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Modern sources of time series
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Until recently, ML (mostly) ignored time series

lt’s hard!

# parameters (naively) grows rapidly with
- # of series
. | More
- complexity of dynamics captured data

Algorithms more computationally intensive

More compute

Theory not applicable because typically
assume no time dependencies



Importance of modeling dynamics

Independent
observations

Accuracy 50%

With dynamic model, can get improved prediction accuracy



Now time series are “in”

Web-scale
time series
/ seq. data

Large
compute

learning
advances

Reinforcement Speech
learning generation

- LSTMs

| GRUS Machine Speech
translation recognition

— wavenet

Medical
records /
seg2seq healthcare




But, success also relies on...

LOtS Of e | ots of correspondence data

e | ots of trials of a robot navigating every part of
the maze

replicated
Series e | ots of transcribed audio

Demand forecasting of new item:
Tons of data, but not for question
of interest



But, success also relies on...

LOtS Of e | ots of correspondence data
g e | ots of trials of a robot navigating every part of
replicated g RIS S
SEeries * | ots of transcribed audio

Maﬂageab|e e Seen this structure in a maze before

® Seen these words in this context before /.’
COnteXtual ¢ Seen patient with these symptoms and test # Jﬁ, ; .
memory results before 1% ,
Beragnshfosersitageof csmdiem:

dipnerapertaureUtiBat pasiruestion
@ afiteresimidity, wind direction,
wind speed, altimeter, sea level
pressure, precipitation, visibility,
wind gust, cloud coverage, cloud
height, present weather code



But, success also

L ots of
replicated
Series

Manageable

contextual
memory

Clear
prediction
objective

e | ots of correspondence data

e | ots of trials of a robot navigating every part of
the maze

¢ | ots of transcribed audio

e Seen this structure in a maze before
e Seen these words in this context before

¢ Seen patient with these symptoms and test
results before

¢ \Word error rate for speech recognition
¢ BLEU score for machine translation
¢ Reward function in reinforcement learning

relies on...



Beyond prediction on big data

Characterizing
dynamics

Efficiently
sharing
iInformation

Non-stationarity
& measurement
bias

Interpretable
INnteractions




Spectral analysis
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- Frequency domain analysis
- Local stationarity
- Time-frequency analysis




Spectral analysis of neuroimaging data

Magnetoencephalography (MEG) data of brain activation over time

Goal:




Discovering human motion behaviors

Parse videos into underlying behaviors without training labels



Recording
modeled as
switches
between
simple
behaviors

angle (deg)
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——10rso pos.
——neck
—— waist x
——waist y
——right arm
——left arm
——right wrist
— left wrist
—right leg
—left leg
——right foot
— left foot




Automatically parsing large collections

Ballet Playground Swing Tai Chi

Arm Circle

Dribble Swordplay

Knee Raise Lambada Toe Touch



|[deas appear In many domains...

Example applications:
« Parsing EEG recordings

Speech segmentation

 \Volatility regimes in financial time
series L
« (Genomics
£ ettt st dalin it bt caliionin
" e o sha e ol sz
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Beyond prediction on big data

Characterizing
dynamics

Efficiently
sharing
iInformation

Non-stationarity
& measurement
bias

Interpretable
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Predicting demand for products




L ong-range and cold-start forecasting

L.ong-range forecasting
Cold start (new product)

Prediction task with lots of

data, but not much for
guestion of interest




Leveraging low-dim structure + side Info

o | , Product-
Low-rank description of observed Function approx. via specific
years of available products neural network meta data
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Xie, Tank, and Fox, NIPS Time Series Workshop 2016.



Analysis of Wikipedia data

4500 Wikipedia articles
Daily page traffic counts 2008-2014

Per article, 1 to 6 years of data
- 29,000 columns

Features = tf-idf of article summary
- 22,000 dimensions, but sparse

Law

Main article: Law of Canada

Canada's judiciary plays an importantrole in interpreting laws and has the power to strike
down laws that violate the Constitution. The Supreme Court of Canada Is the highest
court and final arbiter and IS led by the Right Honourable Madam Chief Justice Beverley
McLachlin, P.C_lts nine members are appointed by the Governor General on the advice of
the Prime Minister. All judges atthe superior and appellate levels are appointed by the
Governor General on the advice of the prime minister and minister of justice, after
consultation with non-governmental legal bodies. The federal cabinet appoints justices to
superior courts at the provincial and territorial levels. Judicial posts at the lower provincial
and territorial levels are filled by their respective governmenis {see Court system of The Supreme Court of Canada in &
Canada for more detail). Ottawa, west of Parliament Hill,

Common law prevails everywhere except in Quebec, where civil law predominates.

Crniminal law Is solely a federal responsibility and is uniform throughout Canada. Law enforcement, including criminal counts, is
a provincial responsibility, but in rural areas of all provinces except Ontario and Quehec, policing is contracted to the federal
Royal Canadian Mounted Police (RCMP).

50 100 150 200 250 300 350

(Wiki Trends: Georges St-Pierre)

Xie, Tank, and Fox, NIPS Time Series Workshop 2016.




Long-range forecasts

Apollo 2014
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Long-range forecasts

Economics 2014
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Cold start forecasts

Calvin Coolidge 2014
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1.0

—0.5
0

forecasts

List of NCAA Men's Division | Basketball champions 2014
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1265 Cedar Way
< Pre-Foreclosure

$250.000

3467 Maple Street

& For Rent $2,500
Rent Zestimate' $2,430 .
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1265 Oak Way

¥Z de-l Sold on 3/31/13

3451 Alder Street |
@ For Sale $266,000

Zestimate' $260,000 ‘
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Census 2010
Seattle, Washington

Census Tracts
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Census tracts in
Seattle, WA

What is the value of housin
In each region over time"



Challenge: Spatiotemporally sparse data

097 0.99

0.41
011

Average # of monthly house sales

Fraction of tracts




Challenge: Spatiotemporally sparse data
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Solution: Cluster regions based on
underlying price dynamics
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Seattle City analysis
(17 years, 140 tracts, 125k transactions)

Improvement over Case Shiller

18 - nnudif
IN house sales predictions

16
14
12
10

3

B Mean APE

= 90% APE

O N B~ O
|~ |

[
Densest 5% Middle 50% Sparsest 5%
Ren, Fox, and Bruce, AOAS 2017



Recap: Mechanisms for coping with limited data
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sparse directed interactions

<
switching between simpler low-dimensional embeddings

dynamics



Beyond prediction on big data

Characterizing
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Efficiently
sharing
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& measurement
bias
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Another data-scarce study:
Dynamics of homelessness

* ok >k k

- Counts occur on single night in
January

VT

- Count method varies from metro
to metro and across time

2017

- Observe most of those In

_ POINT-IN-TIME COUNT
shelters and only a fraction of OF HOMELESS PERSONS
those on the streets

- % sheltered varies largely measurement bias!

between metros



What is the 1-yr-ahead forecast of homeless population?

San Francisco / Bayesian model-based

9000. approach accounts for:

» Imperfect measurement
Y mechanism and changes
IN count quality

# homeless
oo
o
o
o

* Predicted increase In
total population
(nonstationary process)

7000-

2012 2014 2016
Year
Glynn and Fox, arXiv 2017
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maintain

PostCentralGyrus-lh
FEF-Ih >/< PostCentralGyrus-rh

- ParaCentralGyrus-rh

“FEF-rh

/D AUD-rh

bankssts-rh

BostCatralGyrus-Ih ParaCentralGyrus-rh
FEF-Ih @ PostCentralGyrus-rh FEF-rh
IPS-rh

RTPJ-rh \/ AUD-rh
bankstss-rh

Functional networks in the brain

Gene regulatory networks



PostCentralGyrus-lh @ aracentralGyrus-th
FEF-lh >/< PostCentraIGyrus-fF O eEE-h
/D AUD-th
bankssts-rh
BostCatralGyrus-Ih ParaCentralGyrus-rh
FEF-Ih @ PostCentralGyrus-rh FEF-rh
IPS-rh

RTPJ-rh \/ AUD-rh
bankstss-rh

Functional networks in the brain

Interactions between players on the court
(Video of results from BenShitrit et al. ICCV 2011)

Gene regulatory networks



Discovering interactions between players

|dentify directed interactions
between players and ball

E.g., Position of point guard at

time t influences ball at time t+11




Granger causality selection — Linear model
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Granger causality selection — Linear model
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Granger causality selection — Linear model
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Granger causality selection — Linear model
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Granger causality selection — Linear model
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The issue with a linear approac

L] t . X ', ’
PostCentralGyrus-h ParaCentralGyrus-rh
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FEE-Ih /0 PostCentralGyrus-rh FEF-rh
IPS-rh
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Gene regulatory networks

bankstss-rh

Functional networks in the brain

Interactions between players on the court
(Video of results from BenShitrit et al. ICCV 2011)
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Modeling nonlinear dynamics
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|[dentifying Granger causality

O oF

iINvariant




Using penalized neural networks
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A multilayer perceptron (MLP) approach

Lt

T
O O O O O

MLP

L ; i l HEEEE lag K past values
as Inputs

T(t—1):(t—K)




A multilayer perceptron (MLP) approach

Lt

L]
O O O O O difficult to identify

Granger causality with

W shared hidden units
L L BEEBES

T(t—1):(t—K)




A multilayer perceptron (MLP) approach

W | all g; must rely on
L] BEREE same set of lags

L(t—1):(t—K)




Penalized multilayer perceptron (MLP)

0)
ax 00000

loglike(Xqi,...,. %5 3 W1,...,WH

- A Z- nenalty(Wh £ 0) W

O

T(t—1):(t—K)



Specifying the MLP — function g

Linear output decoder:

Tyg = thL + €4 D
Layer £ hidden values: /NO O O Q O

hy = o (Wohy™! +b°)

Layer 1 hidden values: /7 >
K
Wl =0 (Z Wike, ;. + bl)

- e

T(t—1):(t—K)




Disentangling input to output effects
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Disentangling input to output effects

series | does not Granger
cause series I if group |
weights are O

place group-wise penalty
on layer 1 weights

group inputs by:

( Klags of series | )

(m(t—1)2 ‘e ﬂf(t—K)z)



Penalized multilayer perceptron (MLP)

reconstruction error
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Algorithmic notes...

Often, focus of deep learning evaluation is on prediction error...
Can get away with optimizing approximately

SGD

We care about zeros of solution, so important to get very close
to a stationary point

Proximal gradient descent with line search



Simulated results — MLP
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Lag selection via hierarchical group lasso
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| ag selection results “

A=0.037 A=0.063
L] =
“
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Multilayer Perceptron
L1

66000

(Ta-1)2- - T(—ky2)

Recurrent Network

he

h—1n L1

L(t—1)1
L(t—1)2

Long-range dependencies

between series via
nonlinear hidden variables




Generic RNN formulation

Hidden state evolution:

nonlinear fcn depending on architecture

hy = f($t7 ht—l) -
-1 |
hidden state capturing historical context -
L(t—1)1
Linear output layer (for simplicity): T(t—1)2
T S
Lit = W ht —+ €+ |

CILII)=




L STM specification 5 o o

Introduce cell state c, [ A \_’_jj m 1IN A i

in addition to h, \ g > '\I Vad
&) *) &)

forget gate  f;
input gate 14
output gate oy

Ct

o (W + U hg-1))

o (Wm$t +U i’”’h(t_n) updated and transferred to
o (W"azt L ye h(t—l)z’) ) predicted hidden state

Control how cell state is

fe©ci1+it © o (Wery + Uhp_y))

hidden state hy = oy ® o(c)

evolution



Weights of the LSTM
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A penalized LSTM
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DREAMS challenge

Difficult non-linear dataset used to benchmark
Granger causality detection

Simulated gene expression and regulation dynamics for:
« 2 E.Coliand 3 Yeast
* 100 series (network size)
« 406 replicates
e 21 time points

Structure extracted from currently established gene regulatory networks
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DREAMS results

E.C.A

E.C.2

% AUROC

mcMLP

mcLSTM
B OKVAR
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H G1DBN



Interactions of the human body

6 videos, 56 dims

2000 total time points




Learned MoCap interactions

Increasing sparsity penalty A



Multilayer Perceptron Recurrent Network

Tt1 :
: hy
VA | Lt1
|
GC selection 00000 : -
on encoding |
: L(t—1)1
: L(t—1)2
(Z@-1)2- - Ta-r)2) :
————————————————————— I——————————————————————
I ) P
Lt1 :
1 R—1)1
| ] E
GC selection | (=11 o
on decoding OO0 000 : his
| )
000 000 000!, | __
: — Linear combination of
I [ ]
(o i B ) (112 nonlinear features
|




Multilayer Perceptron
L1

OO0 OO0

GC selection
on encoding

(T-1)2- - T(—ky2)

Dilated and/or causal

convolutions, .

GC select.ion 000 C{OI}) 000

on decoding
OO0 OO0 OO0

(T-1)2- - T(—k)y2)

Recurrent Network

he

Lt

Echo state, GRU, ...

L1




Multilayer Perceptron

L1
GC selection O O O O O
on encoding
(x(t—1)2 . -x(t—k)z)
Lt1

GC selection 000 C{OI}) 000

on decoding
OO0 00O 000

(T-1)2- - T(—k)y2)

T(t—1)1

ht—1)2

L(t—1)2

Recurrent Network

he

Lt

L1




Summary

Deep learning offers tremendous opportunities for
modeling complex dynamics

 [raditional approaches often limited to linear,
Gaussian, stationary, ...

Sut, time series problems are much vaster than
just prediction with large corpora

Non-stationarity

& measurement
bias

Characterizing Egrlgreirqu Interpretable
dynamics nformation interactions
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