then involves computing auto- and cross-correlations
of the measured ellipticities for galaxies at different distances.
These correlation functions are compared to theoretical pre-
dictions in order to constrain cosmological models and shed
light on the nature of dark energy.

However, measuring galaxy ellipticities such that their
ensemble average (used for the cosmological analysis) is
unbiased is an extremely challenging task. Fig. 1 illustrates
the main steps involved in the acquisition of the science
images. The weakly sheared galaxy images undergo additional
distortions (essentially blurring) as they go through the at-
mosphere and telescope optics, before being acquired by the
imaging sensor which pixelates the noisy image. As this figure
illustrates, the cosmological shear is clearly a subdominant
effect in the final image and needs to be disentangled from
subsequent blurring by the atmosphere and telescope options.
This blurring, or Point Spread Function (PSF), can be directly

measured by using stars as point sources, as shown at the top
of Fig. 1.

Once the image is acquired, shape measurement algorithms
are used to estimate the ellipticity of the galaxy while correct-
ing for the PSF. However, despite the best efforts of the weak
lensing community for nearly two decades, all current state-
of-the-art shape measurement algorithms are still susceptible
to biases in the inferred shears. These measurement biases are
commonly modeled in terms of additive and multiplicative bias
parameters c and m defined as:

E[e] = (1 +m) � + c (1)

where � is the true shear. Depending on the shape measure-
ment method being used, m and c can depend on factors such
as the PSF size/shape, the level of noise in the images or,
more generally, intrinsic properties of the galaxy population
(like their size and ellipticity distributions, etc. ). Calibration of
these biases can be achieved using image simulations, closely
mimicking real observations for a given survey but using
galaxy images distorted with a known shear, thus allowing
the measurement of the bias parameters in Eq. (1).

Image simulation pipelines, such as the GalSim package
(Rowe et al., 2015), use a forward modeling of the observa-
tions, reproducing all the steps of the image acquisition pro-
cess in Fig. 1, and therefore require as a starting point galaxy
images with high resolution and S/N. The main difficulty in
these image simulations is therefore the need for a calibration
sample of high quality galaxy images representative of the
galaxy population of the survey being simulated. Our aim in
this work is to train a deep generative model which can be
used to cheaply synthesize such data sets for specific galaxy
populations, by conditioning the samples on measurable quan-
tities.

A. Data set

As our main dataset, we use the COSMOS survey to build
a training and validation set of galaxy images and extract
from the corresponding catalog a condition vector y with
three features: half-light radius (measure of size), magnitude
(measure of brightness) and redshift (cosmological measure of
distance). To facilitate the training, we align all galaxies along
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Analogy: 
word → particle 
parsing → jet algorithm
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•Work with Gilles Louppe, Kyunghyun Cho, Cyril Becot 

• Use sequential recombination jet algorithms to 
provide network topology (on a per-jet basis) 

• path towards ML models with good physics 
properties 

• Top node of recursive network provides a fixed-length 
embedding of a jet that can be fed to a classifier

kt anti-kt

• arXiv:1702.00748  & follow up work with Joan Bruna using graph conv nets
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• Each node combines 4-momentum in (E-
scheme recombination of ok) and a non-linear 
transformation of hidden state of children hkL, 
hkR ∈ ℝ⁴⁰ 

• Recursively applied (shared weights, Markov) 

• “gating” allows for weighting of information of 
L/R children and for to flow directly along one 
branch

kt
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Appendix A: Gated recursive jet embedding

The recursive activation proposed in Sec. III A su↵ers
from two critical issues. First, it assumes that left-child,
right-child and local node information hjet

kL
, hjet

kR
, uk are

all equally relevant for computing the new activation,
while only some of this information may be needed and
selected. Second, it forces information to pass through
several levels of non-linearities and does not allow to
propagate unchanged from leaves to root. Addressing
these issues and generalizing from [12–14], we recursively
define a recursive activation equipped with reset and up-
date gates as follows:

hjet
k
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8
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>:
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where W
h̃

2 Rq⇥3q, b
h̃

2 Rq, Wz 2 Rq⇥4q, bz 2 Rq,
Wr 2 Rq⇥3q, br 2 Rq, Wu 2 Rq⇥4 and bu 2 Rq form
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FIG. 3. Jet classification performance for various input rep-
resentations of the RNN classifier, using kt topologies for the
embedding. The plot shows that there is significant improve-
ment from removing the image processing step and that sig-
nificant gains can be made with more accurate measurements
of the 4-momenta.

FIG. 4. Jet classification performance of the RNN classifier
based on various network topologies for the embedding (par-
ticles scenario). This plot shows that topology is significant,
as supported by the fact that results for kt, C/A and desc-pT
topologies improve over results for anti-kt, asc-pT and random
binary trees. Best results are achieved for C/A and desc-pT
topologies, depending on the metric considered.

further supported by the poor performance of the random
binary tree topology. We expected however that a simple
sequence (represented as a degenerate binary tree) based
on ascending and descending pT ordering would not per-
form particularly well, particularly since the topology
does not use any angular information. Surprisingly, the
simple descending pT ordering slightly outperforms the
RNNs based on kt and C/A topologies. The descending
pT network has the highest pT 4-momenta near the root
of the tree, which we expect to be the most important.
We suspect this is the reason that the descending pT out-
performs the ascending pT ordering on particles, but this
is not supported by the performance on towers. A similar
observation was already made in the context of natural
languages [24–26], where tree-based models have at best
only slightly outperformed simpler sequence-based net-
works. While recursive networks appear as a principled
choice, it is conjectured that recurrent networks may in
fact be able to discover and implicitly use recursive com-
positional structure by themselves, without supervision.
d. Gating The last factor that we varied was

whether or not to incorporate gating in the RNN. Adding
gating increases the number of parameters to 48,761, but
this is still about 20 times smaller than the number of
parameters in the MaxOut architectures used in previ-
ous jet image studies. Table I shows the performance of
the various RNN topologies with gating. While results
improve significantly with gating, most notably in terms
of R✏=50%, the trends in terms of topologies remain un-
changed.
e. Other variants Finally, we also considered a num-

ber of other variants. For example, we jointly trained
a classifier with the concatenated embeddings obtained
over kt and anti-kt topologies, but saw no significant
performance gain. We also tested the performance of
recursive activations transferred across topologies. For
instance, we used the recursive activation learned with
a kt topology when applied to an anti-kt topology and
observed a significant loss in performance. We also con-
sidered particle and tower level inputs with an additional
trimming preprocessing step, which was used for the jet
image studies, but we saw a significant loss in perfor-
mance. While the trimming degraded classification per-
formance, we did not evaluate the robustness to pileup
that motivates trimming and other jet grooming proce-
dures.

B. Infrared and Collinear Safety Studies

In proposing variables to characterize substructure,
physicists have been equally concerned with classification
performance and the ability to ensure various theoretical
properties of those variables. In particular, initial work
on jet algorithms focused on the Infrared-Collinear (IRC)
safe conditions:

• Infrared safety. The model is robust to augmenting
e with additional particles {vN+1, . . . ,vN+K} with
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towers 

particles

images

• W-jet tagging example 
using data from Dawe, et 
al arXiv:1609.00607 

• down-sampling by 
projecting into images 
looses information 

• RNN needs much less 
data to train!

kt anti-kt
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topologies improve over results for anti-kt, asc-pT and random
binary trees. Best results are achieved for C/A and desc-pT
topologies, depending on the metric considered.

further supported by the poor performance of the random
binary tree topology. We expected however that a simple
sequence (represented as a degenerate binary tree) based
on ascending and descending pT ordering would not per-
form particularly well, particularly since the topology
does not use any angular information. Surprisingly, the
simple descending pT ordering slightly outperforms the
RNNs based on kt and C/A topologies. The descending
pT network has the highest pT 4-momenta near the root
of the tree, which we expect to be the most important.
We suspect this is the reason that the descending pT out-
performs the ascending pT ordering on particles, but this
is not supported by the performance on towers. A similar
observation was already made in the context of natural
languages [24–26], where tree-based models have at best
only slightly outperformed simpler sequence-based net-
works. While recursive networks appear as a principled
choice, it is conjectured that recurrent networks may in
fact be able to discover and implicitly use recursive com-
positional structure by themselves, without supervision.
d. Gating The last factor that we varied was

whether or not to incorporate gating in the RNN. Adding
gating increases the number of parameters to 48,761, but
this is still about 20 times smaller than the number of
parameters in the MaxOut architectures used in previ-
ous jet image studies. Table I shows the performance of
the various RNN topologies with gating. While results
improve significantly with gating, most notably in terms
of R✏=50%, the trends in terms of topologies remain un-
changed.
e. Other variants Finally, we also considered a num-

ber of other variants. For example, we jointly trained
a classifier with the concatenated embeddings obtained
over kt and anti-kt topologies, but saw no significant
performance gain. We also tested the performance of
recursive activations transferred across topologies. For
instance, we used the recursive activation learned with
a kt topology when applied to an anti-kt topology and
observed a significant loss in performance. We also con-
sidered particle and tower level inputs with an additional
trimming preprocessing step, which was used for the jet
image studies, but we saw a significant loss in perfor-
mance. While the trimming degraded classification per-
formance, we did not evaluate the robustness to pileup
that motivates trimming and other jet grooming proce-
dures.

B. Infrared and Collinear Safety Studies

In proposing variables to characterize substructure,
physicists have been equally concerned with classification
performance and the ability to ensure various theoretical
properties of those variables. In particular, initial work
on jet algorithms focused on the Infrared-Collinear (IRC)
safe conditions:

• Infrared safety. The model is robust to augmenting
e with additional particles {vN+1, . . . ,vN+K} with
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• choice of jet 
algorithm matters 

• “gating” improves 
performance

anti-ktkt
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•When working on images: 

• recursive network has similar 
performance to previous approaches 

•Improved performance when working with 
calo towers without image pre-processing  

• loss of information depends on 
details of calorimeter, pixelation, etc. 

•Working on truth-level particles led to a 
significant improvement 

• generically expect information from 
tracking, particle flow, etc. to be 
somewhere between towers and truth 
particle-level 
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TABLE I. Summary of jet classification performance for sev-
eral approaches applied either to particle-level inputs or tow-
ers from a DELPHES simulation.

Input Architecture ROC AUC R✏=50%

Projected into images
towers MaxOut 0.8418 –
towers kt 0.8321 ± 0.0025 12.7 ± 0.4
towers kt (gated) 0.8277 ± 0.0028 12.4 ± 0.3

Without image preprocessing
towers ⌧21 0.7644 6.79
towers mass + ⌧21 0.8212 11.31
towers kt 0.8807 ± 0.0010 24.1 ± 0.6
towers C/A 0.8831 ± 0.0010 24.2 ± 0.7
towers anti-kt 0.8737 ± 0.0017 22.3 ± 0.8
towers asc-pT 0.8835 ± 0.0009 26.2 ± 0.7
towers desc-pT 0.8838 ± 0.0010 25.1 ± 0.6
towers random 0.8704 ± 0.0011 20.4 ± 0.3
particles kt 0.9185 ± 0.0006 68.3 ± 1.8
particles C/A 0.9192 ± 0.0008 68.3 ± 3.6
particles anti-kt 0.9096 ± 0.0013 51.7 ± 3.5
particles asc-pT 0.9130 ± 0.0031 52.5 ± 7.3
particles desc-pT 0.9189 ± 0.0009 70.4 ± 3.6
particles random 0.9121 ± 0.0008 51.1 ± 2.0

With gating (see Appendix A)
towers kt 0.8822 ± 0.0006 25.4 ± 0.4
towers C/A 0.8861 ± 0.0014 26.2 ± 0.8
towers anti-kt 0.8804 ± 0.0010 24.4 ± 0.4
towers asc-pT 0.8849 ± 0.0012 27.2 ± 0.8
towers desc-pT 0.8864 ± 0.0007 27.5 ± 0.6
towers random 0.8751 ± 0.0029 22.8 ± 1.2
particles kt 0.9195 ± 0.0009 74.3 ± 2.4
particles C/A 0.9222 ± 0.0007 81.8 ± 3.1
particles anti-kt 0.9156 ± 0.0012 68.3 ± 3.2
particles asc-pT 0.9137 ± 0.0046 54.8 ± 11.7
particles desc-pT 0.9212 ± 0.0005 83.3 ± 3.1
particles random 0.9106 ± 0.0035 50.7 ± 6.7

ogy of the RNN, and the presence or absence of gating.
a. Impact of image projection The first factor we

studied was whether or not to project the 4-momenta
into an image as in Refs. [2, 6]. The architectures used
in previous studies required a fixed input (image) repre-
sentation, and cannot be applied to the variable length
set of input 4-momenta. Conversely, we can apply the
RNN architecture to the discretized image 4-momenta.
Table I shows that the RNN architecture based on a kt
topology performs almost as well as the MaxOut architec-
ture in Ref. [6] when applied to the image pre-processed
4-momenta coming from DELPHES towers. Importantly
the RNN architecture is much more data e�cient. While
the MaxOut architecture in Ref. [6] has 975,693 param-
eters and was trained with 6M examples, the non-gated
RNN architecture has 8,481 parameters and was trained
with 100,000 examples only.

Next, we compare the RNN classifier based on a kt
topology on tower 4-momenta with and without image
preprocessing. Table I and Fig. 3 show significant gains
in not using jet images, improving ROC AUC from 0.8321

to 0.8807 (resp., R✏=50% from 12.7 to 24.1) in the case
of kt topologies. In addition, this result outperforms the
MaxOut architecture operating on images by a signifi-
cant margin. This suggests that the projection into an
image loses information and impacts classification perfor-
mance. We suspect the loss of information to be due to
some of the construction steps of jet images (i.e., pixeli-
sation, rotation, zooming, cropping and normalization).
In particular, all are applied at the image-level instead of
being performed directly on the 4-momenta, which might
induce artefacts due to the lower resolution, particle su-
perposition and aliasing. By contrast, the RNN is able
to work directly with the 4-momenta of a variable-length
set of particles, without any loss of information. For
completeness, we also compare to the performance of a
classifier based purely on the single n-subjettiness fea-
ture ⌧21 := ⌧2/⌧1 and a classifier based on two features
(the trimmed mass and ⌧21) [23]. In agreement with pre-
vious results based on deep learning [2, 6], we see that
our RNN classifier clearly outperforms this variable.

b. Measurements of the 4-momenta The second fac-
tor we varied was the source of the 4-momenta. The
towers scenario, corresponds to the case where the
4-momenta come from the calorimeter simulation in
DELPHES. While the calorimeter simulation is simplistic,
the granularity of the towers is quite large (10� in �)
and it does not take into account that tracking detectors
can provide very accurate momenta measurements for
charged particles that can be combined with calorimetry
as in the particle flow approach. Thus, we also consider
the particles scenario, which corresponds to an idealized
case where the 4-momenta come from perfectly measured
stable hadrons from PYTHIA. Table I and Fig. 3 show that
further gains could be made with more accurate measure-
ments of the 4-momenta, improving e.g. ROC AUC from
0.8807 to 0.9185 (resp., R✏=50% from 24.1 to 68.3) in the
case of kt topologies. We also considered a case where the
4-momentum came from the DELPHES particle flow sim-
ulation and the data associated with each particle was
augmented with a particle-flow identifier distinguishing
± charged hadrons, photons, and neutral hadrons. This
is similar in motivation to Ref. [7], but we did not ob-
serve any significant gains in classification performance
with respect to the towers scenario.

c. Topology of the binary trees The third factor we
studied was the topology of the binary tree tj described
in Sections II and IIIA that dictates the recursive struc-
ture of the RNN. We considered binary trees based on
the anti-kt, Cambridge-Aachen (C/A), and kt sequential
recombination jet algorithms, along with random, asc-pT
and desc-pT binary trees. Table I and Fig. 4 show the
performance of the RNN classifier based on these various
topologies. Interestingly, the topology is significant.

For instance, kt and C/A significantly outperform the
anti-kt topology on both tower and particle inputs. This
is consistent with intuition from previous jet substruc-
ture studies where jets are typically reclustered with the
kt algorithm. The fact that the topology is important is
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Message Passing Neural Network

Algorithm 1 Message passing neural network
Require: N ⇥ D nodes x, adjacency matrix A

h Embed(x)
for t = 1, . . . ,T do

m Message(A,h)
h VertexUpdate(h,m)

end for

r = Readout(h)
return Classify(r)

Adjacency matrix generalizes receptive field of convolution kernel 
Vertex Update like pooling 
Iterations like layers of a CNN
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Graph neural networks
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Message Passing Neural Network

Algorithm 2 Message passing neural network
Require: N ⇥ D array of jet constituents x

h Embed(x)
for t = 1, . . . ,T do

A AdjacencyMatrixt(h)
m Messaget(A,h)
h VertexUpdatet(h,m)

end for

r = Readout(h)
return Classify(r)

Difference from Alg 1:  
new weights for each iteration (layer) of message passing
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A problem with the adjacency matrix

Question
Where does adjacency matrix come from?

Answer 1
Use a physics-inspired adjacency matrix.

BONUS: import physics knowledge

Answer 2
Learn the adjacency matrix from the data.

BONUS: export physics algorithm

Very interesting:  
adjacency matrix can be interpreted like a kT, C/A, anti-kT 
Once learned, can export the adjacency function for other uses 
Provides bi-directional interface between ML and jet physics.
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Learning the adjacency matrix

s
t
ij = F (ht�1

i , ht�1

j )

A
t
ij =

exp{s tij}P
k exp{s tik}

(directed)

Asym =
1
2

�
A+ A

>�
(undirected)

F (h, h0) = v
>(h+h

0)+b

This is a simple starting point, not motivated by physics
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Classification results

Model Iterations R✏=50%

Rec-NN (no gating) 1 70.4 ± 3.6
Rec-NN (gating) 1 83.3 ± 3.1

MPNN (directed) 1 89.4 ± 3.5
MPNN (directed) 2 98.3 ± 4.3
MPNN (directed) 3 85.9 ± 8.5

MPNN (identity) 3 74.5 ± 5.2

Relation Network 1 67.7 ± 6.8

1/FPR @ TPR = 50%

Significant improvement on W vs. QCD tagging! 
This is with a learned adjacency matrix 

what did it learn? Is that adjacency matrix useful? 
we are working MPNN with QCD-motivated adjacency matrix


