

Interpretable Neural Network Models for Granger Causality Discovery

Emily Fox

University of Washington Amazon Professor of Machine Learning CSE and Statistics

Modern sources of time series

Until recently, ML (mostly) ignored time series

It's hard!

parameters (naively) grows rapidly with

- # of series
- complexity of dynamics captured

More data

Algorithms more computationally intensive

More compute

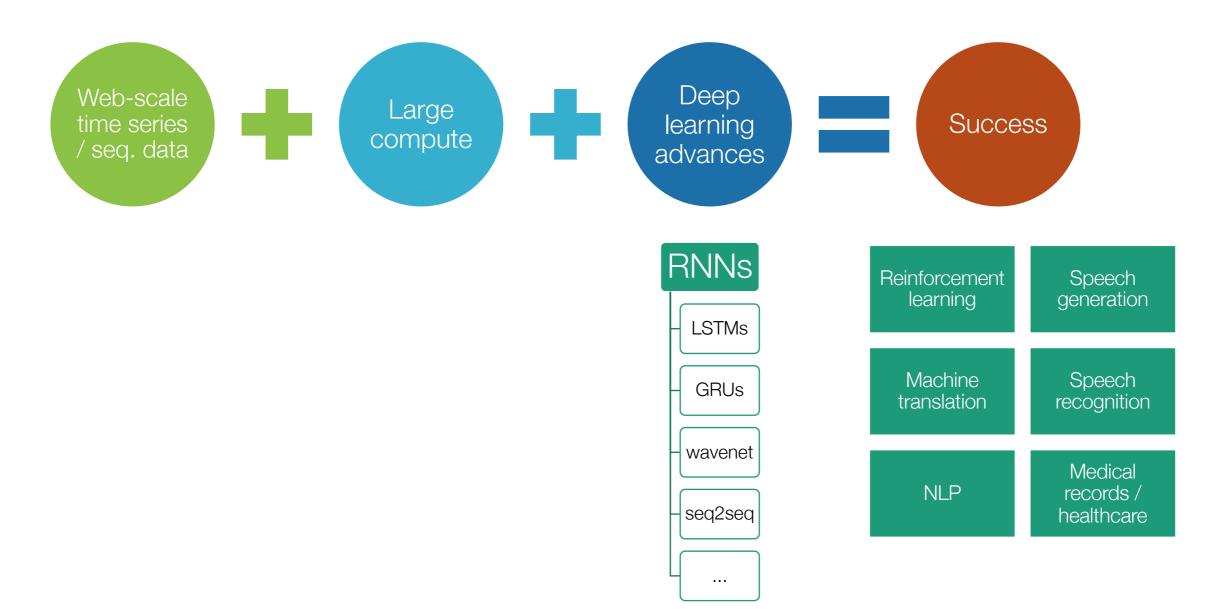
Theory not applicable because typically assume no time dependencies

Importance of modeling dynamics

	Independent observations
Accuracy	50%

With dynamic model, can get improved prediction accuracy

Now time series are "in"



But, success also relies on...

Lots of replicated series

- Lots of correspondence data
- Lots of trials of a robot navigating every part of the maze
- Lots of transcribed audio

Demand forecasting of new item: Tons of data, but not for question of interest

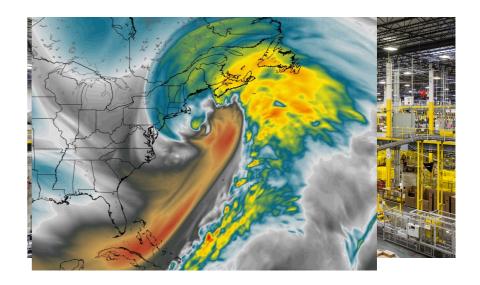
But, success also relies on...

Lots of replicated series

- Lots of correspondence data
- Lots of trials of a robot navigating every part of the maze
- Lots of transcribed audio

Manageable contextual memory

- Seen this structure in a maze before
- Seen these words in this context before
- Seen patient with these symptoms and test results before



Bareansly for a converter mining of converter mining of a last of

Tomorapolistaurb, took for question relative estimidity, wind direction, wind speed, altimeter, sea level pressure, precipitation, visibility, wind gust, cloud coverage, cloud height, present weather code

But, success also relies on...

Lots of replicated series	 Lots of correspondence data Lots of trials of a robot navigating every part of the maze Lots of transcribed audio
Manageable contextual memory	 Seen this structure in a maze before Seen these words in this context before Seen patient with these symptoms and test results before
Clear prediction objective	 Word error rate for speech recognition BLEU score for machine translation Reward function in reinforcement learning

Beyond prediction on big data

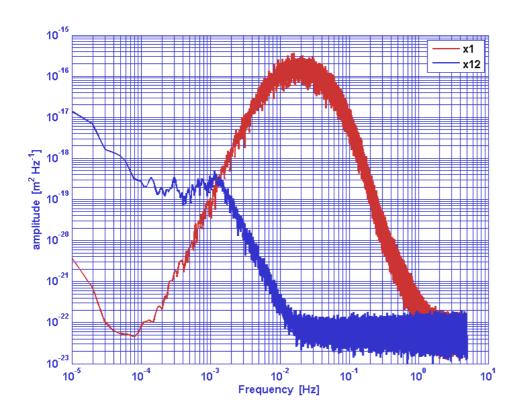
Characterizing dynamics

Efficiently sharing information

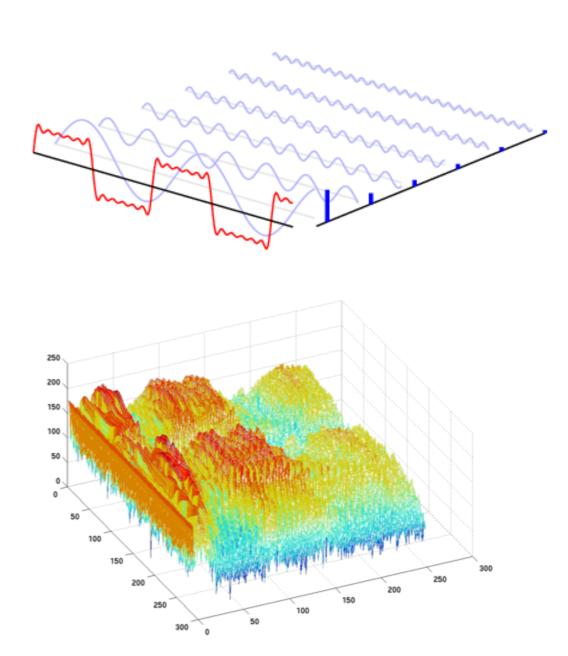
Interpretable interactions

Non-stationarity & measurement bias

Spectral analysis

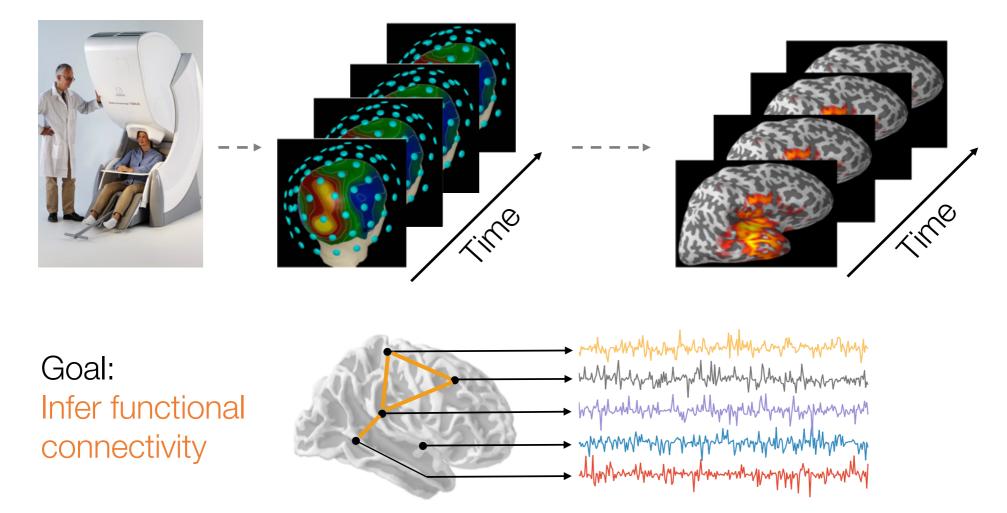


- Frequency domain analysis
- Local stationarity
- Time-frequency analysis



Spectral analysis of neuroimaging data

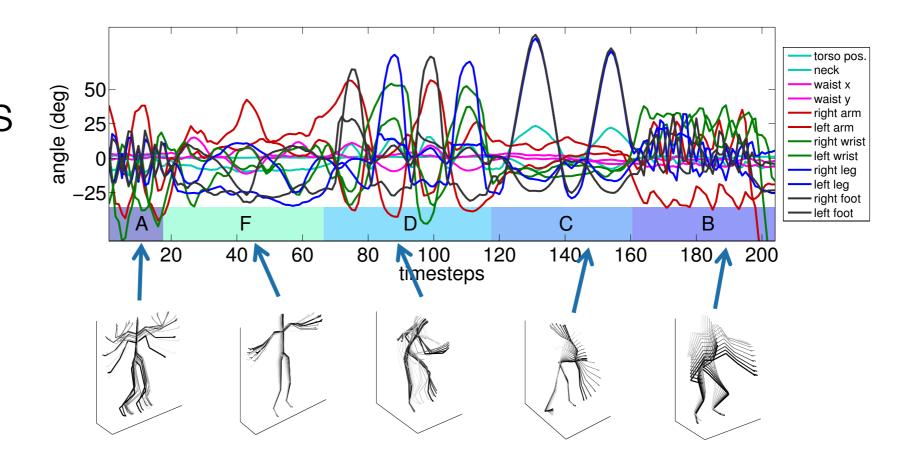
Magnetoencephalography (MEG) data of brain activation over time



Discovering human motion behaviors

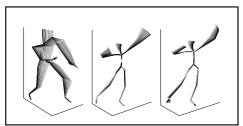
Parse videos into underlying behaviors without training labels

Recording modeled as switches between simple behaviors

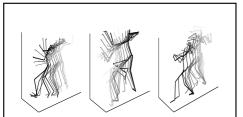


Fox, Hughes, Sudderth, and Jordan, AoAS 2014

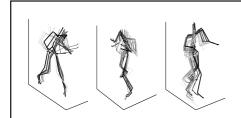
Automatically parsing large collections



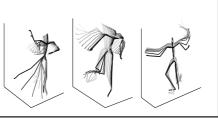
Climb



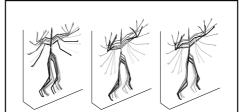
Slide Step



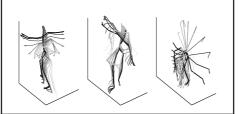
Boxing



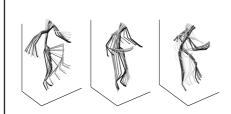
Dance



Jump Jack

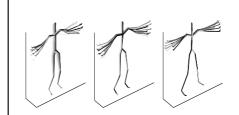


Cartwheels

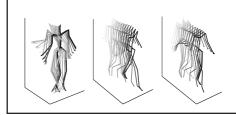


Knee Raise

Playground Swing

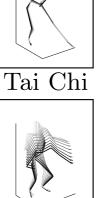


Arm Circle



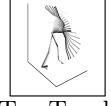
Dribble

Lambada



Squat

Swordplay

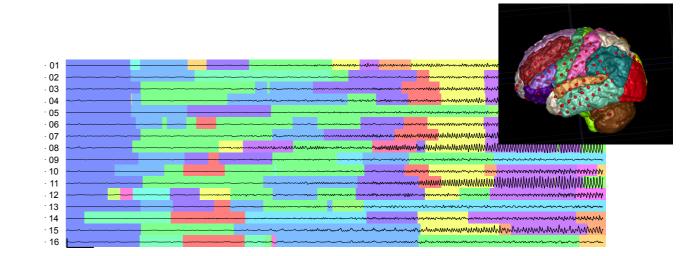


Toe Touch

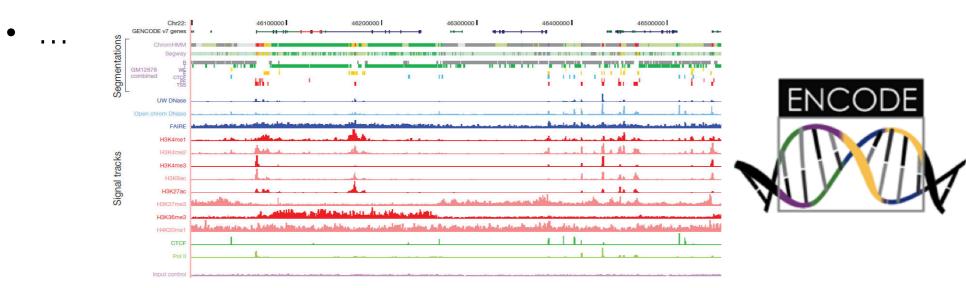
Ideas appear in many domains...

Example applications:

- Parsing EEG recordings
- Speech segmentation
- Volatility regimes in financial time series



• Genomics



Beyond prediction on big data

Characterizing dynamics

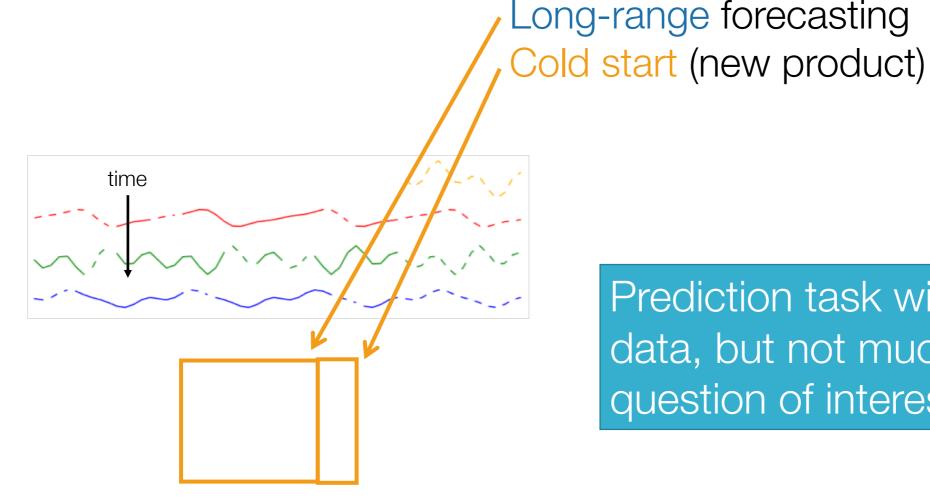
Efficiently sharing information

Interpretable interactions

Non-stationarity & measurement bias

Predicting demand for products

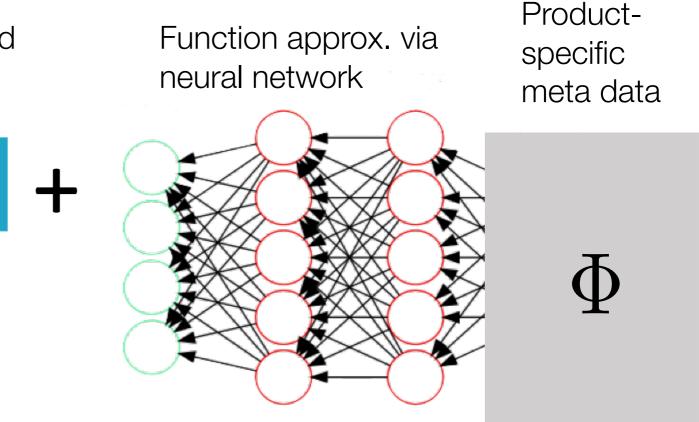
Long-range and cold-start forecasting



Prediction task with lots of data, but not much for question of interest

Leveraging low-dim structure + side info

Low-rank description of observed years of available products



Xie, Tank, and Fox, *NIPS Time Series Workshop* 2016.

Analysis of Wikipedia data

4500 Wikipedia articles

Daily page traffic counts 2008-2014

Per article, 1 to 6 years of data \rightarrow 29,000 columns

Law

Main article: Law of Canada

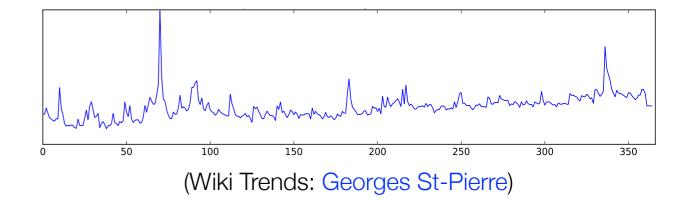
Canada's judiciary plays an important role in interpreting laws and has the power to strike down laws that violate the Constitution. The Supreme Court of Canada is the highest court and final arbiter and is led by the Right Honourable Madam Chief Justice Beverley McLachlin, P.C. Its nine members are appointed by the Governor General on the advice of the Prime Minister. All judges at the superior and appellate levels are appointed by the Governor General on the advice of the prime minister and minister of justice, after consultation with non-governmental legal bodies. The federal cabinet appoints justices to superior courts at the provincial and territorial levels. Judicial posts at the lower provincial and territorial levels are filled by their respective governments (see Court system of Canada for more detail).

The Supreme Court of Canada in E-Ottawa, west of Parliament Hill.

Common law prevails everywhere except in Quebec, where civil law predominates.

Criminal law is solely a federal responsibility and is uniform throughout Canada. Law enforcement, including criminal courts, is a provincial responsibility, but in rural areas of all provinces except Ontario and Quebec, policing is contracted to the federal Royal Canadian Mounted Police (RCMP).

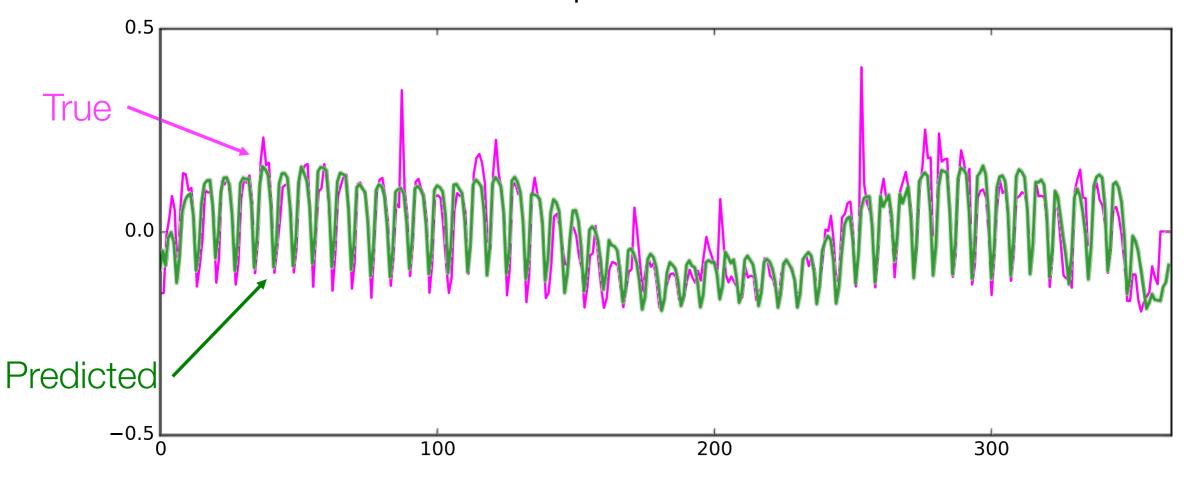
Features = tf-idf of article summary \rightarrow 22,000 dimensions, but **sparse**



Xie, Tank, and Fox, NIPS Time Series Workshop 2016.

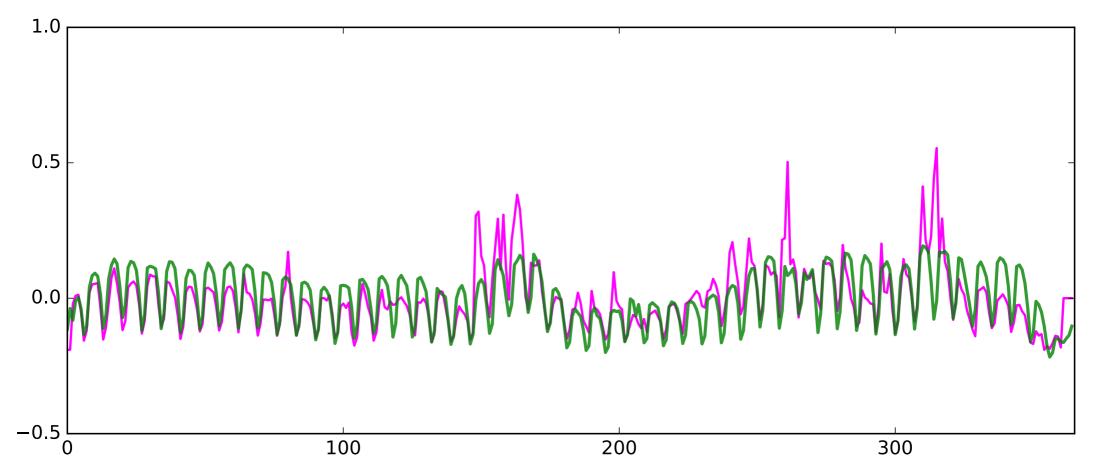
Long-range forecasts

Apollo 2014



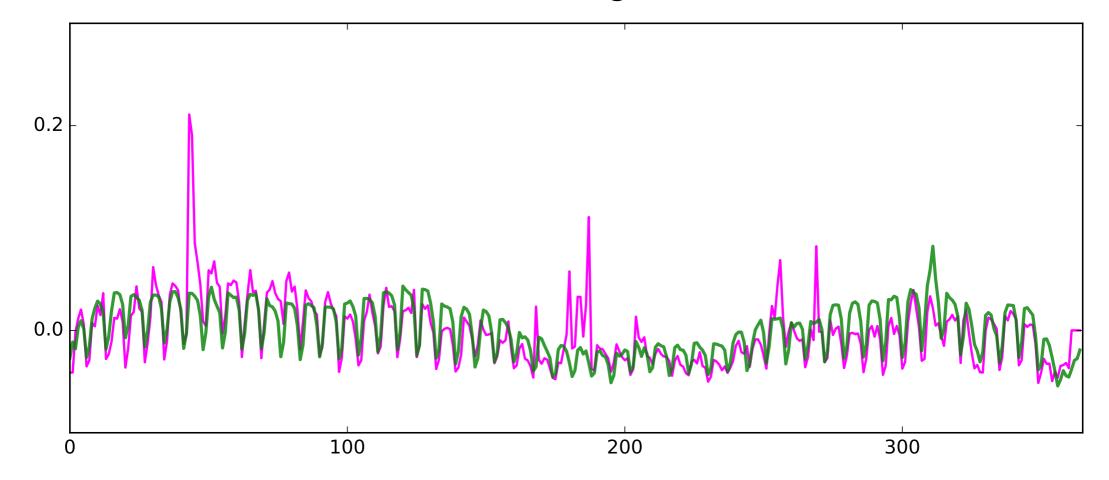
Long-range forecasts

Economics 2014

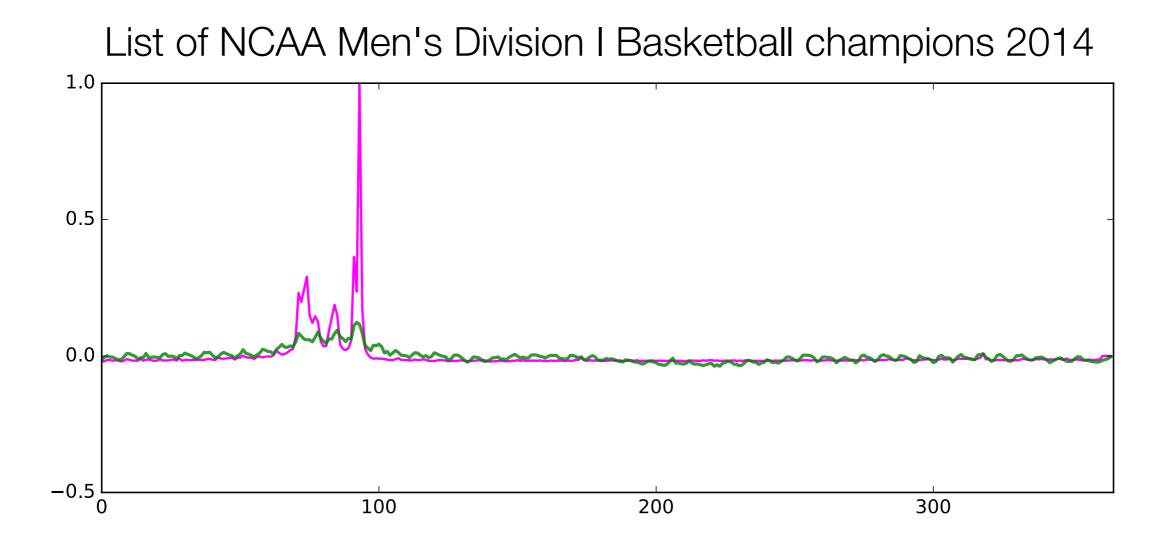


Cold start forecasts

Calvin Coolidge 2014



Cold start forecasts



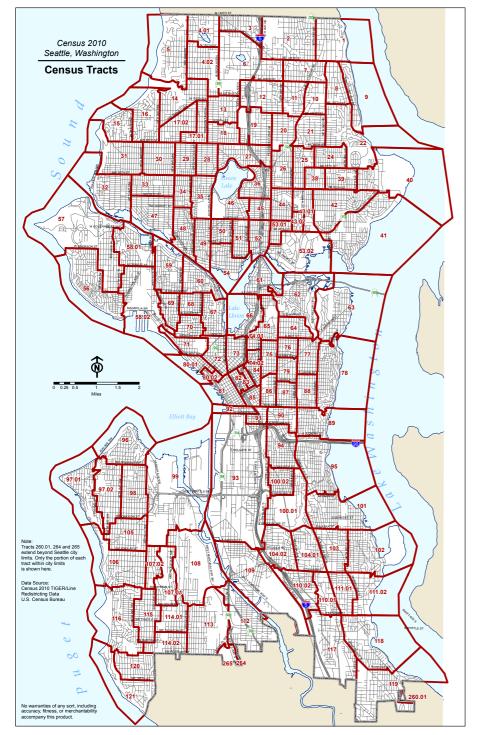
3467 Maple Street

For Rent \$2,500 Rent Zestimate' \$2,430 1265 Cedar Way Pre-Foreclosure Zestimate' \$250,000

> 3451 Alder Street For Sale \$266,000 Zestimate' \$260,000

1265 Oak Way Sold on 3/31/13 Sold for \$237,000

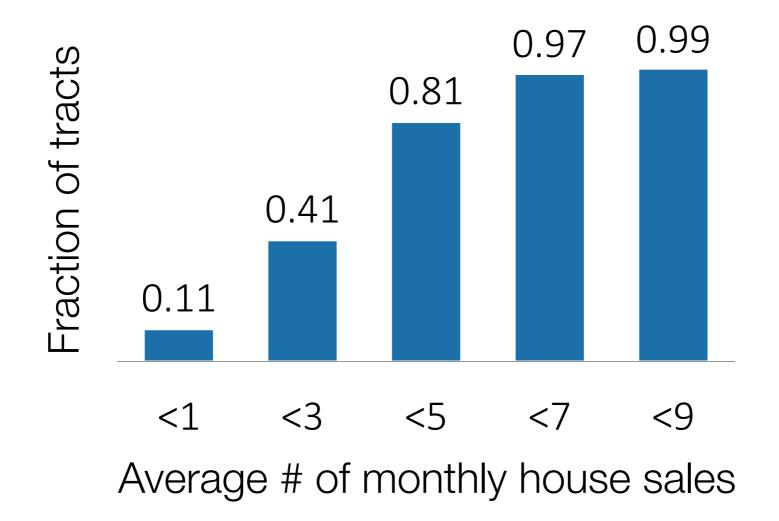
modeling a local housing index



Census tracts in Seattle, WA

What is the value of housing in each region over time?

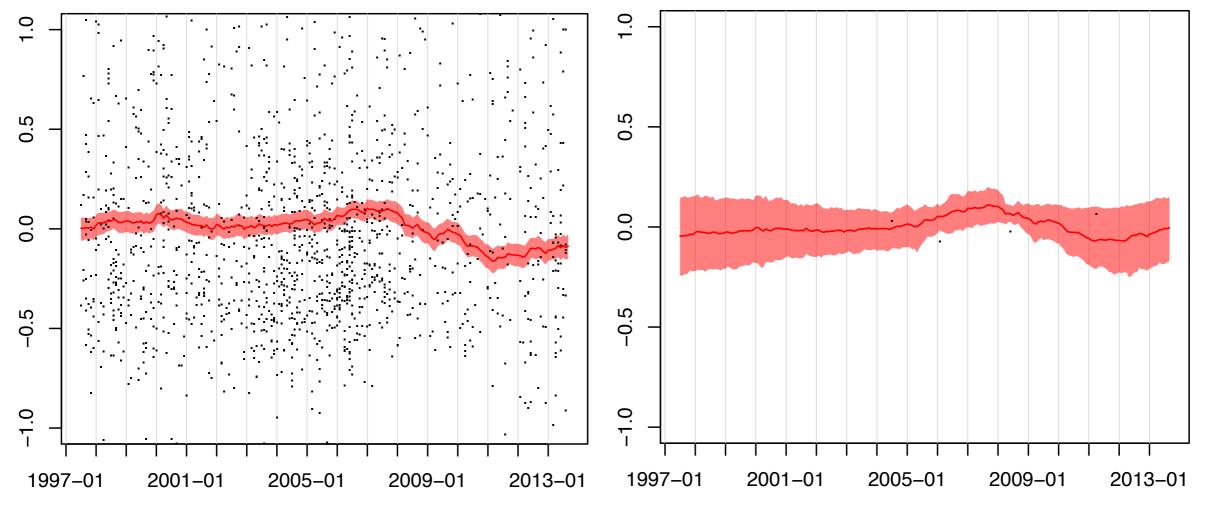
Challenge: Spatiotemporally sparse data



Challenge: Spatiotemporally sparse data

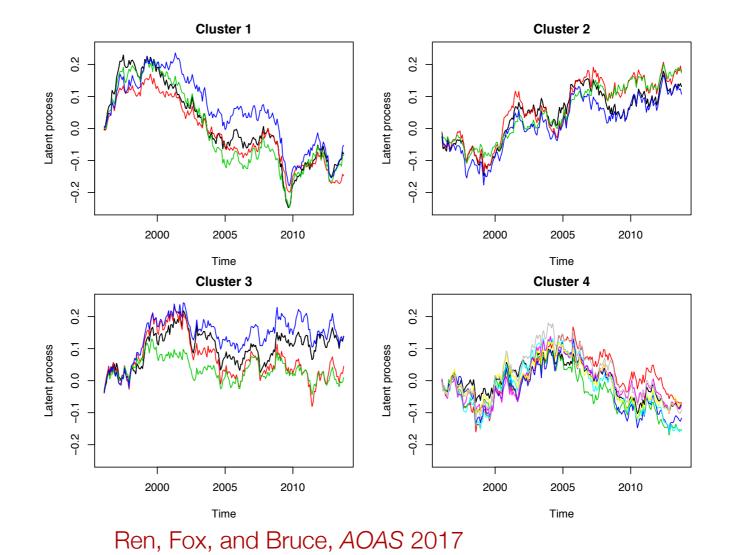
Tract 281980

Tract 340184

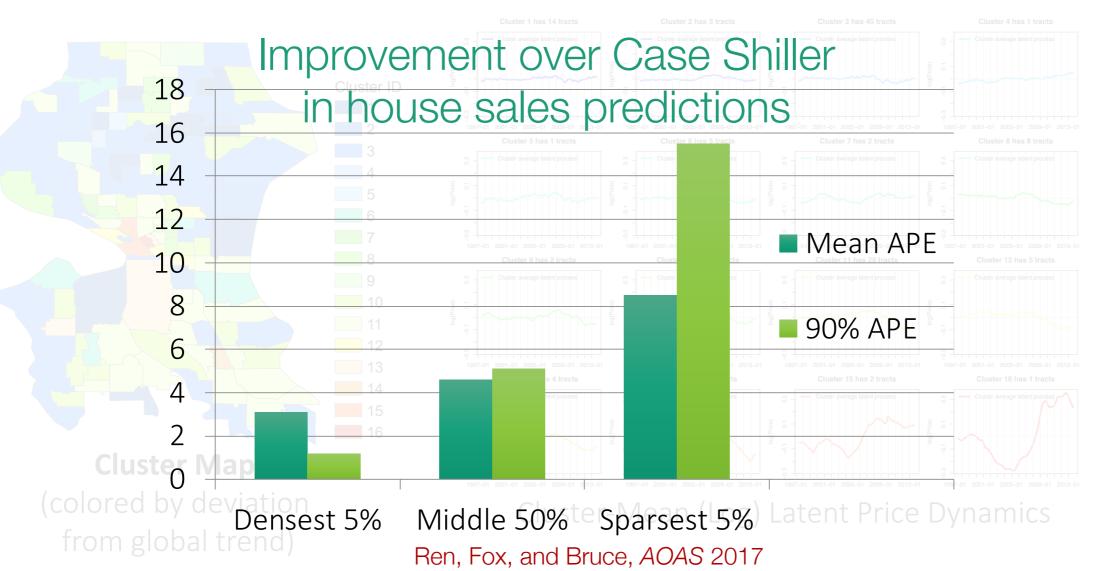


Solution: Cluster regions based on underlying price dynamics

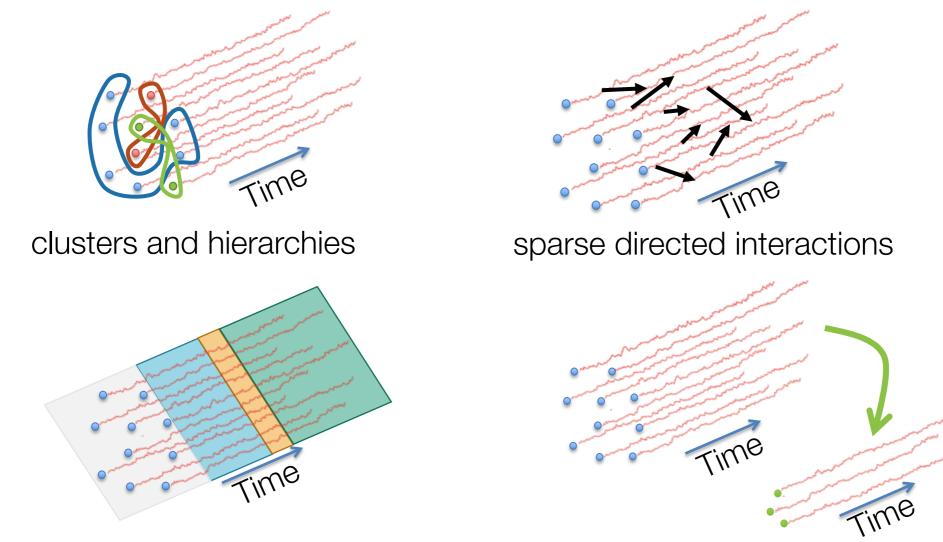
Discover groups of tracts with correlated dynamics



Seattle City analysis (17 years, 140 tracts, 125k transactions)



Recap: Mechanisms for coping with limited data



switching between simpler dynamics

low-dimensional embeddings

Beyond prediction on big data

Characterizing dynamics

Efficiently sharing information

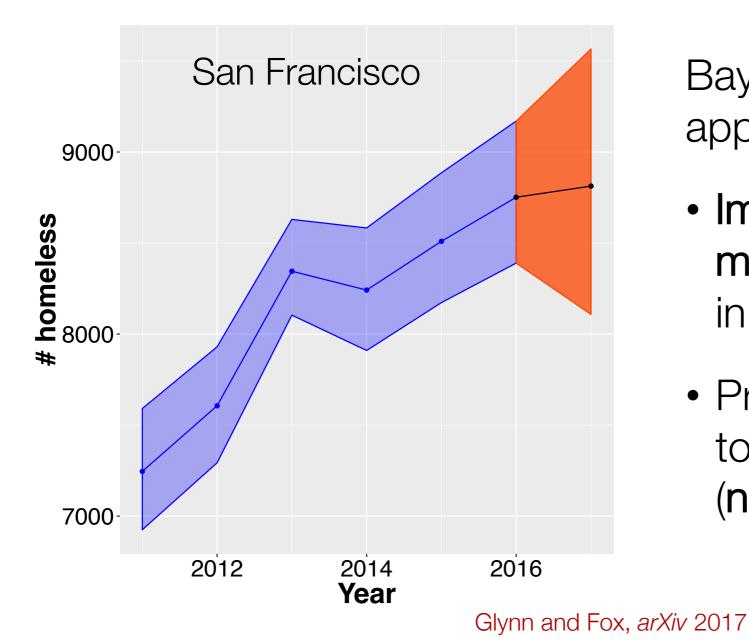
Interpretable interactions

Non-stationarity & measurement bias Another data-scarce study: Dynamics of homelessness

- Counts occur on **single night** in January
- Count method varies from metro to metro and across time
- Observe most of those in shelters and only a fraction of those on the streets
- % sheltered varies largely between metros

measurement bias!

What is the 1-yr-ahead forecast of homeless population?



Bayesian model-based approach accounts for:

- Imperfect measurement mechanism and changes in count quality
- Predicted increase in total population (nonstationary process)

Beyond prediction on big data

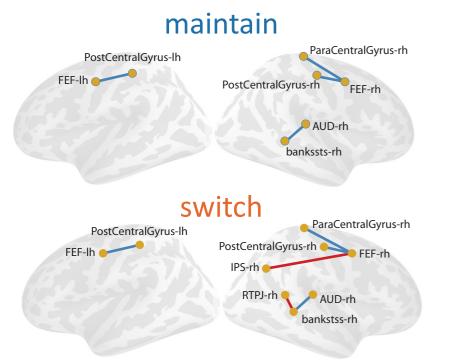
Characterizing dynamics

Efficiently sharing information

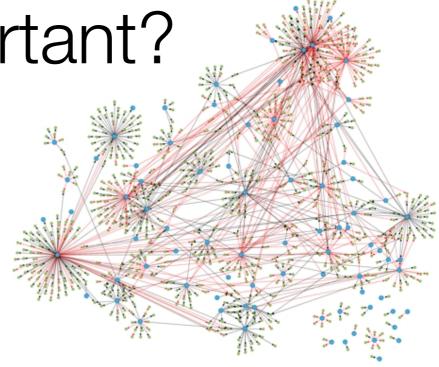
Interpretable interactions

Non-stationarity & measurement bias

Why are interactions important?

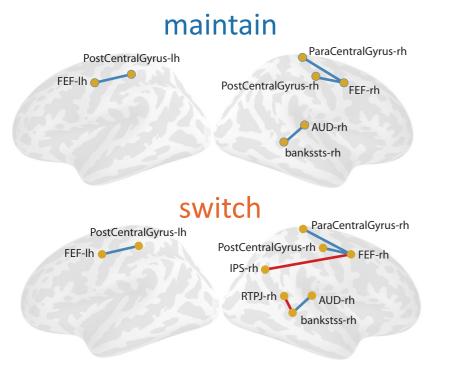


Functional networks in the brain

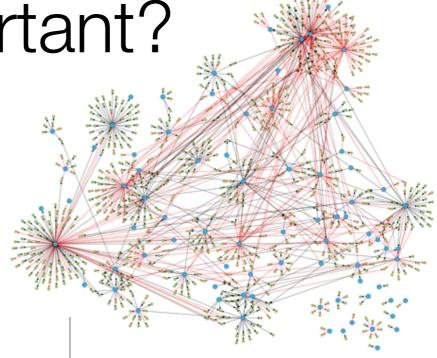


Gene regulatory networks

Why are interactions important?



Functional networks in the brain



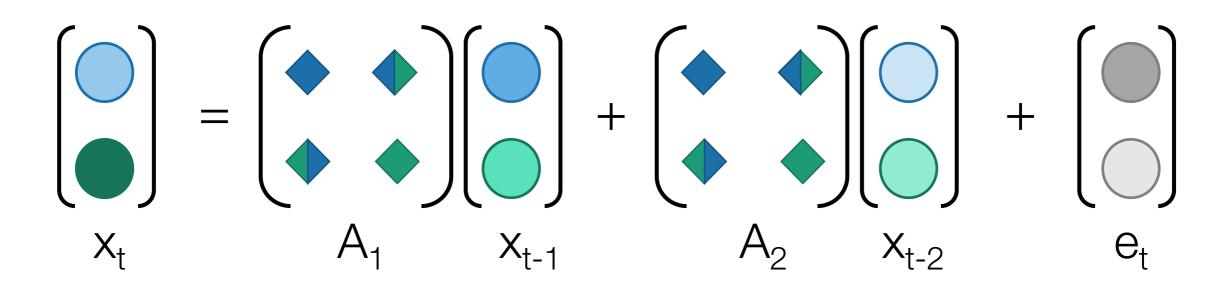
Gene regulatory networks

Interactions between players on the court (Video of results from BenShitrit et al. *ICCV* 2011)

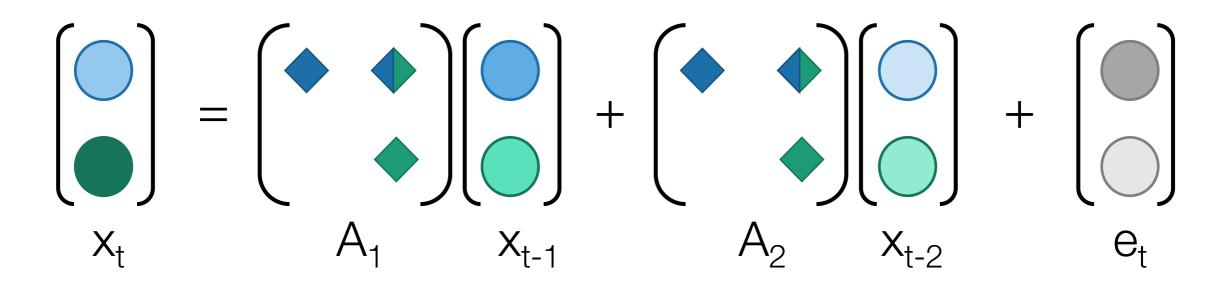
Discovering interactions between players

Identify directed interactions between players and ball

E.g., Position of point guard at time t influences ball at time t+1

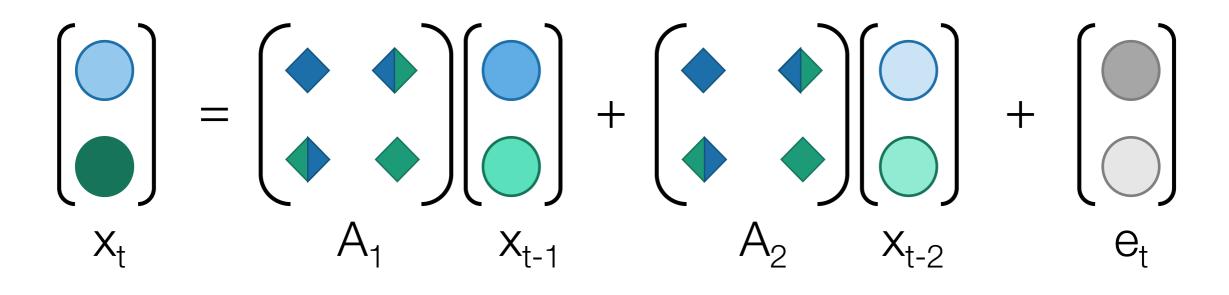


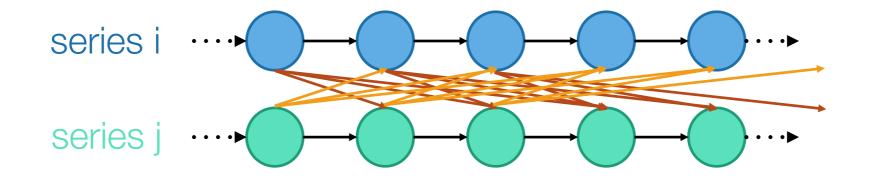
$$x_t = \sum_{k=1}^{K} A_k x_{t-k} + e_t$$

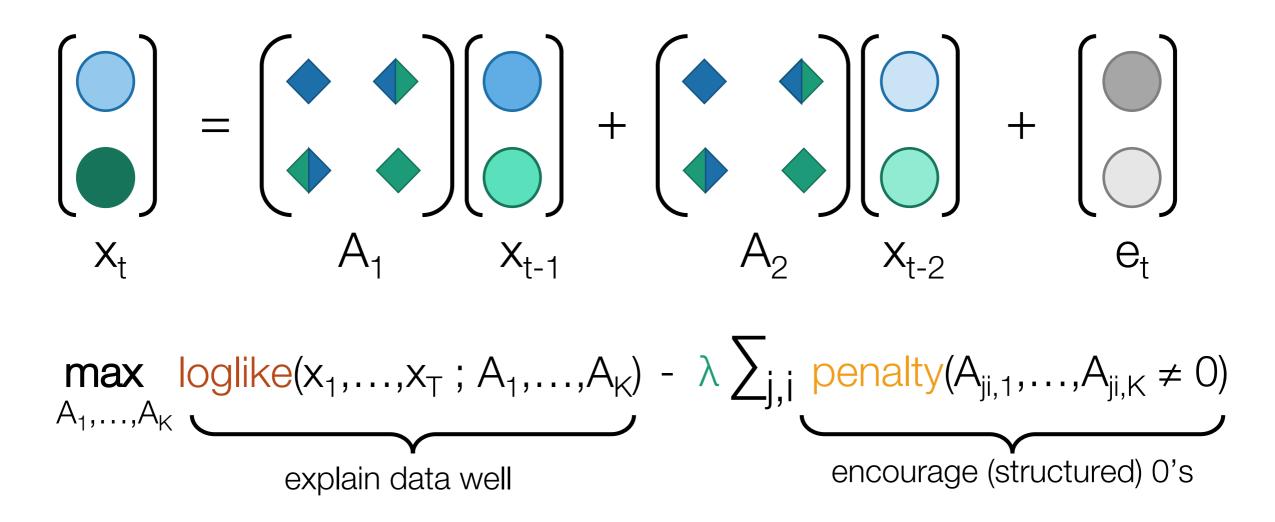


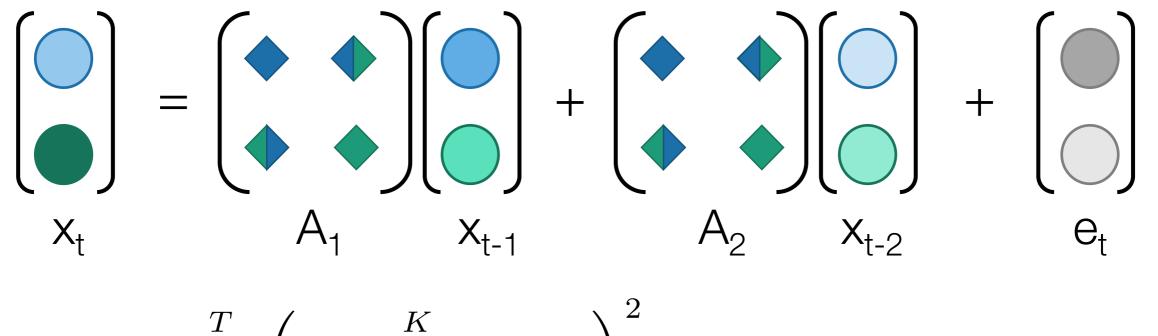
Series i does not Granger cause series j iff $A_{ji,k} = 0$ $\forall k$

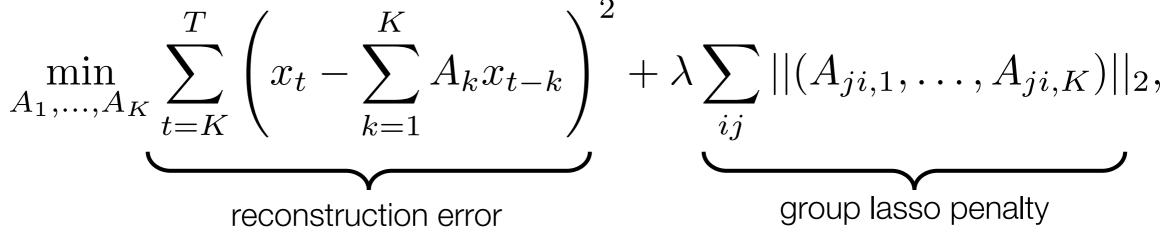
Lag k interaction



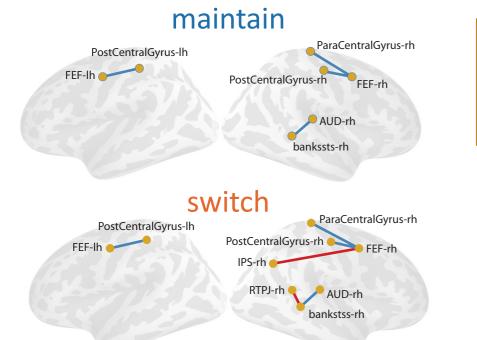








The issue with a linear approach



Functional networks in the brain

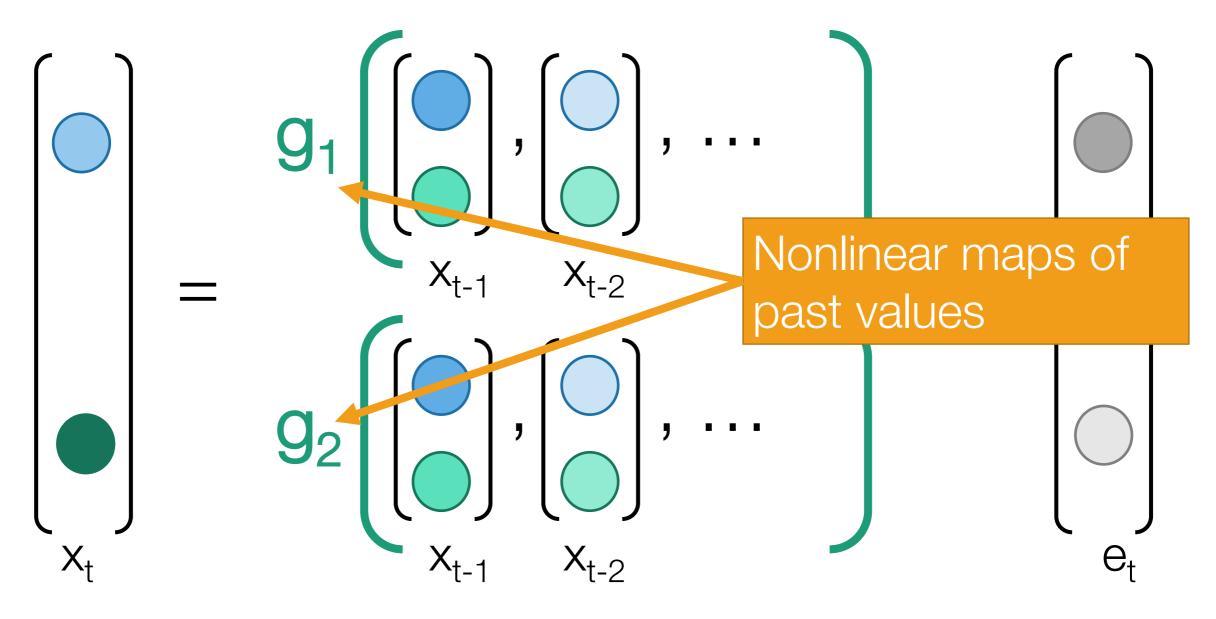
What if interactions are **nonlinear**?

Gene regulatory networks

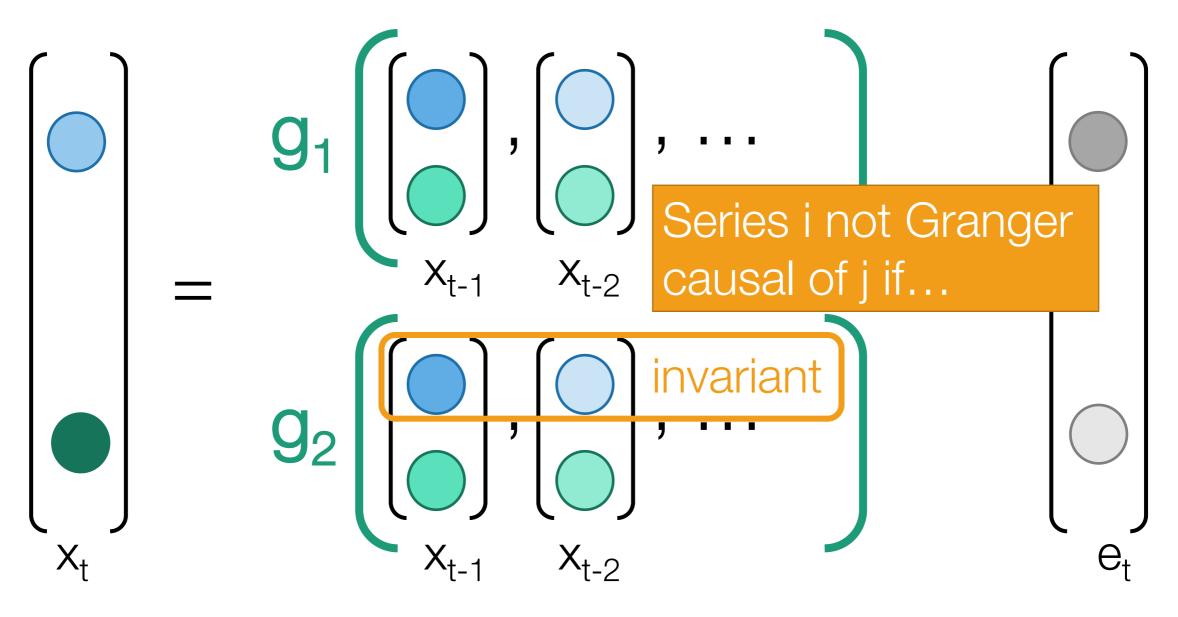
Miller

Interactions between players on the court (Video of results from BenShitrit et al. *ICCV* 2011)

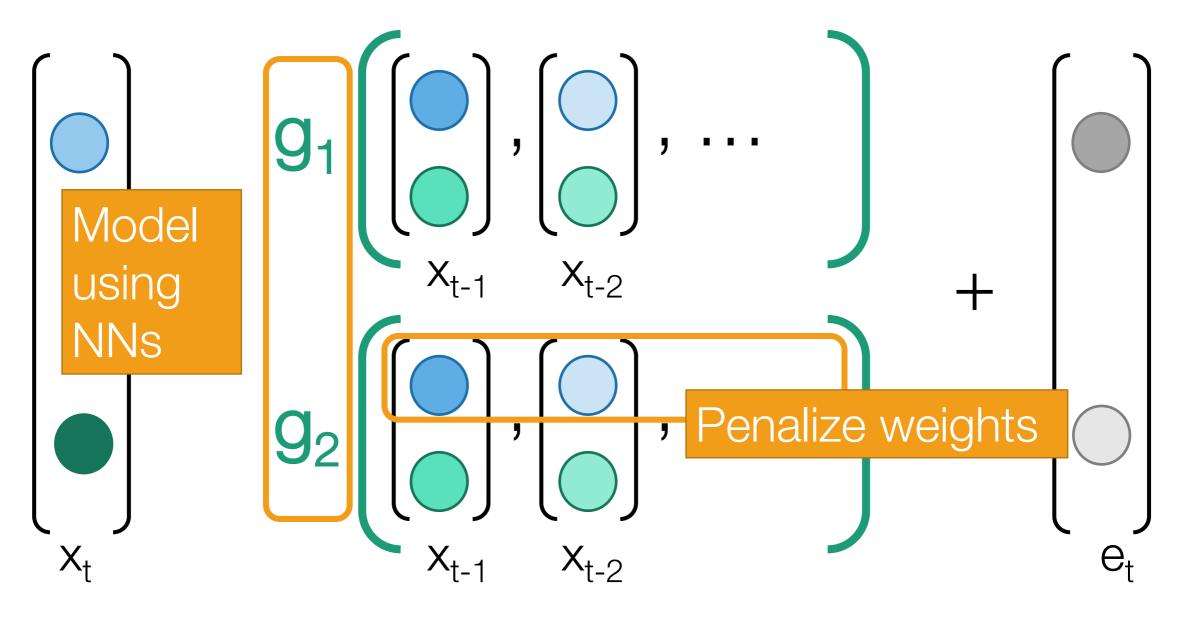
Modeling nonlinear dynamics



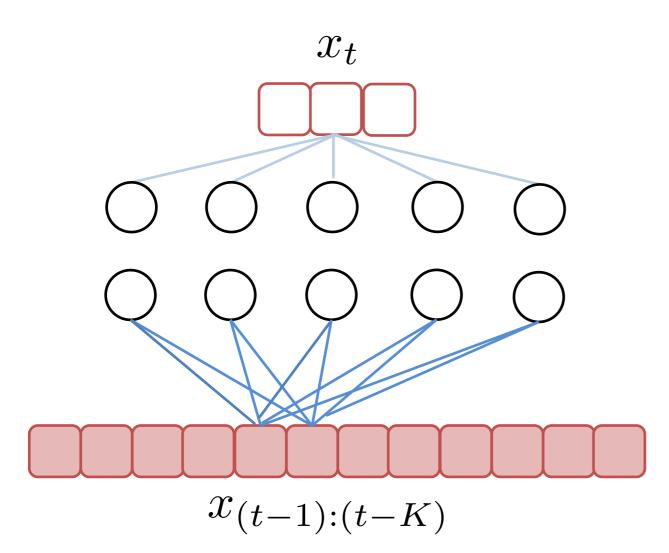
Identifying Granger causality



Using penalized neural networks



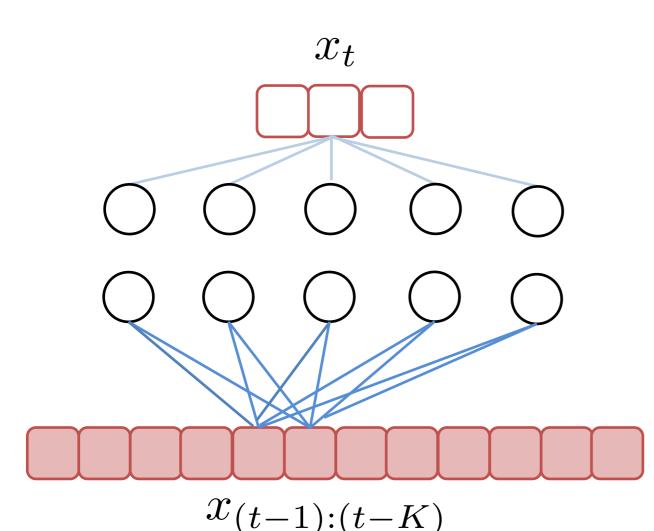
A multilayer perceptron (MLP) approach



full set of outputs

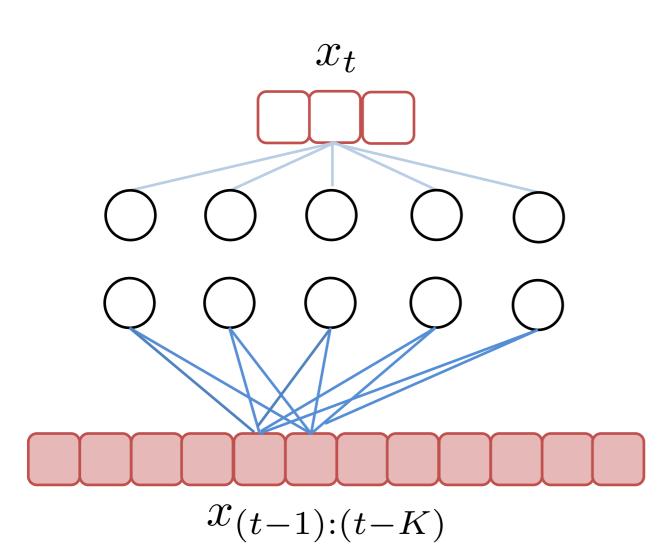
lag K past values as inputs

A multilayer perceptron (MLP) approach



difficult to identify Granger causality with shared hidden units

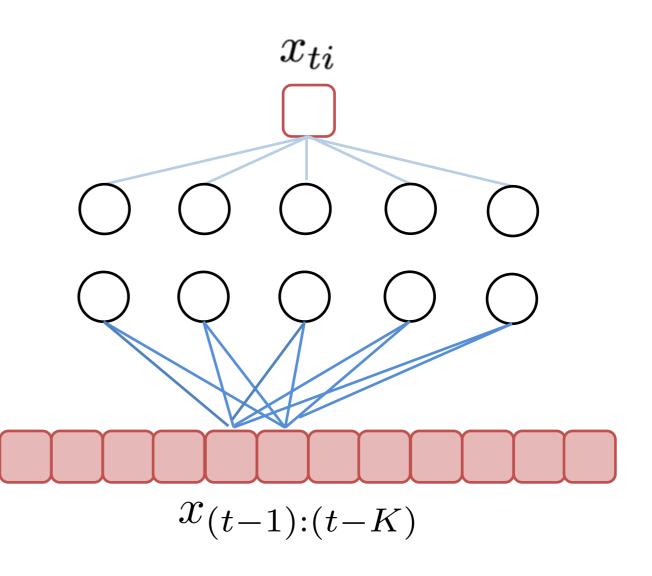
A multilayer perceptron (MLP) approach

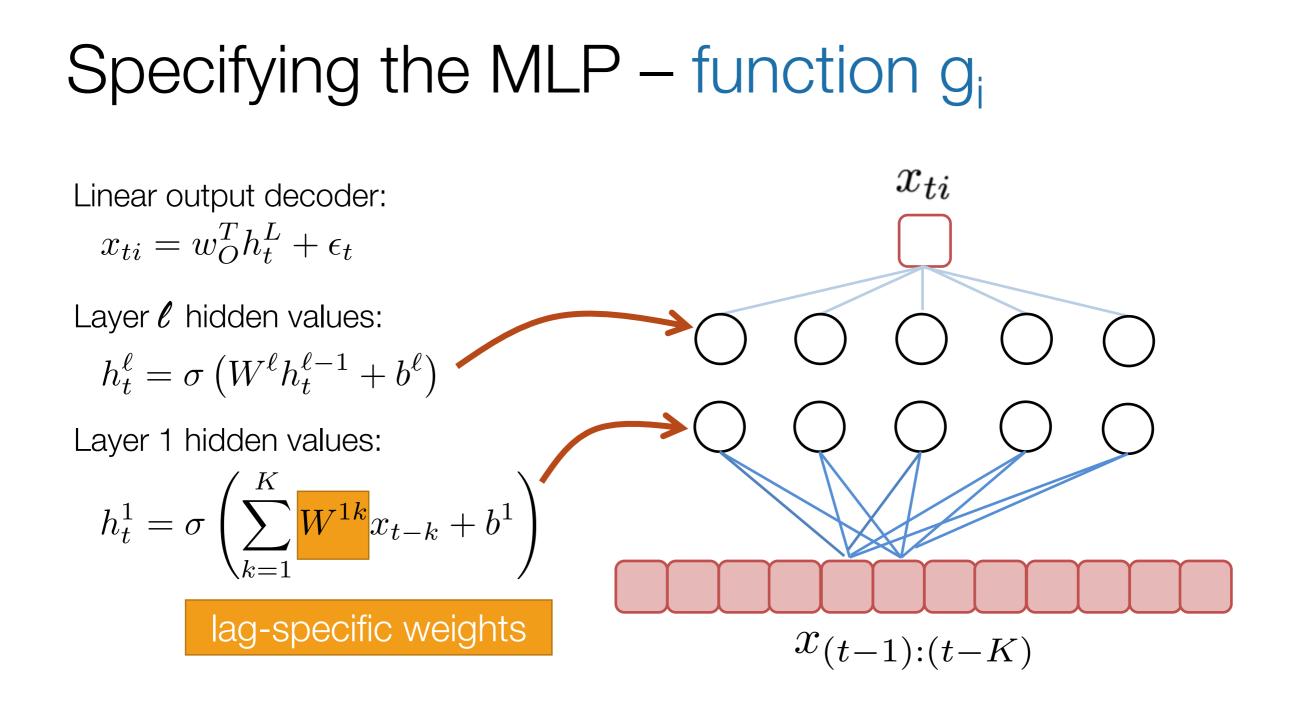


all g_i must rely on same set of lags

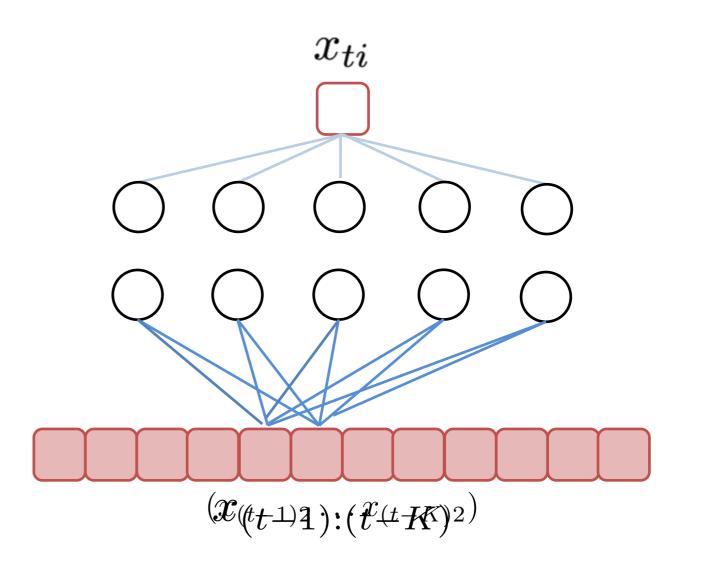
Penalized multilayer perceptron (MLP)

For function g_i





Disentangling input to output effects

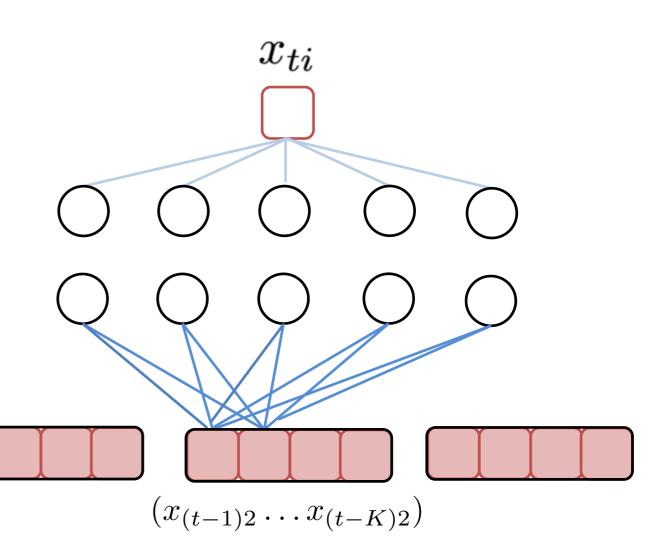


Disentangling input to output effects

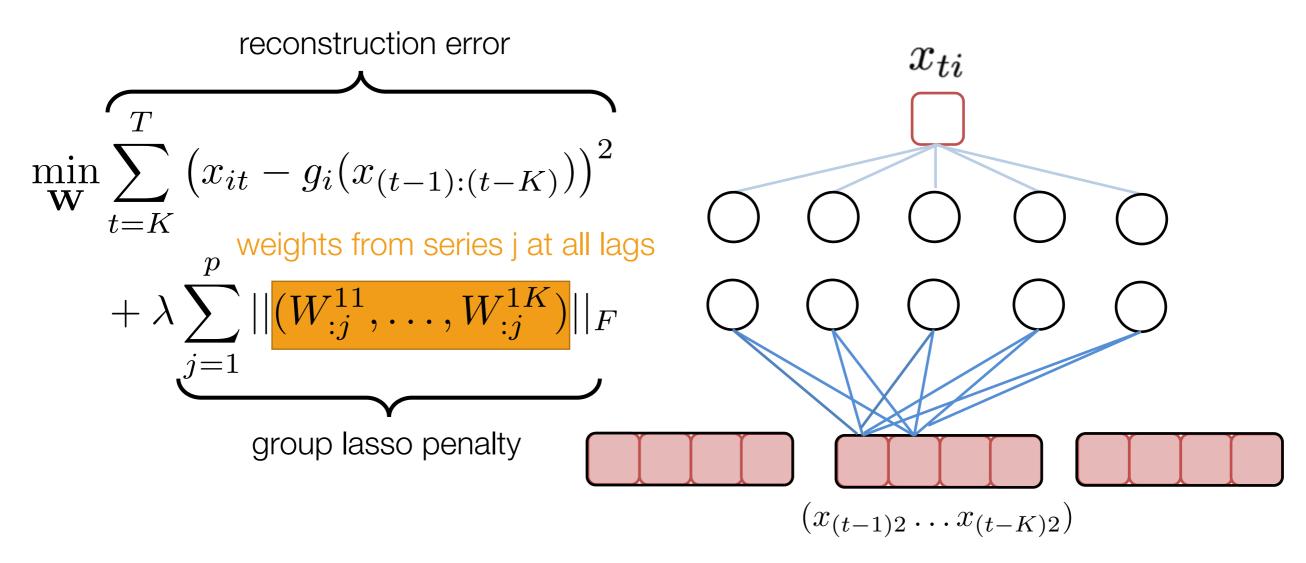
series j does not Granger cause series i if group j weights are 0

place group-wise penalty on layer 1 weights

group inputs by: (Klags of series j)



Penalized multilayer perceptron (MLP)



Algorithmic notes...

Often, focus of deep learning evaluation is on prediction error...

Can get away with optimizing approximately

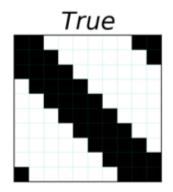
SGD

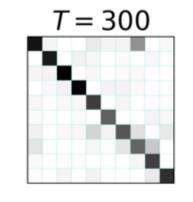
We care about zeros of solution, so important to get very close to a stationary point

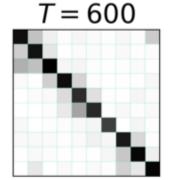
Proximal gradient descent with line search

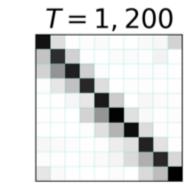
Simulated results – MLP

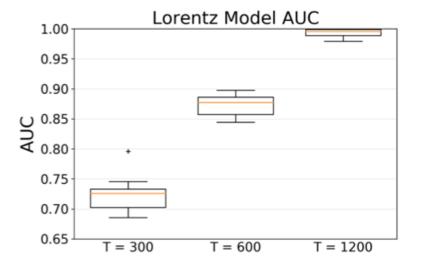
Lorenz-96 (nonlinear) data



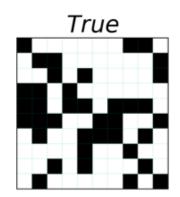


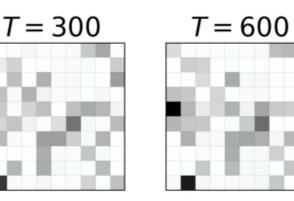


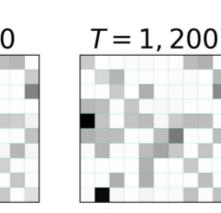


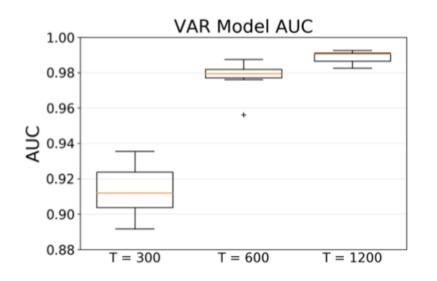


VAR (linear) data

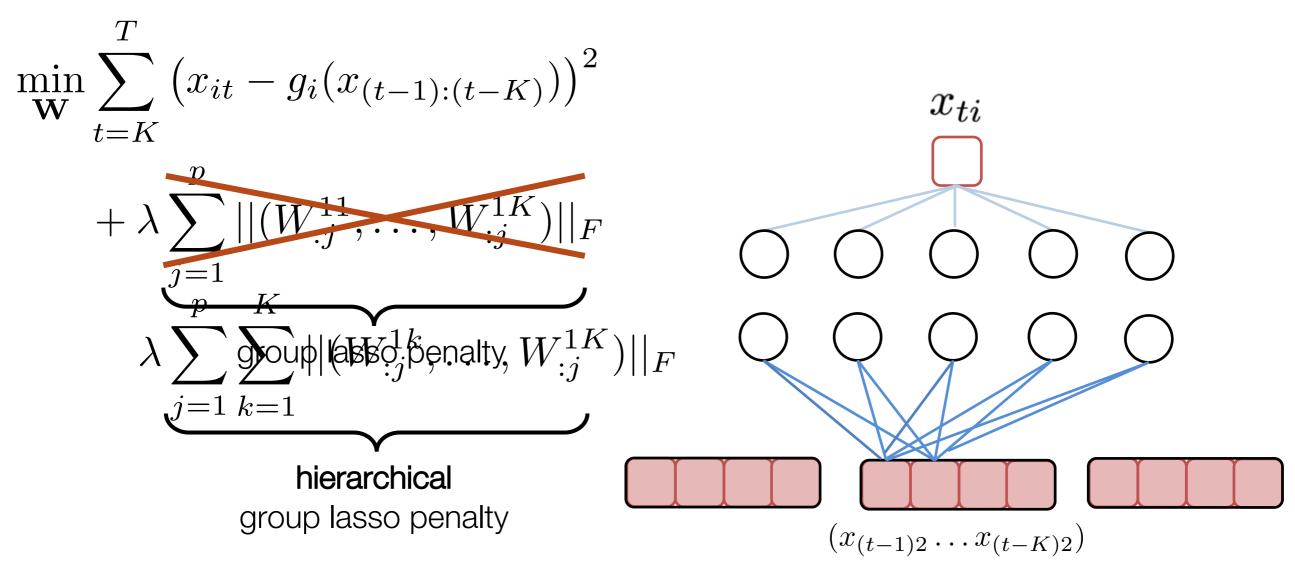




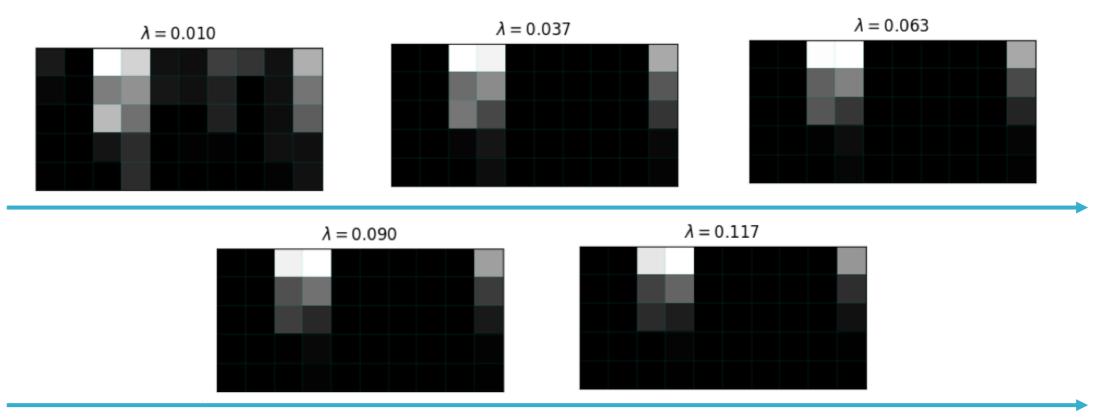




Lag selection via hierarchical group lasso

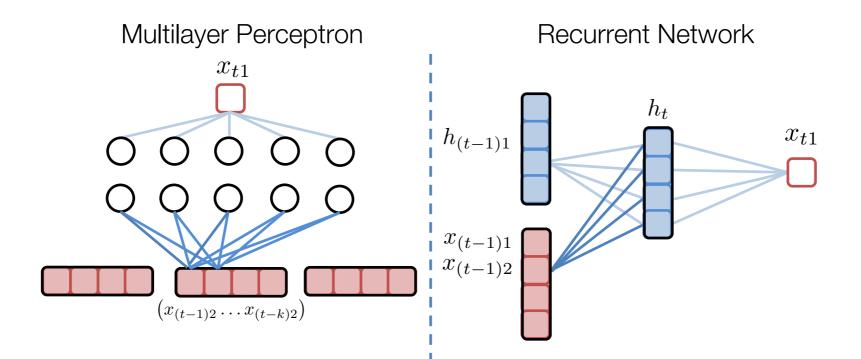


Lag selection results



increasing sparsity penalty λ

True



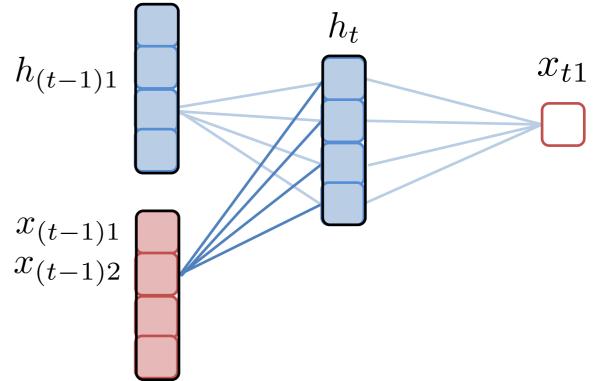
Long-range dependencies between series via nonlinear hidden variables

Generic RNN formulation

Hidden state evolution:

nonlinear fcn depending on architecture $h_t = f(x_t, h_{t-1}) \qquad \qquad h_{(t-1)1}$ hidden state capturing historical context

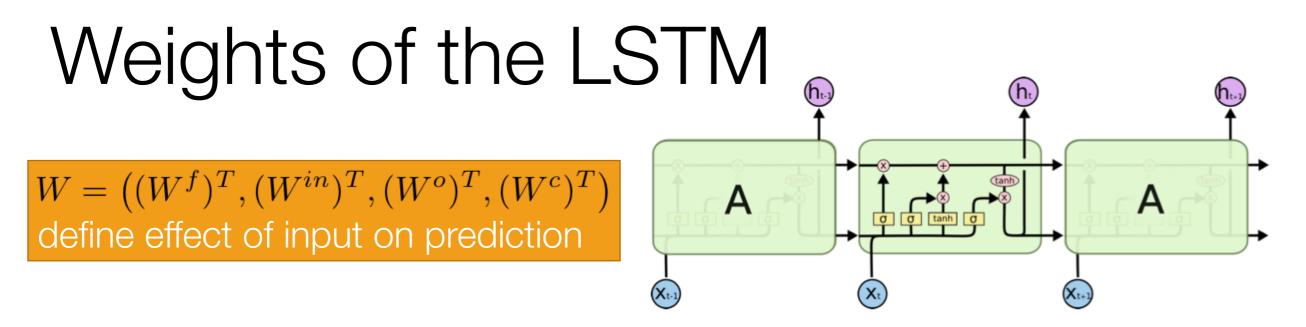
Linear output layer (for simplicity): $x_{it} = w_O^T h_t + \epsilon_t$



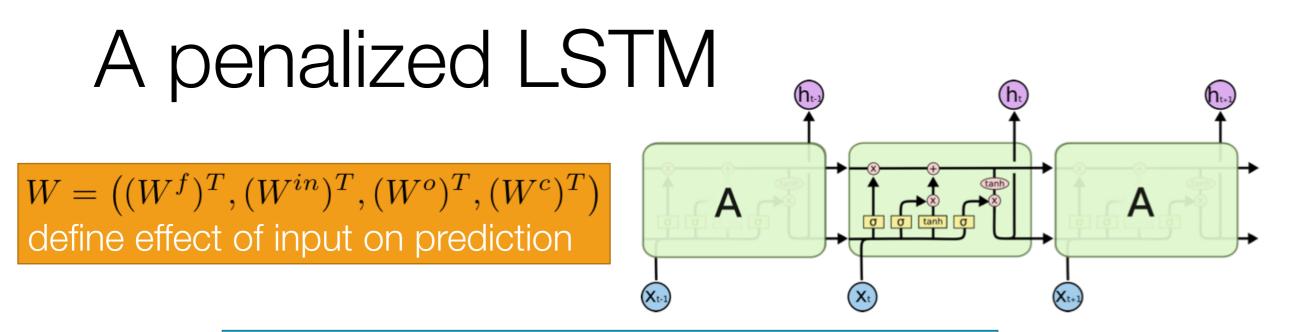
$\begin{array}{c} \text{LSTM specification} \\ \text{Introduce cell state } c_t \\ \text{in addition to } h_t \end{array} \right. \\ \end{array}$

forget gate
$$f_t = \sigma \left(W^f x_t + U^f h_{(t-1)} \right)$$

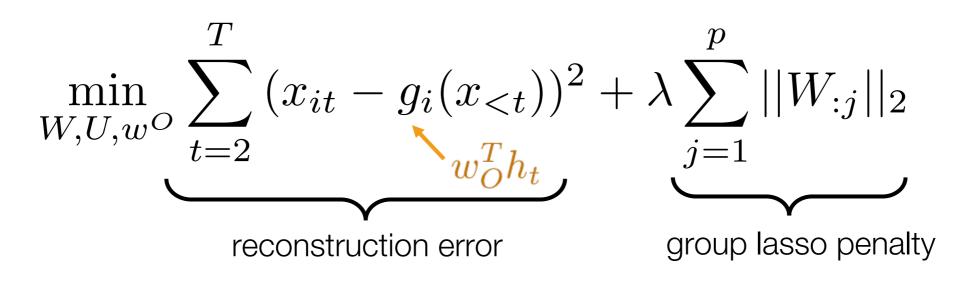
input gate $i_t = \sigma \left(W^{in} x_t + U^{in} h_{(t-1)} \right)$
output gate $o_t = \sigma \left(W^o x_t + U^o h_{(t-1)i} \right)$
Control how cell state is
updated and transferred to
predicted hidden state
cell state
evolution $c_t = f_t \odot c_{t-1} + i_t \odot \sigma \left(W^c x_t + U^c h_{(t-1)} \right)$
hidden state $h_t = o_t \odot \sigma(c_t)$



$$\begin{array}{ll} \text{forget gate} & f_t = \sigma \left(W^f x_t + U^f h_{(t-1)} \right) \\ \text{input gate} & i_t = \sigma \left(W^{in} x_t + U^{in} h_{(t-1)} \right) \\ \text{output gate} & o_t = \sigma \left(W^o x_t + U^o h_{(t-1)i} \right) \\ \text{cell state} & c_t = f_t \odot c_{t-1} + i_t \odot \sigma \left(W^c x_t + U^c h_{(t-1)} \right) \\ \text{hidden state} & h_t = o_t \odot \sigma(c_t) \\ \text{evolution} \end{array}$$



series j does not Granger cause series i if *jth column of weights W is 0*



DREAM3 challenge

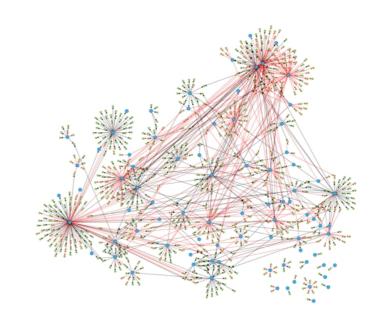
Difficult **non-linear dataset** used to benchmark Granger causality detection

Simulated gene expression and regulation dynamics for:

- 2 E.Coli and 3 Yeast
- 100 series (network size)
- 46 replicates
- 21 time points

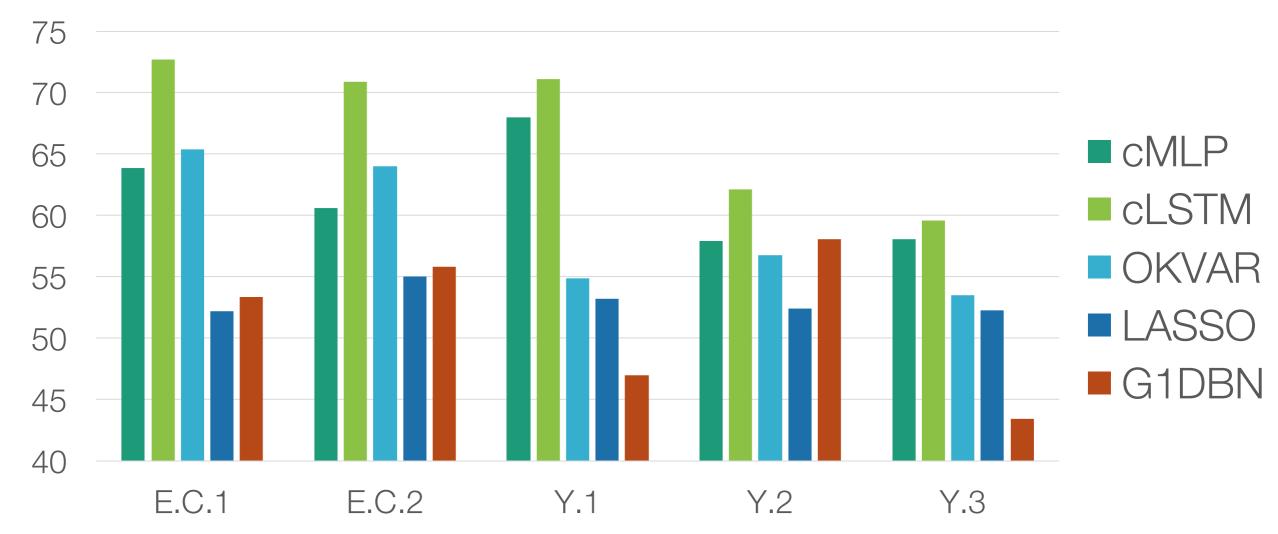
Very different structures

Structure extracted from currently established gene regulatory networks



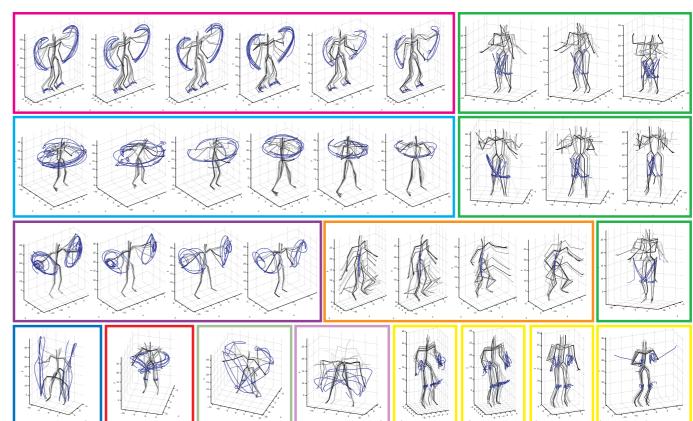
DREAM3 results

% AUROC

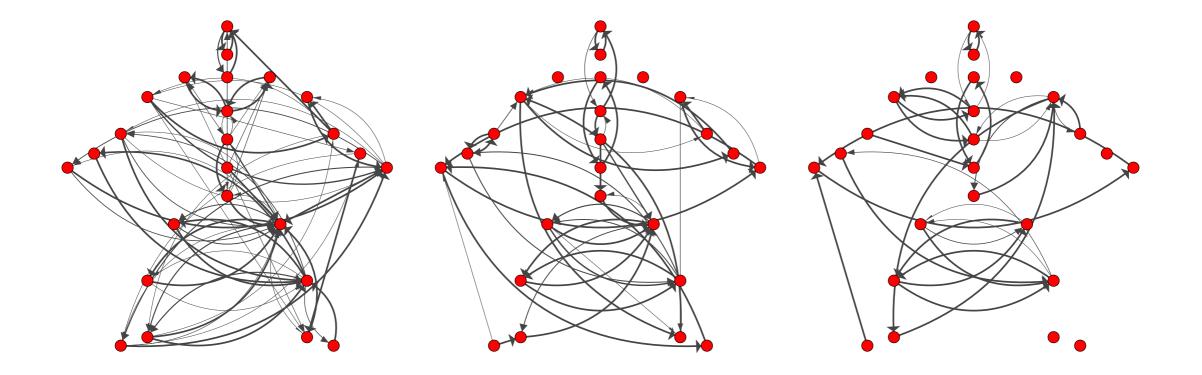


Interactions of the human body

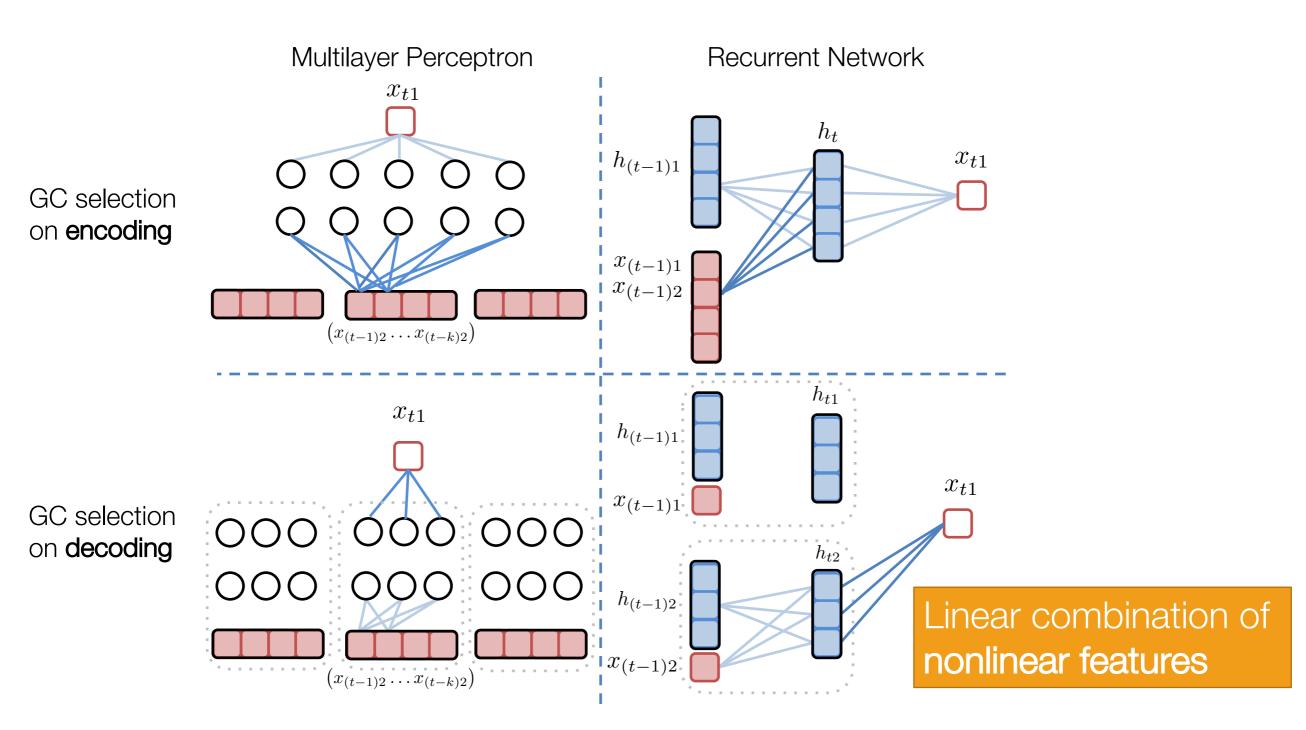
6 videos, 56 dims 2000 total time points

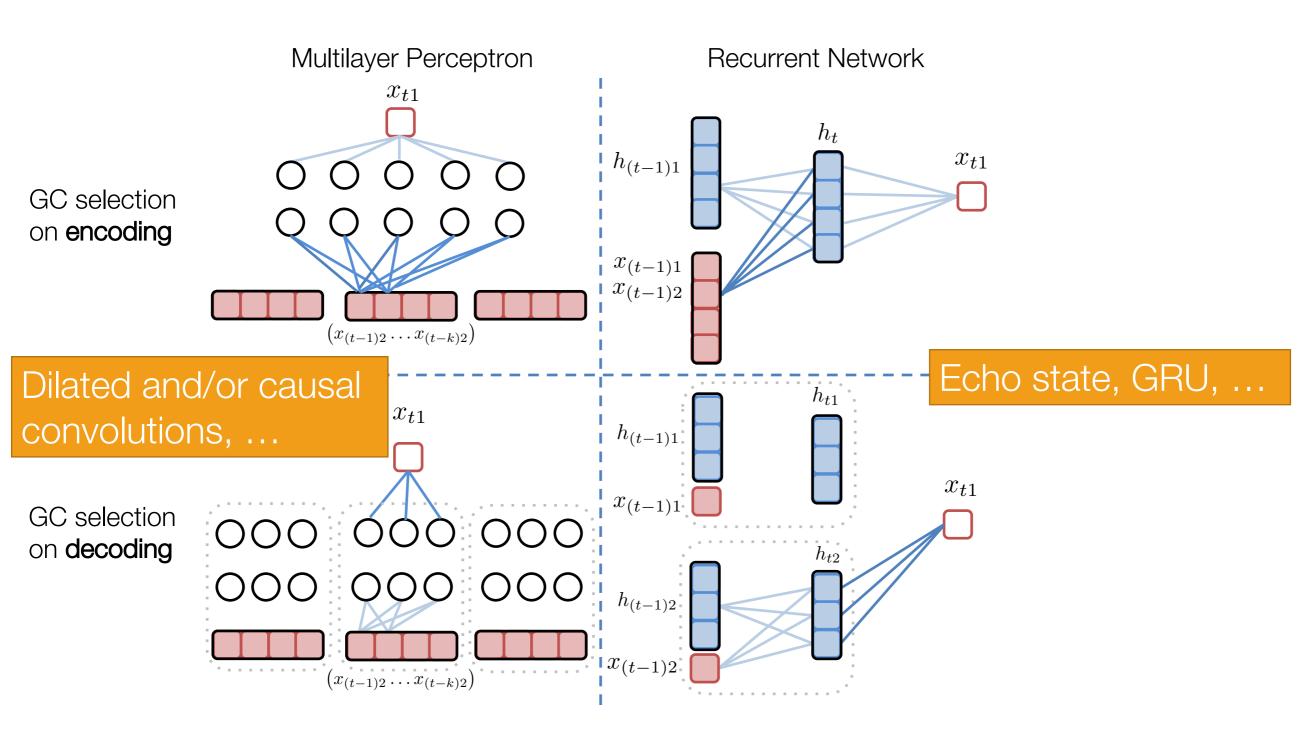


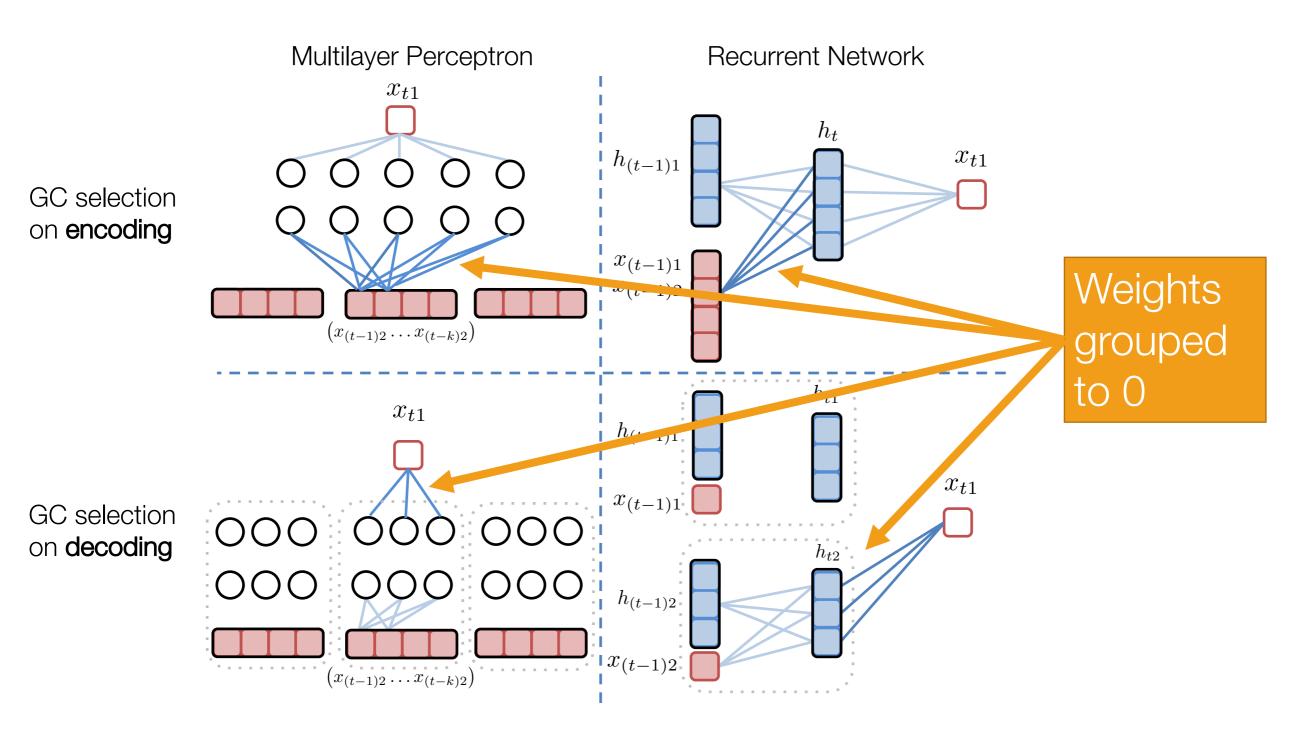
Learned MoCap interactions



increasing sparsity penalty λ







Summary

Deep learning offers **tremendous opportunities** for modeling complex dynamics

• Traditional approaches often limited to linear, Gaussian, stationary, ...

But, time series problems are much vaster than just prediction with large corpora

Characterizing dynamics

Efficiently sharing information

Interpretable interactions Non-stationarity & measurement bias

Credit for the hard work...

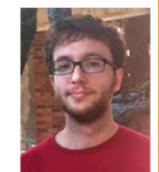
lan Covert (CSE PhD) (F

Nick Foti (Research Scientist)

Chris Glynn (Postdoc, Asst Prof at UNH)

Alec Greaves-Tunnell (Stat PhD)

I Mike Hughes (Brown CS PhD, postdoc at Harvard)



Alex Tank (Stat PhD)

Chris Xie (CSE PhD)

Shirley You Ren (Stat PhD, Data Scientist at Microsoft)