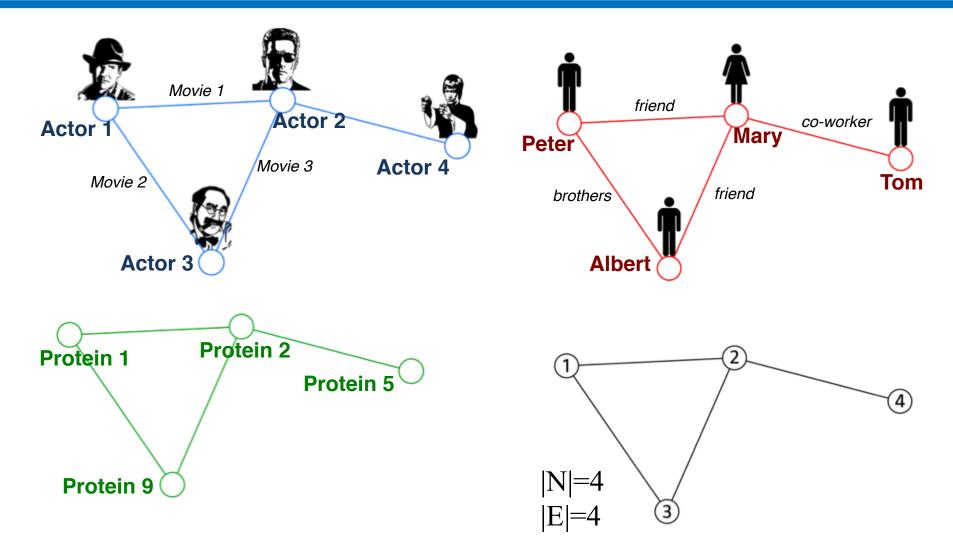
Graph Representation Learning with Graph Convolutional Networks

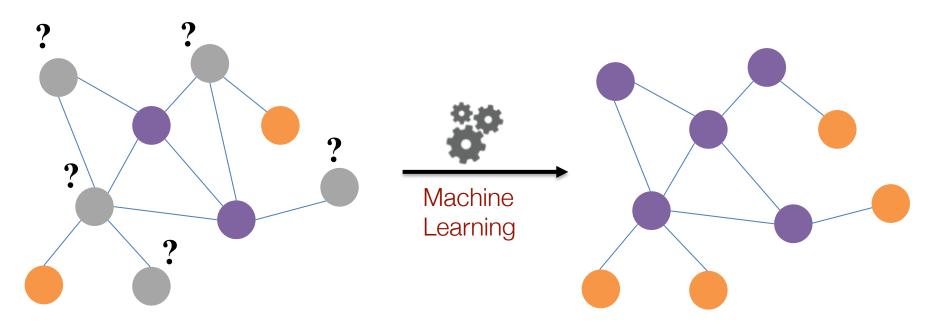
Jure Leskovec

Networks: Common Language



Jure Leskovec, Stanford University

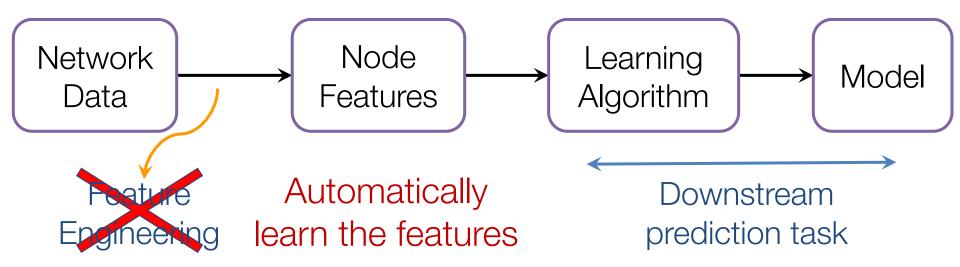
Example: Node Classification



Many possible ways to create node features:

- Node degree, PageRank score, motifs, ...
- Degree of neighbors, PageRank of neighbors, ...

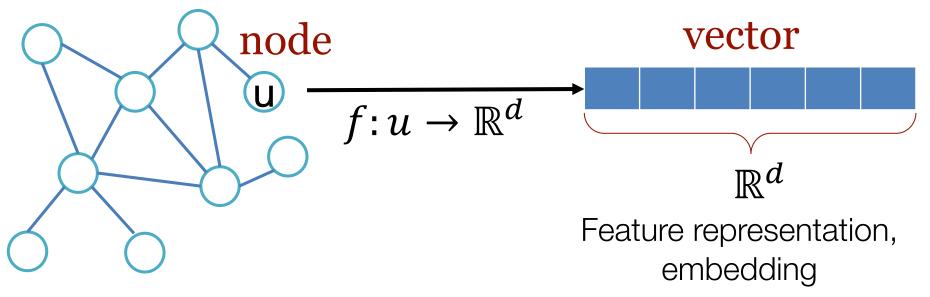
Machine Learning Lifecycle



(Supervised) Machine Learning Lifecycle: This feature, that feature. Every single time!

Feature Learning in Graphs

This talk: Feature learning for networks!



Jure Leskovec, Stanford University

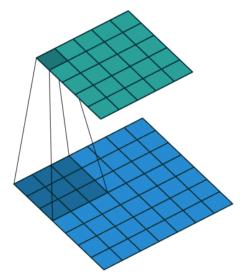
GraphSAGE: Graph Convolutional Networks

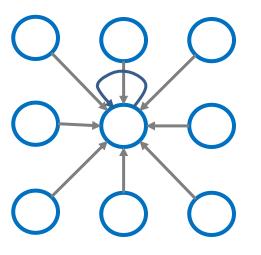
Inductive Representation Learning on Large Graphs.
 W. Hamilton, R. Ying, J. Leskovec. Neural Information Processing Systems (NIPS), 2017.
 Representation Learning on Graphs: Methods and Applications.
 W. Hamilton, R. Ying, J. Leskovec. IEEE Data Engineering Bulletin, 2017.

Jure Leskovec, Stanford University

From Images to Networks

Single CNN layer with 3x3 filter:





Image

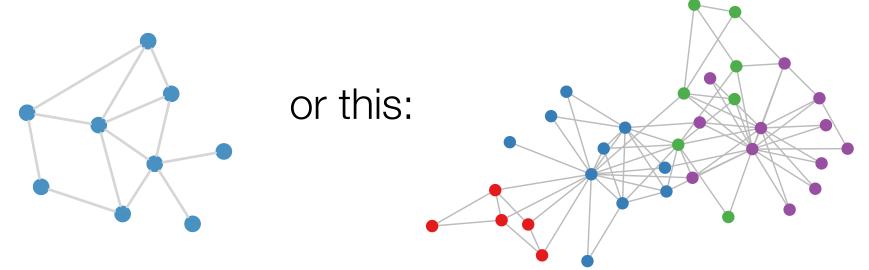
Graph

Transform information at the neighbors and combine it

- Transform "messages" h_i from neighbors: $W_i h_i$
- Add them up: $\sum_i W_i h_i$

Real-World Graphs

But what if your graphs look like this?

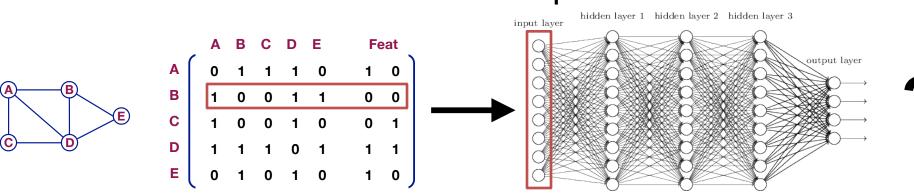


• Examples:

Social networks, Information networks, Knowledge graphs, Communication networks, Web graph, ...

A Naïve Approach

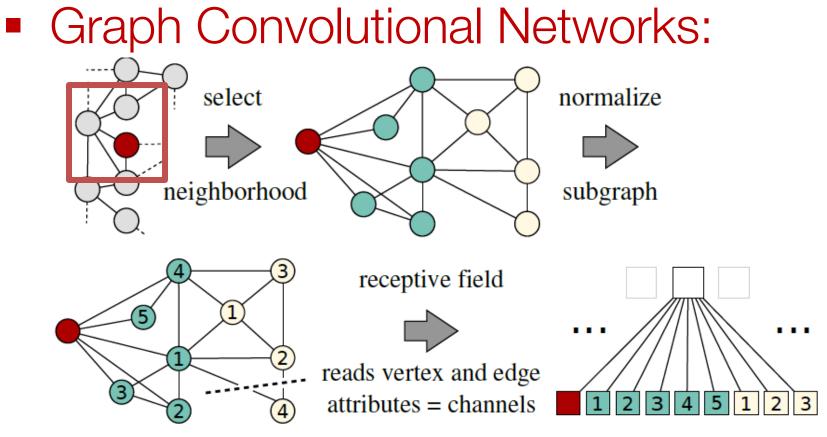
Join adjacency matrix and features
Feed them into a deep neural net:



Issues with this idea:

- O(N) parameters
- Not applicable to graphs of different sizes
- Not invariant to node ordering

Graph Convolutional Networks



Problem: For a given subgraph how to come with canonical node ordering?

Niepert, Mathias, Mohamed Ahmed, and Konstantin Kutzkov. "Learning convolutional neural networks for graphs." ICML. 2016. (image source)

Desiderata

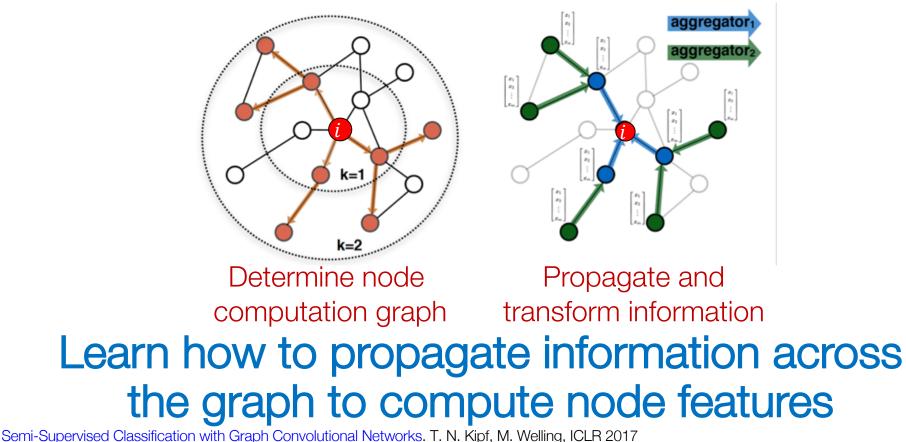
- Invariant to node ordering
 - No graph isomorphism problem
- Locality operations depend on the neighbors of a given node
- Number of model parameters should be independent of graph size
- Model should be independent of graph structure and we should be able to transfer the model across graphs

GraphSAGE

- Adapt the GCN idea to inductive node embedding
- Generalize beyond simple convolutions
- Demonstrate that this generalization
 - Leads to significant performance gains
 - Allows the model to learn about local structures

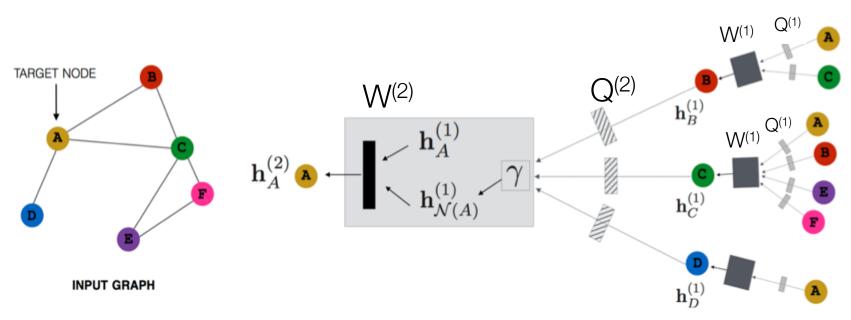
Idea: Graph defines computation

Idea: Node's neighborhood defines a computation graph



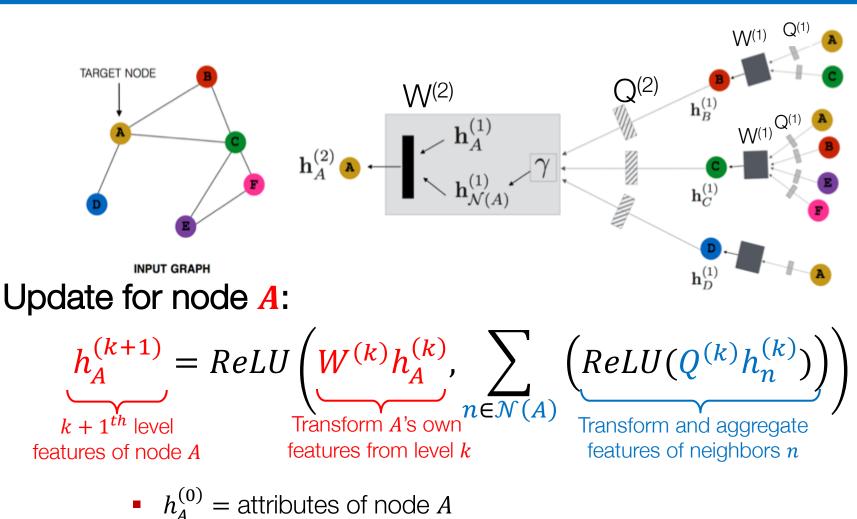
Jure Leskovec, Stanford University

Our Approach: GraphSAGE



- Each node defines its own computational graph
 - Each edge in this graph is a transformation/aggregation function

Our Approach: GraphSAGE



• $\Sigma(\cdot)$: Aggregator function (e.g., avg., LSTM, max-pooling)

Semi-Supervised Classification with Graph Convolutional Networks. T. N. Kipf, M. Welling, ICLR 2017

GraphSAGE Algorithm

initialize representations as features

 $\begin{aligned} & \text{for } v \in \mathcal{V} \text{ do} \\ & \mid \mathbf{h}_{\mathcal{N}(v)}^{k} \leftarrow \text{AGGREGATE}_{k}(\{\mathbf{h}_{u}^{k-1}, \forall u \in \mathcal{N}(v)\}); \\ & \mathbf{h}_{v}^{k} \leftarrow \sigma\left(\mathbf{W}^{k} \cdot \text{CONCAT}(\mathbf{h}_{v}^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^{k})\right) \end{aligned}$ end $\mathbf{h}_v^k \leftarrow \mathbf{h}_v^k / \|\mathbf{h}_v^k\|_2, \forall v \in \mathcal{V}_{ ext{concatenate neighborhood info with}}$ end current representation and propagate $\mathbf{z}_v \leftarrow \mathbf{h}_v^K, \forall v \in \mathcal{V}$ $= -\log\left(\sigma(\mathbf{z}_u^{\top}\mathbf{z}_v)\right) - \frac{1}{|Q|} \cdot \sum_{a=1}^{Q} \mathbb{E}_{v_n \sim P_n(v)}\log\left(-\sigma(\mathbf{z}_u^{\top}\mathbf{z}_{v_n})\right)$ classification (cross-entropy) loss

WL isomorphism test

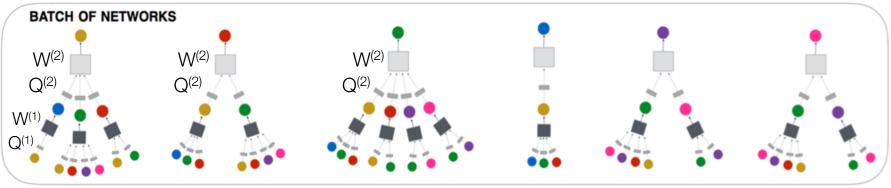
- The classic Weisfeiler-Lehman graph isomorphism test is a special case of GraphSAGE
- We replace the hash function with trainable neural nets:

$$\begin{split} \mathbf{h}_{v}^{0} \leftarrow \mathbf{x}_{v}, \forall v \in \mathcal{V} ; \\ \mathbf{for} \ k = 1...K \ \mathbf{do} \\ \middle| \ \mathbf{for} \ v \in \mathcal{V} \ \mathbf{do} \quad \mathsf{HASH} \\ \middle| \ \mathbf{h}_{\mathcal{N}(v)}^{k} \leftarrow \mathsf{AGGREGATE}_{k}(\{\mathbf{h}_{u}^{k-1}, \forall u \in \mathcal{N}(v)\}) \\ \middle| \ \mathbf{h}_{v}^{k} \leftarrow \mathbf{v} \left(\mathbf{W}^{k} \cdot \mathsf{CONCAT}(\mathbf{h}_{v}^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^{k}) \right) \\ end \\ \middle| \ \mathbf{h}_{v}^{k} \leftarrow \mathbf{h}_{v}^{k} / \|\mathbf{h}_{v}^{k}\|_{2}, \forall v \in \mathcal{V} \\ end \\ \mathbf{z}_{v} \leftarrow \mathbf{h}_{v}^{K}, \forall v \in \mathcal{V} \end{split}$$

Shervashidze, Nino, et al. "Weisfeiler-Lehman graph kernels." Journal of Machine Learning Research (2011). Jure Leskovec, Stanford

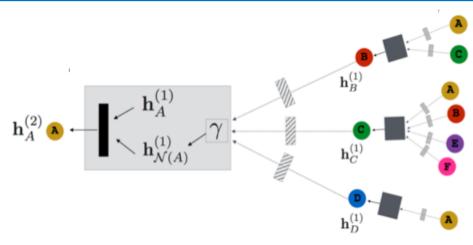
GraphSAGE: Training

Assume parameter sharing:



- Two types of parameters:
 - Aggregate function can have params.
 - Matrix W^(k)
- Adapt to inductive setting (e.g., unsupervised loss, neighborhood sampling, minibatch optimization)
- Generalized notion of "aggregating neighborhood"

GraphSAGE: Benefits

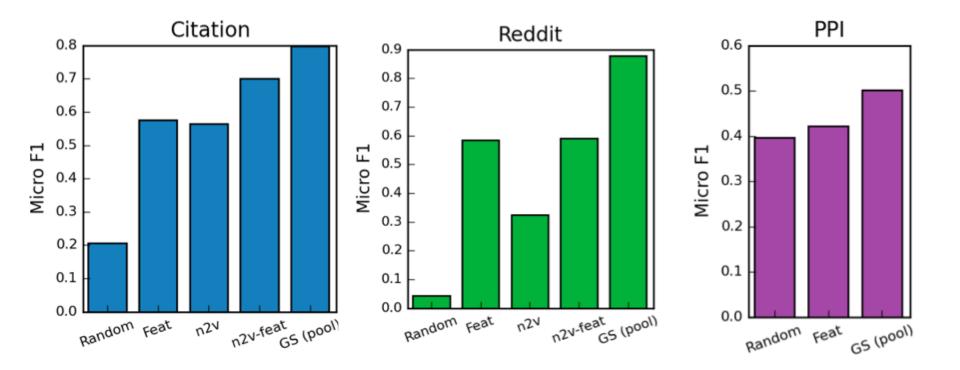


- Can use different aggregators γ
 - Mean (simple element-wise mean), LSTM (to a random order of nodes), Max-pooling (element-wise max)
- Can use different loss functions:
 - Cross entropy, Hinge loss, ranking loss
- Model has a constant number of parameters
- Fast scalable inference
- Can be applied to any node in any network

GraphSAGE Performance: Experiments

- Compare GraphSAGE to alternative methods
 - Logistic regression on features (no network information)
 - Node2vec, extended node2vec with features
- Task: Node classification, transfer learning
 - Citation graph: 302,424 papers from 2000-05
 - **Predict 6 subject codes;** Train on 2000-04, test on '05
 - Reddit posts: 232,965 posts, 50 communities, Sep '14
 - What community does a post belong to? Train on first 20 days, test on remaining 10 days
 - Protein-protein interaction networks: 24 PPI networks from different tissues
 - Transfer learning of protein function: Train on 20 networks, test on 2

GraphSAGE Performance: Results



GraphSAGE performs best in all experiments. Achieves ~40% average improvement over raw features.

Application: Pinterest

Human curated collection of pins

Very ape blue structured coat

Picked for you Street style

Hans Wegner chair Room and Board

Room & Board

This is just a beautiful #14 image for thoughts. Yay or nay, your choice.

Pin: A visual bookmark someone has saved from the internet to a board they've created. Pin: Image, text, link

Board: A greater collection of ideas (pins having sth. in common).

Jure Leskovec, Stanford University

Large-Scale Application

- Semi-Supervised node embedding for graph-based recommendations
 Graph: 2B pins, 1B boards, 20B edges
- Pins

Pinterest Graph

- Graph is dynamic: need to apply to new nodes without model retraining
- Rich node features: content, image

Task: Item-Item Recs

Related Pin recommendations

 Given user is looking at pin Q, what pin X are they going to save next:

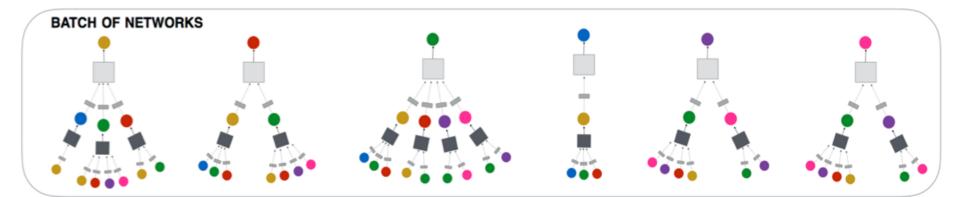
Query

Positive

Hard negative

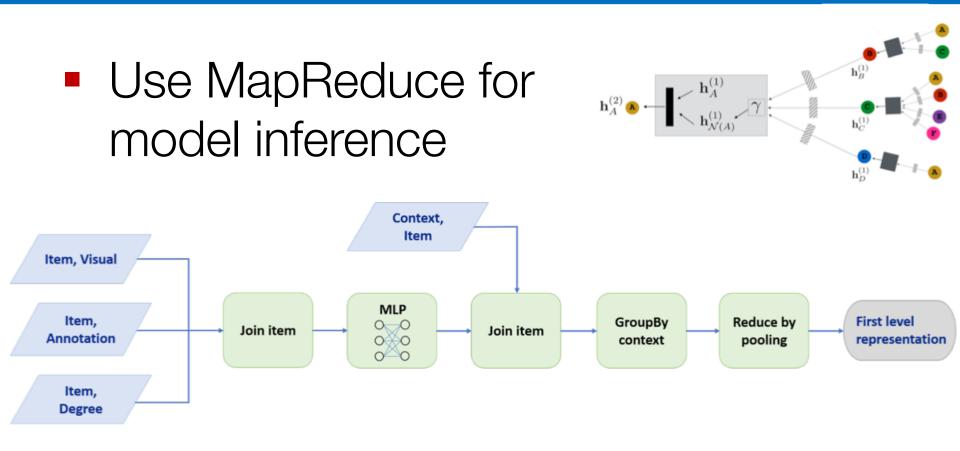
GraphSAGE Training

- Leverage inductive capability, and train on individual subgraphs
 - 300 million nodes, 1 billion edges,
 1.2 billion pin pairs (Q, X)



Large batch size: 2048 per minibatch

GraphSAGE: Inference



Avoids repeated computation

Experiments

Related Pin recommendations

 Given user is looking at pin Q, predict what pin X are they going to save next

Baselines for comparison

- Visual: VGG-16 visual features
- Annotation: Word2Vec model
- Combined: combine visual and annotation
- **RW:** Random-walk based algorithm
- GraphSAGE
- Setup: Embed 2B pins, perform nearest neighbor to generate recommendations

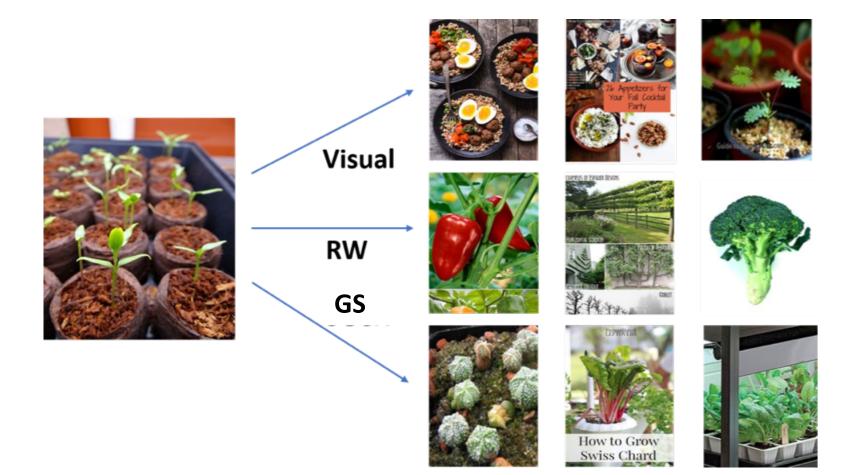
Results: Ranking

Task: Given Q, rank X as high as possible among 2B pins

- Hit-rate: Pct. P was among top-k
- MRR: Mean reciprocal rank

Method	Hit-rate	MRR
Visual	17%	0.23
Annotation	14%	0.19
Combined	27%	0.37
GraphSAGE	46%	0.56

Example Recommendations



GraphSAGE: Summary

- Graph Convolution Networks
 - Generalize beyond simple convolutions
- Fuses node features & graph info
 - State-of-the-art accuracy for node classification and link prediction.
- Model size independent of graph size; can scale to billions of nodes
- Largest embedding to date (3B nodes, 20B edges)
 Leads to significant performance gains

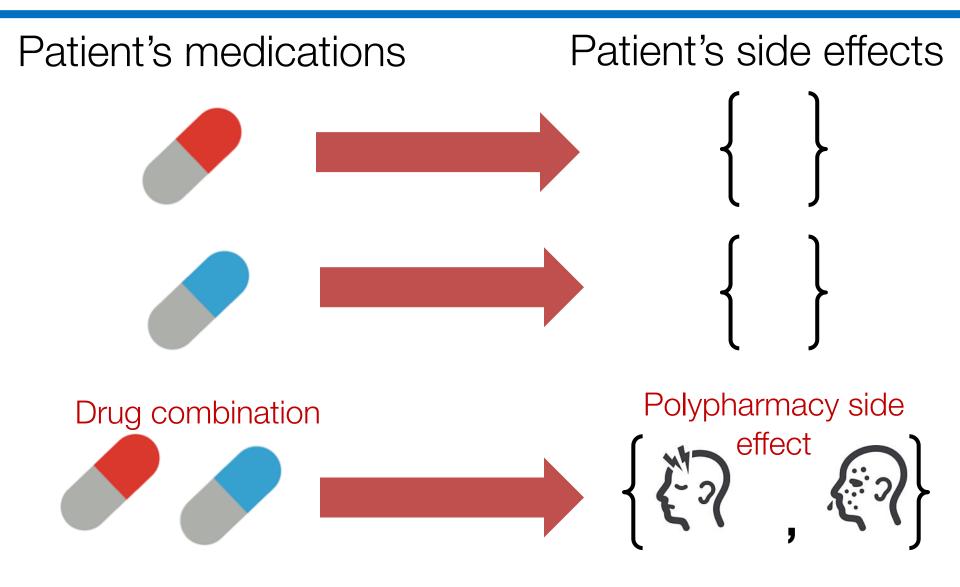
How can this technology be used for biomedical problems?

Two examples:

- Pairs of nodes: Predicting side-effects of drug combinations
- Subgraph prediction: Predicting which drug treats what disease

Modeling polypharmacy side effects with graph convolutional networks. M. Zitnik, M. Agrawal, J. Leskovec. BioArxiv, 2017. Jure Leskovec, Stanford University

Polypharmacy Side Effects



Polypharmacy Side Effects

 Polypharmacy is common to treat complex diseases and co-existing conditions [S]

- High risk of side effects due to interactions
- 15% of the U.S. population affected
- Annual costs exceed \$177 billion
- Difficult to identify manually:
 - Rare, occur only in a subset of patients
 - Not observed in clinical testing

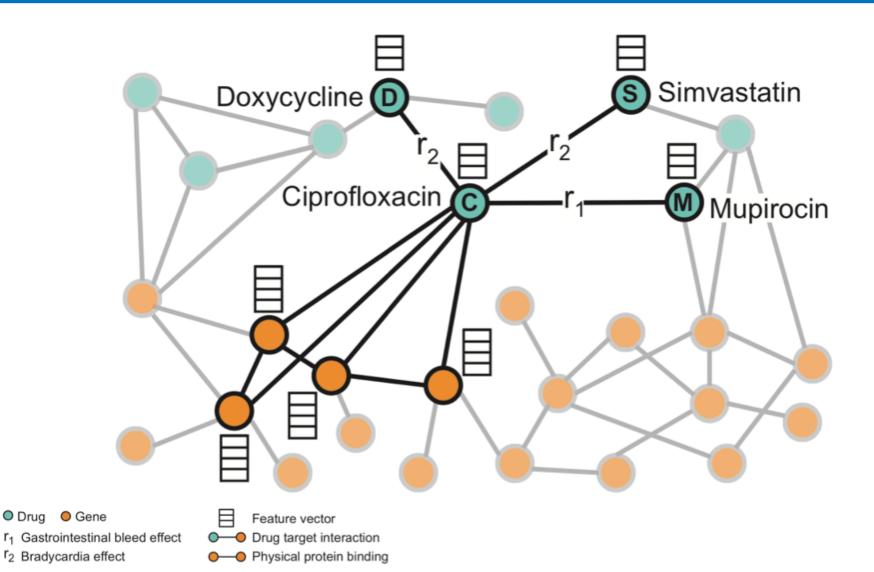
Network & Indications Data

- Idea: Construct a heterogeneous graph of drugs and proteins
- Train: Fit a model to predict known associations of drug pairs and side effects
- Test: Given a query drug pair, predict candidate polypharmacy side effects

Data:

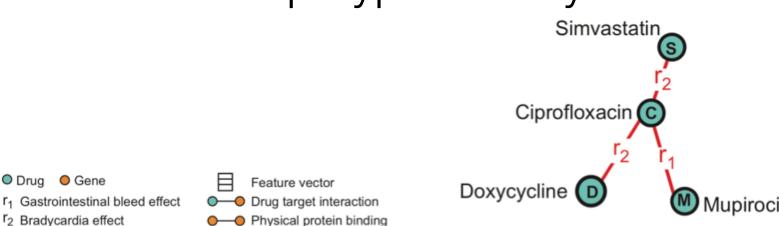
- **Protein-protein interaction network** [Menche et al. *Science* 15]
 - 19K nodes, 350K edges
- Drug-protein and disease-protein links:
 - 9k proteins, 800k drug-protein links
- Drug side effects: SIDER, OFFSIDES, TWOSIDES

Heterogeneous Graph



Link Prediction Task

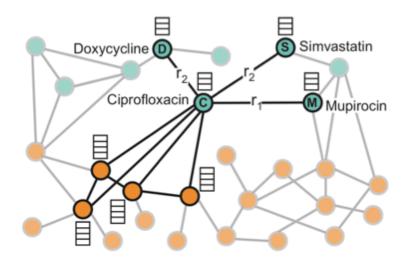
- Predict labeled edges between drugs
- Given a drug pair (c, s), predict how
 likely an edge (c, r₂, s) exists
- Meaning: Drug combination (c, s) leads to polypharmacy side effect r₂



Neural Architecture: Encoder

 $\mathbf{W}_{r_1}^{(k)}$

C



Graph encoder:

- Input: graph, additional node features
- Output: node embeddings

Gastrointestinal bleed effect r₁ $\mathbf{W}_{r_2}^{(k)}$ $\mathbf{h}_{c}^{(k+1)}$ Bradycardia effect $\mathbf{W}_{\star}^{(k)}$ $\mathbf{h}_{\mathcal{N}_{c}^{c}}^{(k)}$ Drug target relation

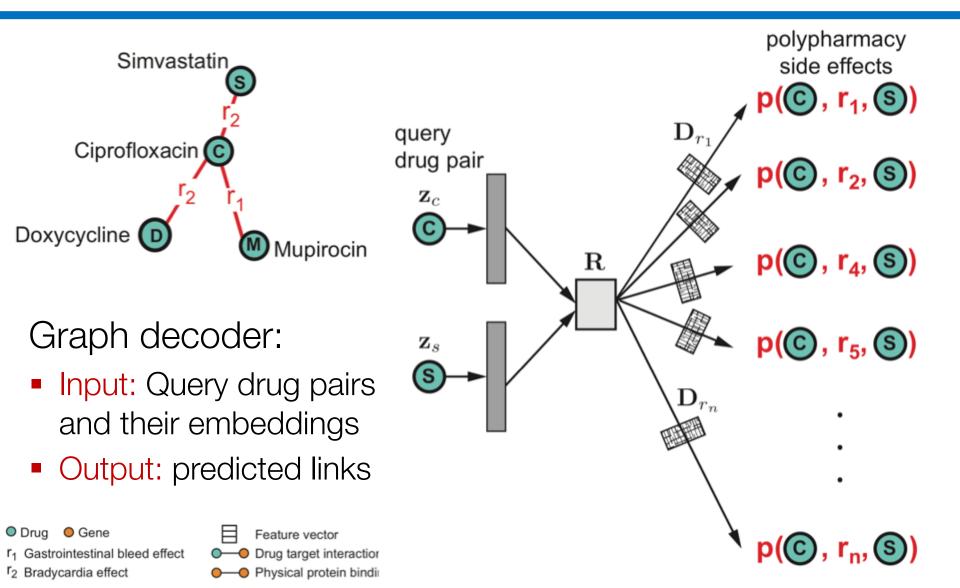
O Drug O Gene

r₁ Gastrointestinal bleed effect

r₂ Bradycardia effect

Feature vector
 Drug target interaction
 Physical protein binding

Neural Architecture: Decoder



Prediction Performance

	AUROC	AUPRC	AP@50
Decagon (3-layer)	0.834	0.776	0.731
Decagon (2-layer)	0.809	0.762	0.713
RESCAL tensor factorization	0.693	0.613	0.476
DEDICOM tensor factorization	0.705	0.637	0.567
Node2vec neural embeddings	0.725	0.708	0.643
Concatenated drug features	0.736	0.722	0.679

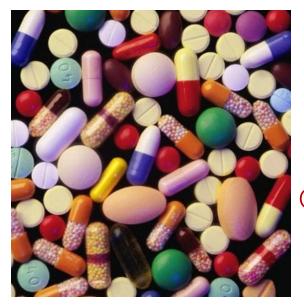
Up to 54% improvement over baselines

 First time to computationally identify side effects of drugs How can this technology be used for biomedical problems?

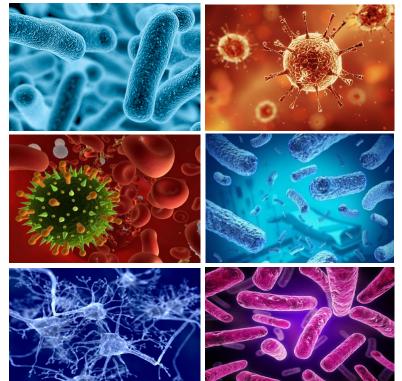
Two examples:

- Pairs of nodes: Predicting side-effects of drug combinations
- Subgraph prediction: Predicting which drug treats what disease

Prediction Problem

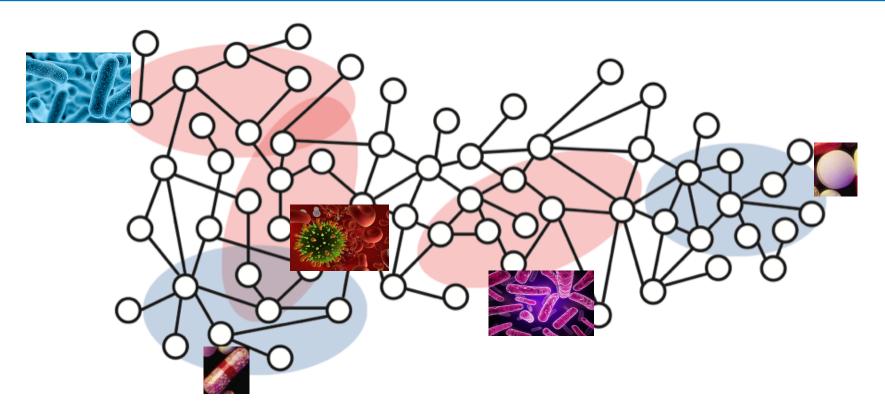


Graph convolutional drug repurposing



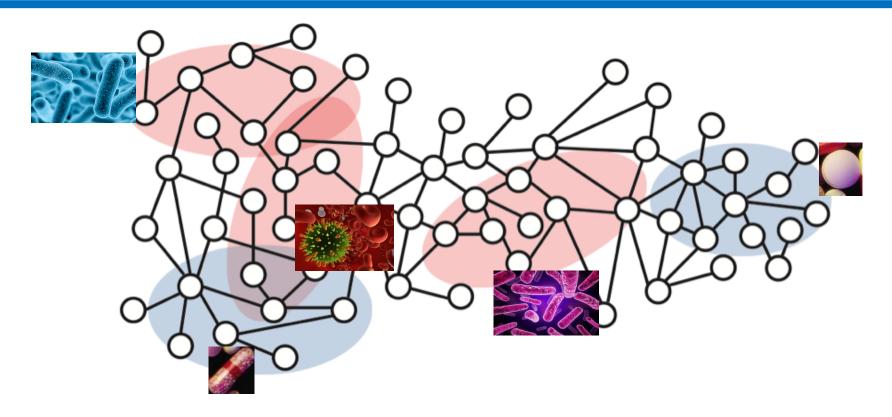
Goal: Predict which diseases a new drug (molecule) could treat

Insight: Networks



- Subgraphs of disease-associated proteins
- Subgraphs of drug target proteins

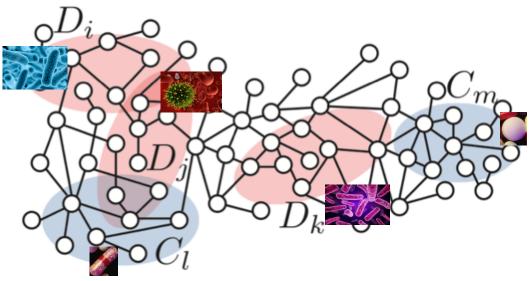
A Rationale for Graphs



A drug is likely to treat a disease if they are nearby in "pharmacological space"

[Menche et al. Science 2015; Guney et al. Nat Commun 2016; Hodos et al. Systems Biology and Medicine 2016] Jure Leskovec, Stanford University 44

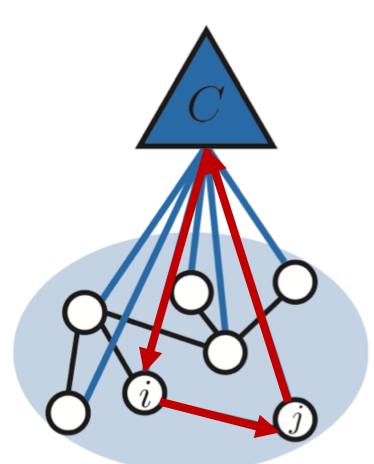
Link Prediction on Subgraphs



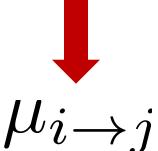
- Drug repurposing: Link prediction problem on subgraphs
- Predict new indications:
 - Obtain subgraphs by projecting drug and disease on the graph
 - Predict links between subgraphs

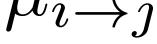
SUGAR: Message Passing

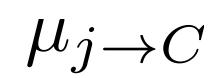
Embedding for subgraph C:



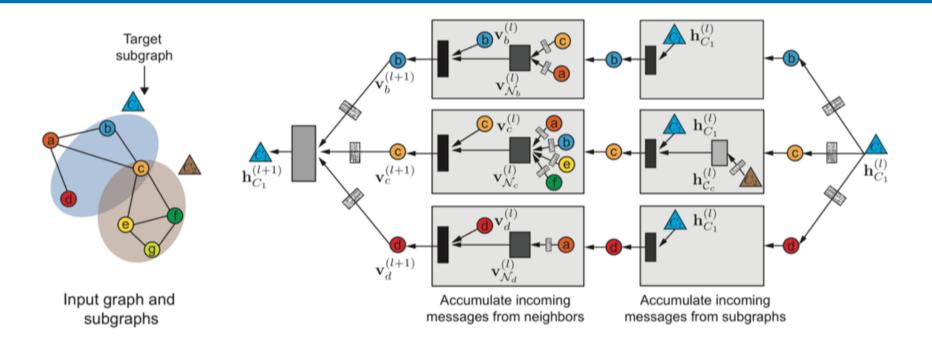
 $\mu_{C \rightarrow i}$

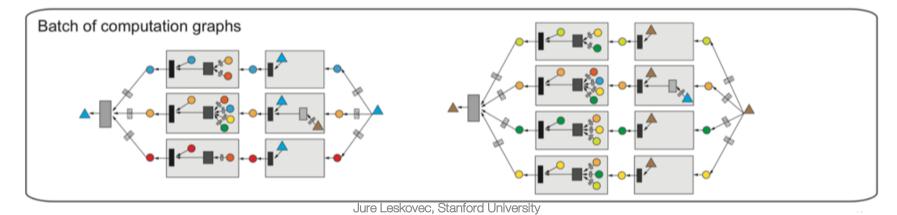






Neural Network Model





Network & Indications Data

- Protein-protein interaction network culled from 15 knowledge databases [Menche et al. Science 15]
 - 19K nodes, 350K edges
- Drug-protein and disease-protein links:
 - DrugBank, OMIM, DisGeNET, STITCH DB and others
 - 5K drugs, 20K diseases
 - 20K drug-protein links, 560K disease-protein links
- Drug medical indications:
 - DrugBank, MEDI-HPS, DailyMed, RepoDB and others
 - 6K drug-disease indications
- Side information: Molecular pathways, disease symptoms, side effects

Experimental Setup

- Disease-centric cross-validation
- For each cross-validation fold:
 - Exclude *all* indications of test diseases
 - Use the remaining data to train a model

 Query: Given a disease, rank all drugs based on scores returned by the model

Experimental Results

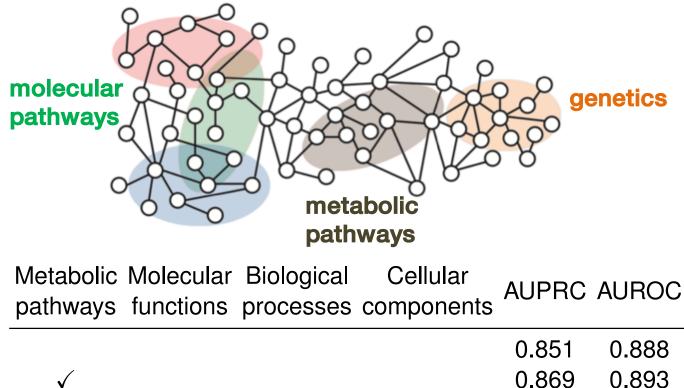
Approach	AUPRC	AUROC
SUGAR	0.851	0.888
Graphlet representation	0.606	0.689
Bi-directional random walk (MBiRW)	0.689	0.692
Heterogeneous graph inference (TL_HGBI)	0.673	0.664
PREdicting Drug IndiCaTions (PREDICT)	0.699	0.680
Drug-disease network closeness (r_c)	0.545	0.631
Drug-disease network dispersion (r_d)	0.692	0.623
Gene-based drug-disease network overlap (r_o)	0.512	0.548

Comparison to current state of the art:

- Up to 49% improvement over methods for drug repurposing
- Up to 172% improvement over methods for scoring drug-disease pairs

Integrating Side Information

Including additional biomedical knowledge:



Drug Repurposing @ SPARK

Drug

N-acetyl-cysteine Xamoterol Plerixafor Sodium selenite Ebselen Itraconazole Bestatin Bestatin Ketaprofen Sildenafil Tacrolimus Benzamil Carvedilol Benserazide Pioglitazone Sirolimus

Disease

cystic fibrosis neurodegeneration cancer cancer C difficile cancer lymphedema pulmonary arterial hypertension lymphedema lymphatic malformation pulmonary arterial hypertension psoriasis Chagas' disease **BRCA1** cancer interstitial cystitis dystrophic epidermolysis bullosa

Given C difficile, where does Ebselen rank among all approved drugs?

SPARK Translational Research Program

SUGAR's Predictions

Disease
cystic fibrosis
neurodegeneration
cancer
cancer
C difficile
cancer
lymphedema
pulmonary arterial hypertension
lymphedema
lymphatic malformation
pulmonary arterial hypertension
psoriasis
Chagas' disease
BRCA1 cancer
interstitial cystitis
dystrophic epidermolysis bullosa

-		
Rank:	14/5000	
Rank:	26/5000	
Rank:	54/5000	
Rank:	36/5000	
Rank:	10/5000	
Rank:	26/5000	
Rank:	11/5000	
Rank:	16/5000	
Rank:	28/5000	
Rank:	26/5000	
Rank:	46/5000	
Rank:	114/5000	
Rank:	9/5000	
Rank:	41/5000	
Rank:	13/5000	
Rank:	46/5000	

Higher rank is better

Example: SUGAR predicted Ebselen as 10th most likely candidate drug for C difficile

Conclusion

Results from the past 1-2 years have shown:

- Representation learning paradigm can be extended to graphs
- No feature engineering necessary
- Can effectively combine node attribute data with the network information
- State-of-the-art results in a number of domains/tasks
- Use end-to-end training instead of multi-stage approaches for better performance

Conclusion

Next steps:

- Multimodal & dynamic/evolving settings
- Domain-specific adaptations (e.g. for recommender systems)
- Graph generation
- Prediction beyond simple parwise edges
 - Multi-hop edge prediction
- Theory

Industry Partnerships Forma azumio **PhD Students** twitter facebook. Pinterest Linked in нушпраі BOEING WIKIPEDIA **NVIDIA**. **Open Door** DISQUS spinn3r Mitchell David Claire Emma Geet Hallac Gordon Pierson Donnat Sethi CRISIS TEXT LINE BOSCH HUAWEI Invented for life Funding DARPA Rex Himabindu Tim Will IARPA Lakkaraju Ying Althoff Hamilton NI **Post-Doctoral Fellows CHAN ZUCKERBERG** MURI Collaborators INITIATIVE Dan Jurafsky, Linguistics, Stanford University

David Jurgens

Stephen

Bach

Research

Staff

Michele

Peter

Kacin

Catasta

Sosic

Christian Danescu-Miculescu-Mizil, Information Science, Cornell University Stephen Boyd, Electrical Engineering, Stanford University David Gleich, Computer Science, Purdue University VS Subrahmanian, Computer Science, University of Maryland Sarah Kunz, Medicine, Harvard University **Russ Altman, Medicine, Stanford University** Jochen Profit, Medicine, Stanford University Eric Horvitz, Microsoft Research Jon Kleinberg, Computer Science, Cornell University Sendhill Mullainathan, Economics, Harvard University Scott Delp, Bioengineering, Stanford University Jens Ludwig, Harris Public Policy, University of Chicago

References

- <u>node2vec: Scalable Feature Learning for Networks</u>
 A. Grover, J. Leskovec. KDD 2016.
- Predicting multicellular function through multi-layer tissue networks. M. Zitnik, J. Leskovec. Bioinformatics, 2017.
- Inductive Representation Learning on Large Graphs.
 W. Hamilton, R. Ying, J. Leskovec. NIPS 2017
- <u>Representation Learning on Graphs: Methods and Applications</u>.
 W. Hamilton, R. Ying, J. Leskovec.
 IEEE Data Engineering Bulletin, 2017.
- Modeling polypharmacy side effects with graph convolutional networks. M. Zitnik, M. Agrawal, J. Leskovec. BioArxiv, 2017.
- Code:
 - <u>http://snap.stanford.edu/node2vec</u>
 - <u>http://snap.stanford.edu/graphsage</u>