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Maybe Al should start with
problems where causal structure is

Emergent

clear and mechanistic models are available?
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Moderator: Kyle Cranmer (New York University)

PA N E I_ D I S C U S S | O N lain Murray (University of Edinburgh)

Max Welling (University of Amsterdam)
Juan Carrasquilla (D-Wave Systems / Vector Institute for Artificial Intelligence)

Gilles Louppe (University of Liege)
George Dahl (Google Brain)
Anatole von Lilienfeld (University of Basel)

1. There is a lot of low hanging fruit, we can use M.L. to

e improve what we normally do

e speed up accelerate what we normally do

2. More profound changes to how we approach physics
e new capabilities to be exploited

e attack previously intractable problems



Generative Models: Simulators .

SCEC ShakeOut Simulation

by R. Graves
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Simulators can produce labeled training data tor

supervised learning

(note: some simulation are very computationally expensive)



PHYSICS AT THE INTERSECTION

We can leverage both the power ot deep learning and inject
our expert / domain knowledge

Max
Welling

Discriminative or Generative?

#» -Deep Learning 3 "4
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< -Probabilistic Programs »
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« Advantages generative models:
Advantages discriminative models: * Inject expert knowledge ﬁh-ﬂ—ﬁw
« Flexible map from input to target (low bias) + Model causal relations |
Efficient training algorithms available * Interpretable
Solve the problem you are evaluating on. » Data efficient

m—%  Very successful and accurate! . More robust to domain shift Qﬁww

Facilitate un/semi-supervised learning
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Advantages generative models:

Advantages discriminative models: « Inject expert knowledge qﬁ.ﬂ.ﬁw

Flexible map from input to target (low bias) ¢ Model causal relations
Efficient training algorithms available * Interpretable
Solve the problem you are evaluating on. » Data efficient
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NOTATION / TERMINOLOGY

forward modeling
generation

simulation

)
parameters of interest p(x,z]|0,V)
X
Z observed data
y latent variables simulated data

nuisance parameters

inverse problem

measurement
parameter estimation



Quiz:
The Standard Model has 19 parameters.

The LHC has collected 10'° collisions.

s this a parametric or non-parametric problem?



PARTICLE PHYSICS: 19 PARAMETERS
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Symbol Description Value
Me Electron mass 511 keV
my Muon mass 105.7 MeV
m- Tau mass 1.78 GeV
mu Up quark mass 1.9 MeV
My Down quark mass 4.4 MeV
M Strange quark mass 87 MeV
mMe Charm quark mass 1.32 GeV
mp Bottom quark mass 4.24 GeV
mk Top quark mass 172.7 GeV
61> CKM 12-mixing angle 13.1°
623 CKM 23-mixing angle 2.4°
613 CKM 13-mixing angle 0.2°
o CKM CP-violating Phase 0.995
g1 U(1) gauge coupling 0.357
Q- SU(2) gauge coupling 0.652
g3 SU(8) gauge coupling 1.221
Baco QCD vacuum angle ~0
4 Higgs vacuum expectation value 246 GeV
my Higgs mass 125 GeV



https://en.wikipedia.org/wiki/Cabibbo%E2%80%93Kobayashi%E2%80%93Maskawa_matrix
https://en.wikipedia.org/wiki/CP_violation
https://en.wikipedia.org/wiki/Vacuum_angle
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1 )We begin with Quantum Field Theory



PREDICTION IN PARTICLE PHYSICS
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PREDICTION IN PARTICLE PHYSICS
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PREDICTION IN PARTICLE PHYSICS
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3 The interaction of outgoing particles
with the detector is simulated.

>100 million sensors




DETECTOR SIMULATION

Conceptually: Prob(detector response | particles )
Implementation: Monte Carlo integration over micro-physics

Consequence: evaluation of the likelihood is intractable
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DETECTOR SIMULATION

Conceptually: Prob(detector response | particles )
Implementation: Monte Carlo integration over micro-physics

Consequence: evaluation of the likelihood is intractable

The Crux: Monte Carlo

Sampling
observed what happened

l in simulation

v

p(x|0) = [ dzp(z, 2|0)



PARAMETRIC VS. NON-PARAMETRIC



PARAMETRIC VS. NON-PARAMETRIC

Parametric:
* num parameters < num data points

* model is highly constrained & tractable
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* num parameters < num data points

* model is highly constrained & tractable
Non-Parametric

* num parameters > num data points

e model is very flexible, but tractable



PARAMETRIC VS. NON-PARAMETRIC

Parametric:
* num parameters < num data points
e model is highly constrained & tractable
Non-Parametric
* num parameters > num data points
e model is very flexible, but tractable
Implicit Models / Simulation-based inference / Likelihood-free inference
e num parameters of simulator < num data points
e but data distribution is very complicated and density is intractable
e hard to identity the relevant “degrees of freedom” in the data (sufficient statistics)
e model is highly constrained, but hard to leverage that structure

» deep learning can help! learn a surrogate that captures relevant aspects of p(x|0)



The Traditional Approach



10° SENSORS — 1 REAL-VALUED QUANTITY

Most measurements and searches for new particles at the LHC are based on the
distribution of a single variable / feature / summary statistic

e choosing a good variable (feature engineering) is a task for a skilled physicist
and tailored to the goal of measurement or new particle search

 likelihood p(x|0) approximated using histograms (univariate density estimation)
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HIGH FIDELITY SIMULATION
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HIGH FIDELITY SIMULATION
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HIGH FIDELITY SIMULATION

Detector is 44m long

o Detector resolves details at <mm scale: Simulation accurate!

25m \

Tile calorimeters

LAr hadronic end-cap and
forward calorimeters

Toroid magnets LAr electromagnetic calorimeters

Muon chambers Solenoid magnet | Transifion radiatfion fracker

18



HIGH FIDELITY SIMULATION

Detector is 44m long

e Detector resolves details at <mm scale; Simulation accurate!
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Figure:
ATLAS pixel model as described in simulation (left), tomography from vertices built from tracks for hadronic interactions (right)

Slide Credit: A. Salzburger (CERN)



THE DISCOVERY OF THE HIGGS BOSON
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SIMULATION

— TEMPLATE
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The Problem:
This doesn't scale if x is high dimensional!

How much are we loosing in feature engineering?

What it we don’t know how to design a good feature?



Generative Models: Simulators .

SCEC ShakeOut Simulation

by R. Graves
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COMPUTATIONAL TOPOGRAPHY
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We create a simulation setup for this model, run it, and then plot the final topography (after 1 million years of simulation).



EPIDEMIOLOGY & POPULATION GENETICS

Generation

1
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Infects multiple people

Infected with disease

Small Change, Big Effects
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through ther sexual
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Modest variations in the concurrency rate—the proportion of people in overlapping sexual
partnerships—can have a dramatic effect on a population’s vulnerability to HIV.

When the concurrency rate is 55%, only 2% of this population is connected to the broader sexual
network required for HIV transmission (top). But when concurrency reaches 65%, an astonishing
64% of the population is vulnerable, even though the number of sexual partners remains constant.

Source: Morris, et al. The Refationthip Between Concurrent Partnerships and HIV Trorimission, 2008. See www.idstar-one com/.

1.0

o o o o
N A2 O @

Pemerge for single disease

o
o
=)

1.0
0.8
0.6
0.4
0.2

Pemerge for single disease

0.0

(=]

Empirical networks

1 2 3
Scaled transmissibility ¢
Theoretical networks

2 3
Scaled transmissibility

School

Py for second disease

Py, for second disease

1.0

o
®

1.0

Sexual

Scale-free

2 3 4
Selective advantage r

Selective advantage r

Sexual
Hospital
School

Social

Small-world |-~

Uniform
Scale-free

Random

0.0 02 04 06 08 1.0

Selection exponent

24



LATTICE FIELD THEORY

PHASES, PHASE TRANSITIONS, AND THE ORDER PARAMETER

QCD Lagrangian
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LATTICE FIELD THEORY

PHASES, PHASE TRANSITIONS, AND THE ORDER PARAMETER
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LATTICE QCD

Very expensive simulations, ~1000 examples with xe R’

@ Four decades of Lattice QCD

1975 1980 1985 1990 1995 2000 2005 2010 2020

e ——— —

1974 lattice QCD e
Physics

15t spec calcula

o -

L

Hamber-Parisi i
Weingarten k :
— 0.8fm 1.6fm 3.0fm 2.4fm i
Lattice size L 43%8 163x32 643x118 243548 ﬁ i
. Nf=0 quenched
Algorithms po—— )
=, 64°x128
= =2ud |
NE=S#sea Nf=2+1 u,d,s I
quarks
4th generation 5t generation
2nd generation 3™ generation  10Tfops 10Pfops
MaChines 1st generation 10Gﬂ0psAPE100 leODS =i ' T

1Gflops
APE1




ICML 2017 Workshop on Implicit

Models

Workshop Aims

Probabilistic models are an important tool in machine learning. They form the basis for models that generate realistic data, uncover hidden
structure, and make predictions. Traditionally, probabilistic models in machine learning have focused on prescribed models. Prescribed models
specify a joint density over observed and hidden variables that can be easily evaluated. The requirement of a tractable density simplifies their
learning but limits their flexibility --- several real world phenomena are better described by simulators that do not admit a tractable density.
Probabilistic models defined only via the simulations they produce are called implicit models.

Arguably starting with generative adversarial networks, research on implicit models in machine learning has exploded in recent years. This
workshop's aim is to foster a discussion around the recent developments and future directions of implicit models.

Implicit models have many applications. They are used in ecology where models simulate animal populations over time; they are used in phylogeny,
where simulations produce hypothetical ancestry trees; they are used in physics to generate particle simulations for high energy processes.
Recently, implicit models have been used to improve the state-of-the-art in image and content generation. Part of the workshop's focus is to discuss
the commonalities among applications of implicit models.

Of particular interest at this workshop is to unite fields that work on implicit models. For example:

= Generative adversarial networks (a NIPS 2016 workshop) are implicit models with an adversarial training scheme.

= Recent advances in variational inference (a NIPS 2015 and 2016 workshop) have leveraged implicit models for more accurate approximations.
= Approximate Bayesian computation (a NIPS 2015 workshop) focuses on posterior inference for models with implicit likelihoods.

= Learning implicit models is deeply connected to two sample testing, density ratio and density difference estimation.

We hope to bring together these different views on implicit models, identifying their core challenges and combining their innovations.



WHY SCIENTISTS SHOULD CARE

Many areas of science have simulations based on some well-

motivated mechanistic model.

However, the aggregate effect
low-level components leads to

The developments in machine
effectively bridge the microsco
inverse problem.

of many interactions between these
an intractable inverse problem.

earning and Al have the potential to

oic - macroscopic divide & aid in the

e they can provide effective statistical models that describe

macroscopic phenomena that are tied back to the low-level
microscopic (reductionist) model

e generative models and likelihood-free inference are two

particularly exciting areas

28



HAVE A PLAN TO TELL YOU WHERE YOU ARE GOING

GOALS

DEFINE THE MILESTONES THAT WILL ASSIST WITH REACHING YOUR GOALS

OBJECTIVES

——

DECIDE THE PLAN OF ACTION TO ACHIEVE YOUR OBJECTIVES

STRATEGIES

IDENTIFY THE TOOLS YOU WILL USE TO IMPLEMENT YOUR STRATEGIES

TACTICS



GOALS & STRATEGIES

Goals:
e Use machine learning to do better science
Strategies:
e Import domain knowledge into models (inductive bias)
* Export knowledge from learned models
e Leverage machine learning for intractable inverse problems
* Incorporate traditional scientific concerns into the learning paradigm
* include impact of domain shift / systematics uncertainties into objective
° maintain an actionable, scientifically-useful notion of “interpretability”
* use real-world data for training when possible
* be data efficient

* Modity codebase to facilitate use of these techniques

30



STRATEGIES & TACTICS

Strategy: Import domain knowledge into models
e Tactic: exploit symmetries in the data
* Tactic: exploit geometric structure of the data
e Tactic: exploit causal structure of the generative process
e Tactic: exploit hierarchical / compositional structure
e Tactic: exploit Markov property of the generative process
e Tactic: exploit tangent space of statistical manifold
Strategy: Export knowledge from learned models
e Tactic: learnable components that can be interpreted
Strategy: maintain an actionable, scientifically-useful notion of “interpretability”

e Tactic: compose model from reusable components that perform a specific task and can
be individually characterized & validated
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STRATEGIES & TACTICS

Strategy: Leverage machine learning for intractable inverse problems

e Tactic: Use the likelihood ratio trick to convert a discriminative classifier into a density ratio

e Tactic: Use autoregressive models & normalizing flows for conditional density estimation

e Tactic: Use universal probabilistic programming

e Tactic: Approximate gradients of non-differentiable, black-box models (AVO, RELAX, ...)
Strategy: include impact of systematics uncertainties into objective

e Tactic: Design loss functions more relevant to scientific goals

e Tactic: Adversarial training for continuous domain adaptation & fairness (“learning to pivot”)
Strategy: use real-world data for training when possible

e Tactic: Weakly supervised learning
Strategy: be data efficient

e Tactic: exploiting domain knowledge can dramatically reduce number of parameters
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TACTICS FOR INTRACTABLE INVERSE PROBLEMS

Use simulator Learn simulator
(much more efficiently) (with deep learning)

conv (180w + 5b)

—e.ecl o non-li\tl‘\ear'
S— 'Q'Zxﬁd ron (ag | .
o maxpoo conv (450w + 10b) © ®
. ¢ = O
( ' non- Imear ¢ = 0
) ‘ =@
ER
2sice )
- s hon- Imear' maxpool Q A @
A% fully-connected @ ©
e (1600w + 10b)
e Approximate Bayesian e Generative Adversarial Networks (GANs),
Computation (ABC) Variational Auto-Encoders (VAE)
e Probabilistic Programming e Likelihood ratio from classitiers (CARL)
e Adversarial Variational e Autoregressive models,

Optimization (AVO) Normalizing Flows


https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/

Example:

More Powerful Higgs Measurements



HIGH DIMENSIONAL EXAMPLE

When looking for deviations from the standard model Higgs,
we would like to look at all sorts of kinematic correlations

e thus each observation x is high-dimensional
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EXTENDING THE LIKELIHOOD RATIO TRICK

A binary classifier approximates

S($) _ p($|H1)
p(z|Ho) + p(z|H)

Which is one-to-one with the likelihood ratio

p(z|Hq) 0 1
p(x|Ho) s(x)

Can do the same thing for any two points 8¢ & 01 in

parameter space ©. | call this a parametrized classifier

p(z|61)
z|6o) + p(x|61)

s(x;0p,01) =
(60, 01) p(

K.C., G. Louppe, J. Pavez: Approximating Likelihood Ratios with Calibrated Discriminative Classifiers [arXiv:1506.02169]


http://arxiv.org/abs/1506.02169

CALIBRATING THE LIKELIHOOD-RATIO TRICK

The intractable likelihood ratio based on high-dimensional features x is:

p(x|6y)
p(z|61)

We can show that an equivalent test can be made from 1-D projection

p(x|6o)  p(s(x;60,01)[60) =

plfr) ~ pls(w:00,00))6r) 20l

if the scalar map s: X = R has the same level sets as the likelihood ratio

s(x; 60;601) = monotonic| p(x|0y)/p(x|01) |

Estimating the density of s(x; 8o, 01) via the simulator calibrates the ratio.

K.C., G. Louppe, J. Pavez: Approximating Likelihood Ratios with Calibrated Discriminative Classifiers [arXiv:1506.02169]


http://arxiv.org/abs/1506.02169

MACHINE LEARNING THE HIGGS EFFECTIVE FIELD THEORY

(based on a 16-D observation x)
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€+
W, Z h _
4
Equivalent to 3x more data! o
W, Z
0

q q

work with Juan Pavez, Gilles Louppe, Cyril Becot, and Lukas Heinrich; Johann Brehmer, Felix Kling, and Tilman Plehn
"Better Higgs Measurements Through Information Geometry” [arXiv:1612.05261] & CARL [arxiv:1506.02169]



http://arxiv.org/abs/1506.02169

Example:

Jet Classification



JETS

Run: 329716
Event: 857582452
2017-07-14 10:48:51 CEST
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JET IMAGES

. Komiske, Metodiev, Schwartz arxiv:1612.01551]

[Oliveira et al arXiv:1511.05190]
[Baldi et al arXiv:1603.09349]
[Barnard et al arXiv:1609.00607]

pre-process

dense layer

quark jet

Dgluon Jet

max-pooling




NON-UNIFORM GEOMETRY

ATLAS

Pl(m)
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NON-UNIFORM GEOMETRY

Atlantis
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FROM IMAGES TO SENTENCES

Recursive Neural Networks showing great performance tor

Natural Language Processing tasks

e neural network’s topology given by parsing of sentence!

NP VP

N

VBG NNS VBZ ADVP

| | I/\/\/\

Parsing sentences is RB RB JJR NN

so much more fun than

VBG PP

N

going TO NP

N\

to DT NN

the dentist




FROM IMAGES TO SENTENCES

Recursive Neural Networks showing great performance tor

Natural Language Processing tasks

e neural network’s topology given by parsing of sentence!

VBG NNS VBZ ADVP

| | I/\/\/\

Parsing sentences is RB RB JJR NN

so much more fun than

VBG

Analogy: | N

going TO NP

word — particle N

to DT NN

arsing — jet algorithm
p g J 9 tr|1e denltist




QCD-INSPIRED RECURSIVE NEURAL NETWORKS
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Neural Message Passing for Jet
Physics

lsaac Henrion, Johann Brehmer, Joan Bruna
Kyunghyun Cho, Kyle Cranmer, Gilles Louppe,
Gaspar Rochette

GEOMETRIC DEEP LEARNING

Courant Institute & Center for Data Science

Paper:
Talk:

nttps://d

4p

nysica

sciences.git

|

NYU

hub.io/fi

es/nips_d

lsaac Henrion

os_2017_29.pdt

nttps://d

4p

nysica

sclences.git

hub.io/fi

es/nips_d

pos_2017_slides_henrion.pdf



https://dl4physicalsciences.github.io/files/nips_dlps_2017_slides_henrion.pdf
https://dl4physicalsciences.github.io/files/nips_dlps_2017_29.pdf

JETS AS A GRAPH

Using message passing neural networks over a fully connected graph on the particles

e Two approaches for adjacency matrix for edges

AR?

11/

a 2a
)2

e import physics knowledge by using metric of jet algorithms  d% = min(p?*, pi?

e |earn adjacency matrix and export new jet algorithm

1.0 - 200
)
0.5 - Z
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)
© 0.0 ﬁOO dZZ ’ l
‘ ) 100 4+
—0.5 A > '«Q .
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n



PRELIMINARY RESULTS

1/FPR @ TPR = 50%

Model lterations R 500

Rec-NN (no gating) 1 70.4 £+ 3.6
Rec-NN (gating) 1 83.3+3.1
MPNN (directed) 1 89.4 + 3.5
MPNN (directed) 2 08.3+4.3
MPNN (directed) 3 85.9 + 8.5
MPNN (identity) 3 745+ 5.2
Relation Network 1 67.7 6.8

Significant improvement on W vs. QCD jet classification!
This is with a learned adjacency matrix

- what did it learn? Is that adjacency matrix useful?

- we are working MPNN with QCD-motivated adjacency matrix



Example:

Optimizing Non-Differentiable Simulators



NEW! AVO

Adversarial Variational Optimization of Non-Differentiable Simulators

Gilles Louppe'! and Kyle Cranmer!
'New York University

Complex computer simulators are increasingly used across fields of science as generative models
tying parameters of an underlying theory to experimental observations. Inference in this setup is
often difficult, as simulators rarely admit a tractable density or likelihood function. We introduce
Adversarial Variational Optimization (AVO), a likelihood-free inference algorithm for fitting a non-
differentiable generative model incorporating ideas from empirical Bayes and variational inference.
We adapt the training procedure of generative adversarial networks by replacing the differentiable
generative network with a domain-specific simulator. We solve the resulting non-differentiable mini-
max problem by minimizing variational upper bounds of the two adversarial objectives. Effectively,
the procedure results in learning a proposal distribution over simulator parameters, such that the
corresponding marginal distribution of the generated data matches the observations. We present
results of the method with simulators producing both discrete and continuous data.

Leo is G Tom is D

G. Louppe & K.C. arXiv:1707.07113

Similar to W-GAN setup, but

instead of using a neural network

as the generator, use the actual
simulation (eg. Pythia, GEANT)

Continue to use a neural network
discriminator / critic.

Difficulty: the simulator isn't
differentiable, but there’s a trick!

Allows us to efficiently fit /
tune simulation with stochastic
gradient technigues!


http://arxiv.org/abs/1707.07113

Example:

Lattice Field Theory



LATTICE QUANTUM CHROMO DYNAMICS

Very expensive simulations, ~1000 examples with xe R’

QCD Lagrangian

l ST = = P 17 ¢ - i
E = —l I‘I‘ l"ll' -+ L (I I‘I“‘,‘ (()“ — ’.(,'.‘“) — ,,Iq] (I

qeud.s.cht

e e el
A A
E IR . o

O quark A gluon



LATTICE QUANTUM CHROMO DYNAMICS

Very expensive simulations, ~1000 examples with xe R’

QCD Lagrangian

l ST = = P 17 ¢ - i
E = —l I‘I‘ l"ll' -+ L (I I‘I“‘,‘ (()“ — ’.(,'.‘“) — ,,Iq] (I

qeud.s.cht

e e el
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LATTICE QCD

Each of the 107 lattice locations has data x; € R32 with non-trivial data with continuous local symmetry.

* space-time translation invariance — convolutional architecture

e |ocal gauge symmetry = design group-invariant convolutional filters

* coarse graining & renormalization group — hierarchical convolutions shared weights

e few very, large training examples = rethink minibatching & SGD

Bonus:
Network discovered
something unexpected,
a feature that has a long
auto-correlation time.

Symmeterized

Loops and

Subtracted

Loop Products .

4230 Hidden
units

Gauge Field Configuration 1024

Hidden

0.9

Dropout
0.8

(c) SLCP

[explainer ]


https://t.co/pbEvQmFmDv

Example:

Systematics Uncertainty
Continuous Domain Adaptation
Fairness on Continuous Attributes



LEARNING TO PIVOT WITH ADVERSARIAL NETWORKS

Typically classitier f(x) trained to

minimize loss Ly. normal training adversarial training
e want classifier output to be 30 to 30
. . . 2.5 0.9 25 0.84
Insensitive to systematics 0.8
2.0 2.0 0.72
(huisance parameter V) 15 z; 15 0.60
. 1.0 | 1.0
* introduce an adversary r that | °5 e
0.4
tries to predict vbased onf. oo 03 00 o
. o 0 o5 0.24
o minimax game: —
Setup aS a a ga e _191_0 —-0.5 0.0 05 1.0 15 2.0 0.1 _191.0 —0.5 0.0 0.5 1.0 1.5 2.0 0-12
Classifier f Adversary T P 4.0 : : : ’ 4.0
7”/1(f(X§'9f)$9r) 3.5¢
f(x‘; 0r) | 2(F(X565);60) Plran...) 3.0t

B S5l

fffffffffff ﬂ 5
T T po,. (Z|f(X;05)) S 2.0r
I SH
O Ly(0y) 0 Lr(05,0r) 1.5}
A Lo f
0.5+
p(v|f)
0. F I I | | 0. i I I I |
%.0 0.2 0.4 0.6 0.8 1.0 8.0 0.2 0.4 0.6 0.8 1.0
f(X) f(X)
>

f(x) G. Louppe, M. Kagan, K. Cranmer, Learning to Pivot with Adversarial Networks [arXiv:1611.01046]



LEARNING TO PIVOT WITH ADVERSARIAL NETWORKS

Typically classitier f(x) trained to

minimize loss Ly. normal training adversarial training
e want classifier output to be 3ogE=———— e 30
: . . 11 7 | | {o.9 55 0.84
INsensitive to systematics -l 05
2.0 e v=21] 2.0 0.72
(nuisance parameter v) 15 - z; 15 o
. 1.0 0 {® 1.0
* introduce an adversary r that | 1 048
0.4
tries to predict v based onf. oo 03 00 "
_ —0.5 0.2 ~0.5 0.24
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f(x) G. Louppe, M. Kagan, K. Cranmer, Learning to Pivot with Adversarial Networks [arXiv:1611.01046]



FAIR CLASSIFIERS P Baldi, K.C, T. Faucet, P. Sadowski D. Whitoson arxiv-1601.07913
G. Louppe, M. Kagan, K.C, arXiv:1611.01046
Shimmin, et. al. arXiv:1703.03507

Adversarial approach of S — TR,
“Learning to Pivot” can also be 2 i e
used to train a classifier that is
independent from some other o5t
continuous variable.
00 5|O 1(|)O 1%0 200
Jet Invariant Mass [GeV]
e fairness to continuous
attribute I T
i Rt )
. . . . . —&— Z'mass=200 GeV + ﬁ'{’ g
e motivation for doing this is B— wm H
related to robustnesss to o .:,‘-..,@ﬁﬁﬁﬁww i ?’? 1] i
uncertainties and | ek

0 50 100 150 200

i ﬂ te I’p I’eta b | | |ty Jet Invariant Mass [GeV]



Example:

Reusable components



"Oft course, particle physicists are among the first

to realize that nature is compositional.”
~ YANN LECUN

"The world is compositional, or there is a god"
- JASON EISNER



SUB-ATOMIC SCALE



SUB-ATOMIC SCALE

oencil & paper calculable from first principles

P(z1 | 0)
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controlled approximation of first principles
p(z2 | 21, V1)
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SUB-ATOMIC SCALE

oencil & paper calculable from first principles

IO(Zl | 0)

controlled approximation of first principles
p(z2 | 21, V1)

phenomenological model
p(z3 | z2, V2)

Exploit Markov Property:



SUB-ATOMIC SCALE

oencil & paper calculable from first principles

IO(Zl | 0)

e0, *q¢”  controlled approximation of first principles
bl p(z2 | z1,V1)

% \ ohenomenological model
— .‘.>~. -® p(23 | 22, VZ)

. Exploit Markov Property:

o(x|0) = | p(x | z3, V3) p(z3 | 22, V2) plz2| 21 V1) plz1 | 0) dz
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D Bamaey, CERN, Febriguy 2004



Oom m m im
Key:
Muon
Electron
Charged Hadron (e.g. Pion)
~ = — - Neutral Hadron (e.g. Neutron)
----- Photon

Silicon
Tracker

_ Electromagnetic
};’ ]' Calorimeter
o’

Hadron Superconducting
Calorimeter Solenoid

Iron return yoke interspersed

Transverse slice with Muon chambers

through CMS

Detector Simulation p(x | z3, v3):

e detailed engineering (CAD)

* in situ measurements of temperature, magnetic field, alignment, calibration constants
e first-principles description of interaction of particles with matter

* [ook up tables of measured interaction of particles with matter

[
D Bamaey, CERN, Febriuuy 2004
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Detector Simulation p(x | z3, v3):

e detailed engineering (CAD)
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Oom m m im
Key:
Muon
Electron
Charged Hadron (e.g. Pion)
~ = — - Neutral Hadron (e.g. Neutron)
----- Photon

Silicon
Tracker

_ Electromagnetic
};’ ]' Calorimeter
o’

Hadron Superconducting
Calorimeter Solenoid

Iron return yoke interspersed

Transverse slice with Muon chambers

through CMS

Detector Simulation p(x | z3, v3):

e detailed engineering (CAD)

* in situ measurements of temperature, magnetic field, alignment, calibration constants
e first-principles description of interaction of particles with matter

* [ook up tables of measured interaction of particles with matter

Exploit Markov Property:  p(x|6) = [ p(x | z3, V3) p(z3 | 22, V2) p(z2] z1, V1) plz1 | 8) dz

|4
D Bamaey, CERN, Febriuuy 2004
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SIMULATION + RECONSTRUCTION
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COMPOSITION & REDUCTIONISM

The traditional reconstruction algorithms can be seen as attempt to invert the
generative process (point estimate / regression)

* generative model: 0 =z, =&z, & z, = x
e Sequential Inversion: x = Z3(x) = 2,(23) = 2,(2,)
Key points:
e can characterize & validate p(z, | z), p(2, | z,), p(2Z5 | z3) with simulation
* these components are reusable (transfer learning)

° e.g. an algorithm that looks for electrons in the data (segmentation &
classification) and estimates their energy and momentum (regression).

e Provides a notion of “interpretable” that is practical and actionable

e Composition is at the heart of the reductionist paradigm of science
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COMPOSITION OF REUSABLE COMPONENTS

K BV, Kyunghyun Cho

8 July10-@®

How do these fit together? ML 2.0 at Google

Combine many of these ideas: p— —
Large model, but sparsely activated
Single model to solve many tasks (100s to 1Ms)
Dynamically learn and grow pathways through large model
Hardware specialized for ML supercomputing
ML for efficient mapping onto this hardware

Outputs

Single large
model,
sparsely
activated

Tasks

T

Slides from Jeff Dean of Goog|e Brain @ Jer Ju|y 2017 https://drive.google.com/file/d/0B8250UpB2DysZWF1RTFuX1NEZUk/view


https://drive.google.com/file/d/0B8z5oUpB2DysZWF1RTFuX1NEZUk/view

DIFFERENTIABLE REDUCTIONISM

The reconstruction algorithms can be seen as attempt to invert the
generative process (point estimate / regression) sequentially

* generative model: 0 »z =z =z —x
e Sequential Inversion: x = Z3(x) = Z_(23) = Z (2

Currently both generative model and inversion algorithms involve hand-
engineered, code not developed for auto-diff / back propagation
(effectively not differentiable)

e big gain from just reimplementing what we have in a Differentiable
Programming framework

We can keep the compositional structure and gradually enhance each of
the stages of the with deep learning components

e A high-level form of inductive bias (innate structure) on the networks

e jointly optimize & borrow power from all the tasks that use a certain
component

* maintain ability to characterize, validate , and interpret individual

components

e transition from deterministic point estimate to probabilistic
components for improved uncertainty estimation

Outputs

Single large
model,
sparsely
activated

Tasks




CONCLUSION

The developments in machine learning have the potential to
effectively bridge the microscopic - macroscopic divide & aid in the
inverse problem.

e |everage expert knowledge of the generative process
e |earn surrogates that extract relevant features for inference task
Several strategies to incorporate domain knowledge into the model

e starting point: migrate current code bases to differentiable
programming framework

e gradually replace components with deep learning

Helpful to establish more actionable notions of “interpretability”
6/
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PROB PROG: HOW DOES IT WORK?

n short: hijack the random number generators and use
NN’s to perform a very smart type of importance sampling

Input: an inference Compilation Inference
prOb.lem denOted In Training data Test data
a universal PPL {xtm), ytm} - y
. robabilistic program
(Anglican, CPProb) p(x,y) - l
NN architecture ~

. 0.0 SIS
Output: a trained Q.00 <« Compilation artifact el
inference network, ( ok % A| v 0) l
or “compilation Training —— ¢ P

: 3 Dk (p(x | y) || p(x |y

artifact (x| y:6)

(Torch, PyTorch)

Expensive / slow Cheap / fast

Le, Baydin and Wood. Inference Compilation and Universal Probabilistic Programming. AISTATS 2017.
arXiv:1610.09900



IN PROGRESS: C++, SHERPA, GEANTA4

Mario Lezcano Casado, Atilim Giines Baydin, Tuan Anh Le, Frank Wood*
Department of Engineering Science
University of Oxford
{lezcano, gunes, tuananh, fwood}@robots.ox.ac.uk

Lukas Heinrich, Gilles Louppe, Kyle Cranmer
Department of Physics & Center for Data Science
New York University
{kyle.cranmer,lukas.heinrich,g.louppe}@cern.ch

Wahid Bhimji, Prabhat Karen Ng
Lawrence Berkeley National Laboratory Intel
{wbhimji,prabhat}@lbl.gov karen.y.ng@intel.com

-

.

L —

A case study in SHERPA & GEANT

Probabilistic program analytics
allows us to pinpoint “interesting” addresses in execution traces
and corresponding C++ code within SHERPA

4.4.24 Unique trace T24

Length 72

L e—

Slides from Atilim Glnes Baydin @ Hammers & Nails

Probabilistic programming with C++

Our new tool: CPProb
https://github.com/probprog/cpprob

Instrumenting C++ code to allow tools like SHERPA and GEANT run
with inference compilation

1 void linear_regression(const std::array<std:: pair<RealType, RealType>, N> & points) {
2 using boost::random:: normal_distribution;

4 auto normal = normal_distribution <RealType>{0, 10};

5 const auto a = cpprob::sample(normal, true);

6 const auto b = cpprob::sample(normal, true);

s

8 for (const auto & point : points) {

9 auto likelihood = normal_distribution <RealType>{a * point.first + b, 1};
10 cpprob::observe(likelihood , point.second);

11 }

12 cpprob:: predict(a);

13 cpprob:: predict(b);

14}

1 SHERPA:: Hadron_Decays:: Treat (ATOOLS:: Blob_List*, double&)+0x709
2 SHERPA:: Event_Handler:: IterateEventPhases (SHERPA:: eventtype :: code&, double&)+0x1b2
SHERPA:: Event_Handler :: GenerateHadronDecayEvent (SHERPA:: eventtype :: code&)+0x979

-

NERSC, Lawrence Berkeley National Lab

Our current tools:
- CPProb
- Anew C++ PPL coupled with large-scale simulations using, e.g.,
SHERPA and GEANT
- PyTorch inference compilation backend
- Dynamic computation graphs for NN artifacts

J&’!docer

P

Designed to run on Cori at NERSC using Shifter

shifterimg -v pull docker:gbaydin/pytorch-infcomp:latest
shifterimg -v pull docker:gbaydin/sherpa-infcomp-full:latest

| e—

https://dl4physicalsciences.github.io/files/nips_dlps_2017_30.pdf



GANS FOR PHYSICS

CaloGAN: Simulating 3D High Energy Particle
Showers in Multi-Layer Electromagnetic Calorimeters

Creating Virtual Universes Using Generative Adversarial Networks

. . . Mustafa Mustafa*!, Deborah Bard!, Wahid Bhimji', Rami Al-Rfou?, and Zarija Luki¢!
with Generative Adversarial Networks

Lawrence Berkeley National Laboratory, Berkeley, CA 94720
2Google Research, Mountain View, CA 94043

Michela Paganini®’, Luke de Oliveira®, and Benjamin Nachman®

¢ Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
® Department of Physics, Yale University, New Haven, CT 06520, USA

E-mail: michela.paganini@yale.edu, lukedeoliveira@lbl.gov, bnachman@cern.ch
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Figure 9: Five randomly selected e showers per calorimeter layer from the training set (top) and the
five nearest neighbors (by euclidean distance) from a set of CALOGAN candidates.
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Figure 10: Five randomly selected  showers per calorimeter layer from the training set (top) and the
five nearest neighbors (by euclidean distance) from a set of CALOGAN candidates.
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Figure 11: Five randomly selected 7+ showers per calorimeter layer from the training set (top) and
the five nearest neighbors (by euclidean distance) from a set of CALOGAN candidates.
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SEPARABILITY
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VARIATIONAL OPTIMIZATION

min f(6) < Eo~q0)4) L/ (0)] = U(9)

VypU() = Eg g4 [ (0)Vy log q(0)|1))]

0.0 -

—0.2 4

—0.4 -

—0.8 A

-100 -75 =50 =25 0.0 2.5 5.0 7.5 10.0

Piecewise constant —Sin}gx) q(0|p = (u, B8)) = N (p, eP)




ADVERSARIAL VARIATIONAL OPTIMIZATION

Like a GAN, but generative model is non-differentiable
and the parameters ot simulator have meaning

e Replace the generative network with a non-differentiable

forward simulator ¢(z; ). 1.05
e With VO, optimize upper bounds of the adversarial objectives: L 00 1.0 = X~gz()i)) 0
e x~px|y)y=
Ua = Eo~q(opy) | La] (1) 0.5+ 08 B
Uy = Egq(0]w)|Lg] (2 ¢ o0 0.6
respectively over ¢ and 1. 0.85 ‘30\ 0.4
— q@ly) y=0
0801 — q@ly) y=5 0.2
. . > e 0°=(42,0.9)
Effectively sampling from Y N B
41 42 43 ~1.0 -05 0.0 05 1.0
inal model o
marginal maoae
—— —Ugy=0
1.5 - — “HYay=>
x ~ q(x[¢p) = 0 ~ q(O|),z ~ p(2]0),x = g(z; 0)
1.0 -
We use Wasserstein distance,
as in WGAN . .

0 50 100 150 200 250 300

G. Louppe & K.C. arXiv:1707.07113


http://arxiv.org/abs/1707.07113

THE ADVERSARIAL MODEL

Classifier f

G. Louppe, M. Kagan, K. Cranmer, arXiv:1611.01046

Adversary r

Y1 (f(X;05);0:)
O

f(X;6y) Y2 (f(X;05);0:)
X ——— T O P('Yl,’)@,---)
I s
T T pe, (Zf(X;05))
0 Ly(0r) 0r Lr(0f,0r)

the Y1, Y2, ... are the mean,
standard deviation, and amplitude
for the Gaussian Mixture Model.

 the neural network takes in f
and predicts Y1, Y2, ...

p(z|f)




Reinforcement / Active Learning

+ Likelihood Free Inference



REINFORCEMENT LEARNING & SCIENTIFIC METHOD

Scientist trying to decide what experiment to do next

ﬂwwro nment

Re War
Interpre ter
% \GEJ

Action

Agent



REINFORCEMENT LEARNING & SCIENTIFIC METHOD

Scientist trying to decide what experiment to do next

perform experiment,
gather data

-

Environment
S decide which
statistical analysis Re = | experiment to
War b perform
Interpreter
(0O

updated knowledge ~

i
based on analyzing

data Agent



OPTIMIZING EXPERIMENTS

Proof-of-principle algorithm can:

e measure parameter of theory (eg. Weinberg angle in
Standard Model of particle Physics) from raw data

e optimize experiment (eg. beam energy) for most
sensitive measurement

=
8y

1.0 -

0.5 A

0.0 -

expected information gain

80 90 100
b eam ene rgy dent fit results.

Figure 2: Measured forward-backward asymmetries of
muon-pair production compared with the model indepen-


https://github.com/cranmer/active_sciencing

PHYSICS-AWARE MACHINE LEARNING

Physics goes into the construction ot a
"Kernel” that defines M.L. model

e \ocabulary of kernels + grammar for

composition = powerful modeling

Structure Discovery in Nonparametric Regression
through Compositional Kernel Search

David Duvenaud, James Robert Lloyd, Roger Grosse,
Joshua B. Tenenbaum, Zoubin Ghahramani
International Conference on Machine Learning, 2013

pdf | code | poster | bibtex

(explGG+G) e GG+ G
dependent gaussian scale mixture
(cg. Karklin md*mnh. 2005)

(MG +G)GMT +G)+ G
Bayesmn clustered tensar factonization
S cwre , 2009 o .
(Sutskeveretal, 2009) ”'(‘,“, LG+ G

) o 0N - N v
bimary matrix factorization (€ xp(G) e G)G + G

(Meeds et al , 2006) sparse cading
\ f (c.g. Okhausen and Field, 199%)

MGMT+G)+ G (CC+G)6G+G

co-clustering BG+ G CC+0C linear dvasnical system
(e.g. Kemp et al, 2006) binary features low -rank Amun.muu:/' i i .
(Griffiths and (Salakbut dmov and
- Ghahramani, 2005) Madk, 2008) /
\ | ) GG
WG+ G
random walk
clustering /
no structure

Exploiting compositionality to explore a large space of
model structures
Roger Grosse, Ruslan Salakhutdinov, William T.

Freeman, Joshua B. Tenenbaum

Conference on Uncertainty in Artificial Intelligence, 2012

pdf | code | bibtex

Mauna Loa atmospheric CO5

(Lin x SE + SE x (Per + RQ))
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PHYSICS-AWARE MACHINE LEARNING

We can inject our knowledge of physics into the machine learning models!
We can extract knowledge learned from the data!

Physics-aware Gaussian Processes QCD-Aware recursive neural networks
arXiv:1709.05681 arXiv:1702.00748
Correlation Matrix o .‘ T
Final Kernel = L . e
< 4000 0.45% [ ] [ ] @ ®

5000

" Poisson fluctuations

+ Mass Resolution

QCD-Aware graph convolutional neural networks
- -+ Parton Density NIPS2017 workshop [http:/bit.ly/2AkwYRG]
Functions =
—I_ —
1 - + Jet Energy Scale 02 N . e 2a\ ARZ,
6000 0.999; 7/7/, — mln(pt'& 7pt'l,) R2

2000 3000 4000 5000 6000 700 0.999
X

1


http://bit.ly/2AkwYRG

GRAVITATIONAL WAVES & NEUTRINOS

Gravitational Waves

Convolutional Neural Networks Applied to
Neutrino Events in a Liquid Argon Time
Projection Chamber

MicroBooNE Collaboration

H —— Numerical relativity -
Reconstructed (wavelet)
B Reconstructed (template)
1 1

1 1 2
Source: ligo.org

Hide true signal [@

Time from start (s) G - 15.6 36.7 cm
{} 0.5

M . Window width (s) .
Live Demo: Gamma: 0.696
www.tin y .CC/DLGW NgA Detecting Gravitational Waves in Real-Time with Deep Learning ﬂ

Data from a LIGO Interferometer around the first event (GW150914

MicroBooNE Simulation

26.6 cm

Electron: 0.527

Detecting GW150914

Data not included in training

Trained with only non-spinning,
non-eccentric simulations

~1s to analyze 4096s of data.

Output of Convolutional Neural Networks:
Masses correct within error bars

A gravitational wave signal from the merger of two black holes was detected!

No False Alarms with two The predicted masses of the black holes are about 36 and 33 solar masses. [\"‘licrOB()()N E Sin]lllati()n

detectors! %

WOLFRAM . socin g s g sy s NVIDIA.




JUAN CARRASQUILLA @ NIPS

RESTRICTED BOLTZMANN MACHINE WAVE FUNCTION Juan Carrasquilla

NEURAL-NETWORK QUANTUM
STATE TOMOGRAPHY FOR
LARGE MANY-BODY SYSTEMS

RBM probability distribution:

A WA o
( ) Ej b?dj-i-zi 10g‘<1+e i 25 Wi J)
px\O) —=¢

RBM wavefunction:

Vaulo) = \/ %:) e'¢n(?) ¢ = logpu(o)

Widespread use of RBMs to solve many-body physics:

Variational ansatz for quantum wave-functions (Carleo & Troyer, Science 2017)

Exact representation of topological states (Deng, Li & Das Sarma, arXiv 2016)

Accelerate Monte Carlo simulations (Huang & Wang, PRB 2017) — ——
Topological quantum error correction (GT & Melko, PRL)
and more . . .
But other choices for the neural network are also possible (CNN, MLP etc) KITAEV; S TURIC CUDE GRUUND STATE
|
Torlai, Mazzola, Carrasquilla, Troyer, Melko and Carleo 1703:05334 \L ?\: T

| — — H:_JPZHO-;_‘]UZHO-’T . |

D i€Ep v i€V (ol

. B z
NZve) O<511—>Hc>lo ezl 2 llics 9|0y L oN)

014...sON
PEPS : E Verstraete, M. M. Wolf, D. Perez-Garcia, J. 1. Cirac Phys. Rev. Lett. 96, 220601 (2006).

NEURAL-NETWORK QUANTUM Ocota(01, -y on) o¢ lim exp BTy ][ of

p 1€p

STATE TOMOGRAPHY FOR
LARGE MANY-BODY SYSTEMS | Y >:Z\/

J. Carrasquilla and R. G. Melko. Nature Physics 13, 431-434 (2017)
Dong-Ling Deng et al Phys. Rev. X 7, 021021 (2017)
Jing Chen, Song Cheng, Haidong Xie, Lei Wang, Tao Xiang arXiv:1701.04831 RBMs
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GENERATIVE MODELS FOR CALIBRATION

Use of generative models of
galaxy images to help calibrate

down-stream analysis in next-

generation surveys.

Enabling Dark Energy Science with Deep
Generative Models of Galaxy Images

Siamak Ravanbakhsh', Frangois Lanusse?, Rachel Mandelbaum?, Jeff Schneider', and Barnabds Péczos'

chool of Computer Science, Carnegie Mellon University
'School of C ter S Carnegie Mellon Ui 1)

> - . . P
“McWilliams Center for Cosmology, Carnegie Mellon University

Abstract—Understanding the nature of dark energy, the mys-
terious force driving the accelerated expansion of the Universe, is
a major challenge of modern cosmology. The next generation of
cosmological surveys, specifically designed to address this issue,
rely on accurate measurements of the apparent shapes of distant
galaxies. However, shape measurement methods suffer from
various unavoidable biases and therefore will rely on a precise
calibration to meet the accuracy requirements of the science
analysis. This calibration process remains an open challenge as
it requires large sets of high quality galaxy images. To this
end, we study the application of deep conditional generative
models in generating realistic galaxy images. In particular we
consider variations on conditional variational autoencoder and
introduce a new adversarial objective for training of conditional
generative networks. Our results suggest a reliable alternative
to the acquisition of expensive high quality observations for
generating the calibration data needed by the next generation
of cosmological surveys.



FROM IMAGES TO SENTENCES

Recursive Neural Networks showing great performance tor

Natural Language Processing tasks

e neural network’s topology given by parsing of sentence!

NP VP

N

VBG NNS VBZ ADVP

| | I/\/\/\

Parsing sentences is RB RB JJR NN

so much more fun than

VBG PP

N

going TO NP

N\

to DT NN

the dentist




FROM IMAGES TO SENTENCES

Recursive Neural Networks showing great performance tor

Natural Language Processing tasks

e neural network’s topology given by parsing of sentence!

VBG NNS VBZ ADVP

| | I/\/\/\

Parsing sentences is RB RB JJR NN

so much more fun than

VBG

Analogy: | N

going TO NP

word — particle N

to DT NN

arsing — jet algorithm
p g J 9 tr|1e denltist




QCD-INSPIRED RECURSIVE NEURAL NETWORKS
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Work with Gilles Louppe, Kyunghyun Cho, Cyril Becot e

e Use sequential recombination jet algorithms to AL A
provide network topology (on a per-jet basis) Ao A

* path towards ML models with good physics rallr At
properties Ao A

e Top node of recursive network provides a fixed—lengthmfi:f
embedding of a jet that can be fed to a classifier

arXiv:1702.00748 & follow up work with Joan Bruna using graph conv nets rak



QCD-INSPIRED RECURSIVE NEURAL NETWORKS

e
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. * Each node combines 4-momentum in (E-
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v; if k is a leaf
Ok = {ok(f)—l— 0y, oOtherwise hkR c R40
. I‘L@hJéCeLt
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QCD-INSPIRED RECURSIVE NEURAL NETWORKS
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e down-sampling by
projecting into images AL AL

looses information

tower:

1 / Background efficiency

10!

e RNN needs much less
data to train!
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QCD-INSPIRED RECURSIVE NEURAL NETWORKS

1 / Background efficiency
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JET-LEVEL CLASSIFICATION RESULTS

TABLE I. Summary of jet classification performance for sev-
eral approaches applied either to particle-level inputs or tow-

ers from a DELPHES simulation.

Input |Architecture ROC AUC R._509
Projected into images
towers MaxOut 0.8418 =
towers k¢ 0.8321 £ 0.0025 |12.7 £ 0.4
towers | k: (gated) | 0.8277 £ 0.0028 | 12.4 £+ 0.3
Without image preprocessing
towers T21 0.7644 6.79
towers | mass + 721 | 0.8212 11.31
towers k¢ 0.8807 4+ 0.0010 | 24.1 & 0.6
towers C/A 0.8831 4+ 0.0010 | 24.2 £ 0.7
towers anti-k 0.8737 4+ 0.0017 | 22.3 &+ 0.8
towers asc-pr 0.8835 4+ 0.0009 |26.2 + 0.7
towers desc-pr [0.8838 4+ 0.0010| 25.1 &+ 0.6
towers random 0.8704 4+ 0.0011 | 20.4 += 0.3
particles k¢ 0.9185 £+ 0.0006 | 68.3 + 1.8
particles C/A 0.9192 + 0.0008| 68.3 + 3.6
particles anti-k; 0.9096 4+ 0.0013 | 51.7 & 3.5
particles asc-pr 0.9130 4+ 0.0031 | 52.5 = 7.3
particles| desc-pr 0.9189 £+ 0.0009 [70.4 + 3.6
particles| random 0.9121 4+ 0.0008 | 51.1 & 2.0
With gating (see Appendix A)

towers k¢ 0.8822 4+ 0.0006 | 25.4 + 0.4
towers C/A 0.8861 + 0.0014 | 26.2 £+ 0.8
towers anti-k; 0.8804 4+ 0.0010 | 24.4 4+ 0.4
towers asc-pr 0.8849 4+ 0.0012 | 27.2 &+ 0.8
towers desc-pr [0.8864 + 0.0007|27.5 £+ 0.6
towers random 0.8751 4+ 0.0029 | 22.8 4+ 1.2
particles k+ 0.9195 4+ 0.0009 | 74.3 4+ 2.4
particles C/A 0.9222 + 0.0007| 81.8 + 3.1
particles anti-k 0.9156 4+ 0.0012 | 68.3 & 3.2
particles asc-pr 0.9137 4+ 0.0046 |54.8 & 11.7
particles| desc-pr 0.9212 4+ 0.0005 |83.3 £+ 3.1
particles| random 0.9106 £+ 0.0035 | 50.7 £+ 6.7

When working on images:

e recursive network has similar
oerformance to previous approaches

Improved performance when working with
calo towers without image pre-processing

e |oss of information depends on
details of calorimeter, pixelation, etc.

Working on truth-level particles led to a
significant improvement

e generically expect information from
tracking, particle flow, etc. to be
somewhere between towers and truth
particle-level
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Message Passing Neural Network

Algorithm 1 Message passing neural network

Require: N x D nodes x, adjacency matrix A
h <—Embed(x)

fort=1,..., T do

m < Message(A, h)

h < VertexUpdate(h, m)
end for

r = Readout(h)
return Classify(r)

Adjacency matrix generalizes receptive field of convolution kernel
Vertex Update like pooling

Iterations like layers of a CNN



Proposed model

Graph neural networks

~t -1
= F(ht)
mf%i — O-(A/:/'ﬁ?f)
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Message Passing Neural Network

Algorithm 2 Message passing neural network

Require: N x D array of jet constituents x

h <—Embed(x)
fort=1,...,T do
A < AdjacencyMatrix;(h)
m < Message;(A, h)
h < VertexUpdate;(h, m)
end for
r = Readout(h)
return Classify(r)

Difference from Alg 1:
new weights for each iteration (layer) of message passing



Proposed model

A problem with the adjacency matrix

Where does adjacency matrix come from?

Use a physics-inspired adjacency matrix.
BONUS: import physics knowledge

Answer 2

Very interesting:

adjacency matrix can be interpreted like a kT, C/A, anti-kT
Once learned, can export the adjacency function for other uses
Provides bi-directional interface between ML and jet physics.



Proposed model

Learning the adjacency matrix

F(h W)= vT(h

/

1] ooy
exp{s; .
Al = - directed
T Seelsyy e
1
Asym = 5 (A+A") (undirected)

This is a simple starting point, not motivated by physics

h')




Classification results

1/FPR @ TPR = 50%

Model lterations R 509,

Rec-NN (no gating) 1 70.4+3.6
Rec-NN (gating) 1 83.3+3.1
MPNN (directed) 1 89.4 +35
MPNN (directed) 2 98.3+4.3
MPNN (directed) 3 85.9 £8.5
MPNN (identity) 3 /4.5 +£5.2
Relation Network 1 67.7 6.8

Significant improvement on W vs. QCD tagging!
This is with a learned adjacency matrix
what did it learn? Is that adjacency matrix useful?
we are working MPNN with QCD-motivated adjacency matrix



