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Modern sources of time series



Until recently, ML (mostly) ignored time series

It’s hard!

# parameters (naively) grows rapidly with
� # of series
� complexity of dynamics captured

Algorithms more computationally intensive

Theory not applicable because typically 
assume no time dependencies

More 
data

More compute



Importance of modeling dynamics

Independent 
observations

Time-dependent
observations

Accuracy 50% 90%

With dynamic model, can get improved prediction accuracy



Now time series are “in” 

Web-scale 
time series 
/ seq. data

Large 
compute

Deep 
learning 

advances 
Success

RNNs

LSTMs

GRUs

wavenet

seq2seq

...

Reinforcement 
learning

Speech 
generation 

Machine 
translation

Speech 
recognition

NLP
Medical 
records / 

healthcare



But, success also relies on…

• Lots of correspondence data

• Lots of trials of a robot navigating every part of 
the maze

• Lots of transcribed audio

Lots of 
replicated 

series

• Seen this structure in a maze before

• Seen these words in this context before

• Seen patient with these symptoms and test 
results before

Manageable 
contextual 
memory

Clear 
prediction 
objective

Demand forecasting of new item:
Tons of data, but not for question 
of interest



Demand forecasting of new item:
Tons of data, but not for question 
of interest

But, success also relies on…

• Lots of correspondence data

• Lots of trials of a robot navigating every part of 
the maze

• Lots of transcribed audio

Lots of 
replicated 

series

• Seen this structure in a maze before

• Seen these words in this context before

• Seen patient with these symptoms and test 
results before

Manageable 
contextual 
memory

Clear 
prediction 
objective

Extremely complicated context:
air temperature, dew point, 
relative humidity, wind direction, 
wind speed, altimeter, sea level 
pressure, precipitation, visibility, 
wind gust, cloud coverage, cloud 
height, present weather code



But, success also relies on…

• Lots of correspondence data

• Lots of trials of a robot navigating every part of 
the maze

• Lots of transcribed audio

Lots of 
replicated 

series

• Seen this structure in a maze before

• Seen these words in this context before

• Seen patient with these symptoms and test 
results before

Manageable 
contextual 
memory

• Word error rate for speech recognition

• BLEU score for machine translation

• Reward function in reinforcement learning

Clear 
prediction 
objective



Beyond prediction on big data

Characterizing 
dynamics

Efficiently 
sharing 

information

Interpretable 
interactions

Non-stationarity 
& measurement 

bias



Spectral analysis

- Frequency domain analysis
- Local stationarity
- Time-frequency analysis



Spectral analysis of neuroimaging data
Magnetoencephalography (MEG) data of brain activation over time

Ti
m

e
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m

e

Goal: 
Infer functional 
connectivity



Discovering human motion behaviors

Parse videos into underlying behaviors without training labels 



Recording 
modeled as 
switches 
between 
simple 
behaviors
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Challenges:	
•  Segmenta@on into behaviors

•  Parameters per behavior

•  How many behaviors?
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Automatically parsing large collectionsJOINT MODELING OF MULTIPLE TIME SERIES VIA THE BETA PROCESS 31

Ballet Dance Playground Swing Tai Chi

Climb Jump Jack Arm Circle Squat

Slide Step Cartwheels Dribble Swordplay

Boxing Knee Raise Lambada Toe Touch

Fig 7. Analysis of 124 MoCap sequences by interleaving of split-merge and data-driven
MCMC moves. 16 exemplars of the 33 recovered behaviors are displayed, with text label
applied post-hoc to aid human interpretation. Skeleton trajectories were visualized from
contiguous segments of at least 1 second of data as segmented by the sampled state sequence
z(i). Boxes group segments from distinct sequences assigned to the same behavior type.

number of states set for these parametric alternatives.
The BP-AR-HMM’s accuracy is due to better recovery of the sparse be-

havior sharing exhibited in the data. This is shown in Fig. 6, where we com-
pare estimated binary feature matrices for all methods. In contrast to the
sequence-specific variability modeled by the BP-AR-HMM, both the GMM
and HMM assume that each sequence uses all possible behaviors, which re-
sults in the strong vertical bands of white in almost all columns. Overall, the
BP-AR-HMM produces superior results due to its flexible feature sharing
and allowance for unique behaviors.

9.4. Exploring a large motion capture dataset. Finally, we consider a
larger motion capture dataset of 124 sequences, all “Physical Activities &
Sports” examples from the CMU MoCap dataset (including all sequences in
our earlier small dataset). The median length is T = 95.5 timesteps (mini-
mum 16, maximum 1484). Human-produced segmentations for ground-truth
comparison are not available for data of this scale. Furthermore, analyzing
this data is computationally infeasible without split-merge and data-driven
birth-death moves. For example, the small dataset required a special “5

imsart-aoas ver. 2012/04/10 file: MainAOAS.tex date: May 8, 2014



Ideas appear in many domains…

Example applications:
• Parsing EEG recordings

• Speech segmentation

• Volatility regimes in financial time 
series

• Genomics

• … 
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Beyond prediction on big data

Characterizing 
dynamics

Efficiently 
sharing 

information

Interpretable 
interactions

Non-stationarity 
& measurement 

bias



Predicting demand for products



Long-range and cold-start forecasting

Long-range forecasting
Cold start (new product)

time

Prediction task with lots of 
data, but not much for 
question of interest



Leveraging low-dim structure + side info

+
�

Xie, Tank, and Fox, NIPS Time Series Workshop 2016.

Function approx. via 
neural network

Product-
specific 
meta data

Low-rank description of observed 
years of available products



Analysis of Wikipedia data

4500 Wikipedia articles

Daily page traffic counts 2008-2014

Per article, 1 to 6 years of data
à29,000 columns

Features = tf-idf of article summary 
à 22,000 dimensions, but sparse

(Wiki Trends: Georges St-Pierre)

Xie, Tank, and Fox, NIPS Time Series Workshop 2016.



Long-range forecasts

Predicted

True

Apollo 2014



Long-range forecasts

Economics 2014



Cold start forecasts

Calvin Coolidge 2014



Cold start forecasts

List of NCAA Men's Division I Basketball champions 2014



modeling a local housing index



Census tracts in 
Seattle, WA
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Challenge: Spatiotemporally sparse data
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Challenge: Spatiotemporally sparse data6 Y. REN ET AL.
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Fig 2. A demonstration of the e↵ect of clustering: (a) and (b) show the posterior mean
( solid line) and 95% intervals ( shaded gray) for the latent price dynamics of a randomly
sampled census tract with abundant observations (dots), whereas (c) and (d) examine a
tract with sparse observations. Results are shown for models that either treat census tracts
independently ( left) or allow our Bayesian nonparametric clustering of tracts with similar
dynamics ( right) leading to narrower intervals, especially for tracts with few observations.

smoother embedded in an expectation maximization (EM) algorithm. For
this analysis and that of the remainder of the paper, our spatial granularity
of interest is a census tract. We compare the performance of this indepen-
dent model to one that jointly analyzes related tracts, where relatedness is
determined by a hierarchical clustering approach. The hierarchical clustering
is based on L2 distance between the independently Kalman smoothed esti-
mates of the latent state sequence. After performing the hierarchical cluster-
ing and cutting the tree at a certain level, we consider a multivariate latent
state model as in Eq. (3.3) where all tracts i falling in the same cluster have
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Fig 2. A demonstration of the e↵ect of clustering: (a) and (b) show the posterior mean
( solid line) and 95% intervals ( shaded gray) for the latent price dynamics of a randomly
sampled census tract with abundant observations (dots), whereas (c) and (d) examine a
tract with sparse observations. Results are shown for models that either treat census tracts
independently ( left) or allow our Bayesian nonparametric clustering of tracts with similar
dynamics ( right) leading to narrower intervals, especially for tracts with few observations.

smoother embedded in an expectation maximization (EM) algorithm. For
this analysis and that of the remainder of the paper, our spatial granularity
of interest is a census tract. We compare the performance of this indepen-
dent model to one that jointly analyzes related tracts, where relatedness is
determined by a hierarchical clustering approach. The hierarchical clustering
is based on L2 distance between the independently Kalman smoothed esti-
mates of the latent state sequence. After performing the hierarchical cluster-
ing and cutting the tree at a certain level, we consider a multivariate latent
state model as in Eq. (3.3) where all tracts i falling in the same cluster have



Solution: Cluster regions based on 
underlying price dynamics20 Y. REN ET AL.
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Fig 6. Simulated latent price processes for 20 census tracts from 4 clusters. Traces within
each plot correspond to specific census tracts in each cluster.

To evaluate the importance of the DP clustering beyond the benefits
provided by our hierarchical Bayesian dynamic model, we compare results
by enabling / disabling clustering in our proposed model. For the latter, we
fixed each census tract to form its own cluster and simply did not resample
the cluster indicators in our MCMC. Figure 10 shows the test set RMSE for
predicting the latent trend x as a function of the number of observations in
the census tract. For tracts with fewer observations, the clustering method
provides substantial improvement in prediction error. As expected, when
observations are abundant, the improvement diminishes.

We also experimented with other simulation scenarios, summarized in
Table 2. When the latent factor processes have relatively large factor loadings
(large µ�) leading to large noise variance on the latent price dynamics, the
improvement in predicting latent trends x are very significant compared
to the model without clustering. However, even under such scenarios, the
improvement in predicting the observations yi,t,l themselves is not as large

Discover 
groups of 
tracts with 
correlated 
dynamics

Ren, Fox, and Bruce, AOAS 2017
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Fig 13. Under the MAP sample, cluster-average intrinsic price dynamics computed by
averaging x1:T,i over all i with zi = k for k = 1, . . . , 16. The color scheme is the same as
in Figure 12.

Table 3
For our predictive performance comparison summarized in Table 4, the number of tracts
and individual houses (in test set) that rely on using city, zip code, or tract-level indices

with the Case-Shiller method. Our Bayesian method always uses a tract-level index.

Case-Shiller Case-Shiller Case-Shiller Bayesian
City Zip Code Census Tract Census Tract

# tracts using 11 121 8 140
# observations using 1,294 26,576 3,248 31,118

there is a computable index that can serve as xt,i in our prediction. That is,
we use the finest resolution Case-Shiller index available at any house location
to predict house prices. In Table 3, we summarize the number of house-level
predictions that are based on the Case-Shiller city, zip code, or tract level
indices; we also include the number of tracts for which our analyses relied
on city and zip code levels, or were able to use tract-level indices directly.

Our Bayesian model can successfully produce value indices for all tracts.
To predict house-level prices, we use the posterior predictive distribution

Seattle City analysis 
(17 years, 140 tracts, 125k transactions)
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Fig 11. Estimated global trend using the seasonality decomposition approach of Cleveland
et al. (1990), after adjusting for hedonic e↵ects.
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latent trend from the global trend. Blue (1) represents a small deviance while red (16)
represents the largest.

hedonic e↵ects as in Eq. (3.4). The estimated hedonic e↵ects together with
Case-Shiller index are then used to predict the house prices. Due to the
scarcity of repeat sales observations localized at tract level, the Case-Shiller
index can only be computed at 8 of the 140 tracts. To maintain a tract-level
comparison, if the Case-Shiller index is not available for a given tract, we
continue up the spatial hierarchy examining zip code and city levels until
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hedonic e↵ects as in Eq. (3.4). The estimated hedonic e↵ects together with
Case-Shiller index are then used to predict the house prices. Due to the
scarcity of repeat sales observations localized at tract level, the Case-Shiller
index can only be computed at 8 of the 140 tracts. To maintain a tract-level
comparison, if the Case-Shiller index is not available for a given tract, we
continue up the spatial hierarchy examining zip code and city levels until
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Recap: Mechanisms for coping with limited data

Time

Time

Time

Time

clusters and hierarchies sparse directed interactions

low-dimensional embeddings

Time

switching between simpler 
dynamics



Beyond prediction on big data

Characterizing 
dynamics

Efficiently 
sharing 

information

Interpretable 
interactions

Non-stationarity 
& measurement 

bias



Another data-scarce study:
Dynamics of homelessness

� Counts occur on single night in 
January

� Count method varies from metro 
to metro and across time

� Observe most of those in 
shelters and only a fraction of 
those on the streets

� % sheltered varies largely 
between metros

measurement bias!



What is the 1-yr-ahead forecast of homeless population? 
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San Francisco Bayesian model-based 
approach accounts for:

• Imperfect measurement 
mechanism and changes 
in count quality

• Predicted increase in 
total population 
(nonstationary process)

Glynn and Fox, arXiv 2017
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Gene regulatory networks

Why are interactions important?

FEF-lh
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IPS-rh
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switch

Functional networks in the brain



Gene regulatory networks

Why are interactions important?

Interactions between players on the court
(Video of results from BenShitrit et al. ICCV 2011)

FEF-lh

AUD-rh

IPS-rh

RTPJ-rh

PostCentralGyrus-lh ParaCentralGyrus-rh

FEF-rh

bankstss-rh

PostCentralGyrus-rh

FEF-lh

AUD-rh

PostCentralGyrus-lh

PostCentralGyrus-rh

ParaCentralGyrus-rh

FEF-rh

bankssts-rh

maintain

switch

Functional networks in the brain



Discovering interactions between players

Identify directed interactions 
between players and ball

E.g., Position of point guard at 
time t influences ball at time t+1



Granger causality selection – Linear model

+= +

xt xt-1 xt-2 etA1 A2

xt =
KX

k=1

Akxt�k + et



Granger causality selection – Linear model

+= +

xt xt-1 xt-2 etA1 A2

Series i does not Granger cause series j iff Aji,k = 0  ∀k  

Lag k interaction



Granger causality selection – Linear model

+= +

xt xt-1 xt-2 etA1 A2

series i

series j



Granger causality selection – Linear model

+= +

xt xt-1 xt-2 etA1 A2

max loglike(x1,…,xT ; A1,…,AK)
A1,…,AK

explain data well encourage (structured) 0’s

- λ ∑j,i penalty(Aji,1,…,Aji,K ≠ 0)



min
A1,...,AK

TX

t=K

 
xt �

KX

k=1

Akxt�k

!2

+ �
X

ij

||(Aji,1, . . . , Aji,K)||2,

Granger causality selection – Linear model

+= +

xt xt-1 xt-2 etA1 A2

reconstruction error group lasso penalty



Gene regulatory networks

The issue with a linear approach

Interactions between players on the court
(Video of results from BenShitrit et al. ICCV 2011)

FEF-lh

AUD-rh
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RTPJ-rh

PostCentralGyrus-lh ParaCentralGyrus-rh
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bankstss-rh

PostCentralGyrus-rh
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maintain

switch

Functional networks in the brain

What if interactions are 
nonlinear?



Modeling nonlinear dynamics

= +

xt

xt-1 xt-2

et

, , …

xt-1 xt-2

, , …

g1

g2

Nonlinear maps of 
past values



Identifying Granger causality

= +

xt

xt-1 xt-2

et

, , …

xt-1 xt-2

, , …

g1

g2

Series i not Granger 
causal of j if…

invariant



Using penalized neural networks

= +

xt

xt-1 xt-2

et

, , …

xt-1 xt-2

, , …

g1

g2
Penalize weights

Model 
using 
NNs



A multilayer perceptron (MLP) approach

x(t�1):(t�K)

xt

lag K past values 
as inputs

MLP

full set of outputs



A multilayer perceptron (MLP) approach

x(t�1):(t�K)

xt

difficult to identify 
Granger causality with 
shared hidden units 



A multilayer perceptron (MLP) approach

x(t�1):(t�K)

xt

all gi must rely on 
same set of lags



Penalized multilayer perceptron (MLP)

max
loglike(x1i,…,xTi ; W1,…,WL) 

- λ ∑j penalty(Wj ≠ 0)

For function gi

x(t�1):(t�K)



Specifying the MLP – function gi

xti = wT

O
hL

t
+ ✏t

Linear output decoder:

Layer l hidden values:

h1
t = �

 
KX

k=1

W 1kxt�k + b1
!

h`
t = �

�
W `h`�1

t + b`
�

Layer 1 hidden values:

x(t�1):(t�K)
lag-specific weights



Disentangling input to output effects

x(t�1):(t�K)(x(t�1)2 . . . x(t�K)2)



Disentangling input to output effects

group inputs by:
(  K lags of series j )

place group-wise penalty 
on layer 1 weights

series j does not Granger 
cause series i if group j 

weights are 0

(x(t�1)2 . . . x(t�K)2)



Penalized multilayer perceptron (MLP)
reconstruction error

group lasso penalty

weights from series j at all lags

(x(t�1)2 . . . x(t�K)2)

min
W

TX

t=K

�
xit � gi(x(t�1):(t�K))

�2

+ �
pX

j=1

||(W 11
:j , . . . ,W 1K

:j )||F



Algorithmic notes…
Often, focus of deep learning evaluation is on prediction error…
Can get away with optimizing approximately

We care about zeros of solution, so important to get very close 
to a stationary point

SGD

Proximal gradient descent with line search 



Simulated results – MLP 

VAR (linear) data

Lorenz-96 (nonlinear) data



Lag selection via hierarchical group lasso

group lasso penalty

(x(t�1)2 . . . x(t�K)2)

min
W

TX

t=K

�
xit � gi(x(t�1):(t�K))

�2

+ �
pX

j=1

||(W 11
:j , . . . ,W 1K

:j )||F

�
pX

j=1

KX

k=1

||(W 1k
:j , . . . ,W 1K

:j )||F

hierarchical
group lasso penalty



Lag selection results

increasing sparsity penalty !



Multilayer Perceptron Recurrent Network

�
x(t�1)2 . . . x(t�k)2

�

xt1

xt1h(t�1)1

x(t�1)2

x(t�1)1

ht

Long-range dependencies 
between series via 
nonlinear hidden variables



Generic RNN formulation

xt1h(t�1)1

x(t�1)2

x(t�1)1

htht = f(xt, ht�1)

hidden state capturing historical context

nonlinear fcn depending on architecture

xit = wT

O
ht + ✏t

Linear output layer (for simplicity):

Hidden state evolution:



LSTM specification

Introduce cell state ct

in addition to ht

ft = �
�
W fxt + Ufh(t�1)

�

it = �
�
W inxt + U inh(t�1)

�

ot = �
�
W oxt + Uoh(t�1)i

�

ct = ft � ct�1 + it � �
�
W cxt + U ch(t�1)

�

ht = ot � �(ct)

input gate

output gate

cell state 
evolution

forget gate

hidden state 
evolution

Control how cell state is 
updated and transferred to 
predicted hidden state



Weights of the LSTM

ft = �
�
W fxt + Ufh(t�1)

�

it = �
�
W inxt + U inh(t�1)

�

ot = �
�
W oxt + Uoh(t�1)i

�

ct = ft � ct�1 + it � �
�
W cxt + U ch(t�1)

�

ht = ot � �(ct)

input gate

output gate

cell state 
evolution

forget gate

hidden state 
evolution

define effect of input on prediction



A penalized LSTM

min
W,U,wO

TX

t=2

(xit � gi(x<t))
2 + �

pX

j=1

||W:j ||2

series j does not Granger cause series i if 
jth column of weights W is 0

reconstruction error group lasso penalty

define effect of input on prediction



DREAM3 challenge

Difficult non-linear dataset used to benchmark 
Granger causality detection

Simulated gene expression and regulation dynamics for:
• 2 E.Coli and 3 Yeast

• 100 series (network size)

• 46 replicates 

• 21 time points

Structure extracted from currently established gene regulatory networks

Very different 
structures



DREAM3 results
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Interactions of the human body
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6 videos, 56 dims
2000 total time points



Learned MoCap interactions

increasing sparsity penalty !



Multilayer Perceptron Recurrent Network

GC selection 
on encoding

GC selection 
on decoding

�
x(t�1)2 . . . x(t�k)2

�

xt1

xt1h(t�1)1

x(t�1)2

x(t�1)1

ht

xt1

�
x(t�1)2 . . . x(t�k)2

�

xt1x(t�1)1

x(t�1)2

ht2

h(t�1)2

h(t�1)1

ht1

Linear combination of
nonlinear features



Multilayer Perceptron Recurrent Network

GC selection 
on encoding

GC selection 
on decoding

�
x(t�1)2 . . . x(t�k)2

�

xt1

xt1h(t�1)1

x(t�1)2

x(t�1)1

ht

xt1

�
x(t�1)2 . . . x(t�k)2

�

xt1x(t�1)1

x(t�1)2

ht2

h(t�1)2

h(t�1)1

ht1Dilated and/or causal 
convolutions, …

Echo state, GRU, … 



Multilayer Perceptron Recurrent Network

GC selection 
on encoding

GC selection 
on decoding

�
x(t�1)2 . . . x(t�k)2

�

xt1

xt1h(t�1)1

x(t�1)2

x(t�1)1

ht

xt1

�
x(t�1)2 . . . x(t�k)2

�

xt1x(t�1)1

x(t�1)2

ht2

h(t�1)2

h(t�1)1

ht1

Weights 
grouped 
to 0



Summary

Deep learning offers tremendous opportunities for 
modeling complex dynamics
• Traditional approaches often limited to linear, 

Gaussian, stationary, …

But, time series problems are much vaster than 
just prediction with large corpora

Characterizing 
dynamics

Efficiently 
sharing 

information

Interpretable 
interactions

Non-stationarity 
& measurement 

bias
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