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Networks: Common Language
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Example: Node Classification

Many possible ways to create node features:
§ Node degree, PageRank score, motifs, …
§ Degree of neighbors, PageRank of 

neighbors, …
Jure Leskovec, Stanford University 3
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Machine Learning Lifecycle
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Network 
Data

Node 
Features

Learning 
Algorithm  

Model

Downstream 
prediction task

Feature 
Engineering

Automatically 
learn the features

(Supervised) Machine Learning Lifecycle: 
This feature, that feature. 
Every single time!

Jure Leskovec, Stanford University



Feature Learning in Graphs

This talk: Feature learning 
for networks!
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GraphSAGE: 
Graph Convolutional 

Networks

Jure Leskovec, Stanford University

Inductive Representation Learning on Large Graphs. 
W. Hamilton, R. Ying, J. Leskovec. Neural Information Processing Systems (NIPS), 2017.
Representation Learning on Graphs: Methods and Applications. 
W. Hamilton, R. Ying, J. Leskovec. IEEE Data Engineering Bulletin, 2017.



From Images to Networks

Single CNN layer with 3x3 filter:
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End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)
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(Animation by  
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph

Transform information at the neighbors and combine it
§ Transform “messages” ℎ" from neighbors: #"	ℎ"
§ Add them up: ∑ #"	ℎ""



Real-World Graphs

But what if your graphs look like this?
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End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data
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What if our data looks like this?

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …
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What if our data looks like this?

or this:

§ Examples:
Social networks, Information networks, 
Knowledge graphs, Communication 
networks, Web graph, …



A Naïve Approach

§ Join adjacency matrix and features

§ Feed them into a deep neural net:

§ Issues with this idea:
§ !(#) parameters

§ Not applicable to graphs of different sizes

§ Not invariant to node ordering
Jure Leskovec, Stanford University 9

End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E
A
B
C
D
E

0     1     1     1     0          1     0
1     0     0     1     1          0     0
1     0     0     1     0          0     1
1     1     1     0     1          1     1
0     1     0     1     0          1     0

Feat

A naïve approach
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• Take adjacency matrix     and feature matrix   

• Concatenate them  

• Feed them into deep (fully connected) neural net 

• Done?

Problems:

• Huge number of parameters 
• No inductive learning possible

?A

C

B

D

E

[A,X]



Graph Convolutional Networks

§ Graph Convolutional Networks:

Jure Leskovec, Stanford 10Niepert, Mathias, Mohamed Ahmed, and Konstantin Kutzkov. "Learning convolutional neural networks for graphs." ICML. 2016. (image source)

§ Problem: For a given subgraph how to 
come with canonical node ordering?



Desiderata

§ Invariant to node ordering 
§ No graph isomorphism problem

§ Locality – operations depend 
on the neighbors of a given node

§ Number of model parameters should 
be independent of graph size

§ Model should be independent of graph 
structure and we should be able to 
transfer the model across graphs

Jure Leskovec, Stanford University 11

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data
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… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?



GraphSAGE

§ Adapt the GCN idea to inductive node 
embedding

§ Generalize beyond simple convolutions

§ Demonstrate that this generalization

§ Leads to significant performance 
gains

§ Allows the model to learn about local 
structures

Jure Leskovec, Stanford 12



Idea: Graph defines computation

Learn how to propagate information across 
the graph to compute node features

13Jure Leskovec, Stanford University

Determine node 
computation graph

!

Propagate and
transform information

!

Idea: Node’s neighborhood defines a 
computation graph

Semi-Supervised Classification with Graph Convolutional Networks. T. N. Kipf, M. Welling, ICLR 2017



Our Approach: GraphSAGE

14Jure Leskovec, Stanford

Q(1)
W(1)

Q(1)

W(1)

W(2) Q(2)

§ Each node defines its own computational 
graph
§ Each edge in this graph is a 

transformation/aggregation function 



Our Approach: GraphSAGE
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Q(1)
W(1)

Q(1)

W(1)

W(2) Q(2)

Update for node !:

ℎ#
(%&') = *+,- . % ℎ#% , 0 *+,-(1 % ℎ2% )

2∈4 #

§ ℎ#5 = attributes of node 6
§ Σ ⋅ : Aggregator function (e.g., avg., LSTM, max-pooling)

Transform 6’s own 
features from level 9

Transform and aggregate
features of neighbors :

9 + 1=> level
features of node 6

Semi-Supervised Classification with Graph Convolutional Networks. T. N. Kipf, M. Welling, ICLR 2017



GraphSAGE Algorithm

K = “search depth”

aggregate information from neighbors

initialize representations as features

concatenate neighborhood info with 
current representation and propagate

classification (cross-entropy) loss



WL isomorphism test

§ The classic Weisfeiler-Lehman graph 
isomorphism test is a special case of 
GraphSAGE

§ We replace the hash function with trainable 
neural nets:
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XX

HASH

Shervashidze, Nino, et al. "Weisfeiler-Lehman graph kernels." Journal of Machine Learning Research (2011).
Jure Leskovec, Stanford



GraphSAGE: Training

§ Assume parameter sharing:

Jure Leskovec, Stanford University 18

W(2) W(2) W(2)

Q(2) Q(2) Q(2)

W(1)

Q(1)

§ Two types of parameters:
§ Aggregate function can have params.
§ Matrix W(k)

§ Adapt to inductive setting (e.g., unsupervised loss, 
neighborhood sampling, minibatch optimization)

§ Generalized notion of “aggregating neighborhood”



GraphSAGE: Benefits

§ Can use different aggregators !
§ Mean (simple element-wise mean), LSTM (to a random 

order of nodes),  Max-pooling (element-wise max)
§ Can use different loss functions:

§ Cross entropy, Hinge loss, ranking loss
§ Model has a constant number of parameters
§ Fast scalable inference
§ Can be applied to any node in any network

Jure Leskovec, Stanford University 19



GraphSAGE Performance: 
Experiments

§ Compare GraphSAGE to alternative methods
§ Logistic regression on features (no network information)
§ Node2vec, extended node2vec with features

§ Task: Node classification, transfer learning
§ Citation graph: 302,424 papers from 2000-05

§ Predict 6 subject codes; Train on 2000-04, test on ‘05

§ Reddit posts: 232,965 posts, 50 communities, Sep ‘14
§ What community does a post belong to? Train on first 20 

days, test on remaining 10 days

§ Protein-protein interaction networks: 24 PPI networks 
from different tissues 

§ Transfer learning of protein function: Train on 20 networks, 
test on 2

DARPA SIMPLEX PI Meeting, February 6, 2018                      MINER Project 20



GraphSAGE Performance: Results

GraphSAGE performs best in all experiments.
Achieves ~40% average improvement over raw features.

DARPA SIMPLEX PI Meeting, February 6, 2018                      MINER Project 21



Application: Pinterest

Human curated collection of pins

Jure Leskovec, Stanford University 22

Pin: A visual bookmark someone 
has saved from the internet to a 
board they’ve created.
Pin: Image, text, link

Board: A greater collection of ideas (pins having sth. in common). 



Large-Scale Application

§ Semi-Supervised node embedding for 
graph-based recommendations

§ Graph: 2B pins, 1B boards, 20B edges

Jure Leskovec, Stanford University 23

QPins

Boars



Pinterest Graph

§ Graph is dynamic: need to apply to 
new nodes without model retraining

§ Rich node features: content, image

Jure Leskovec, Stanford University 24

Q



Task: Item-Item Recs

Related Pin recommendations
§ Given user is looking at pin Q, what 

pin X are they going to save next:

Jure Leskovec, Stanford University 25

Query Positive Hard negativeRnd. negative



GraphSAGE Training

§ Leverage inductive capability, and 
train on individual subgraphs
§ 300 million nodes, 1 billion edges, 

1.2 billion pin pairs (Q, X)

§ Large batch size: 2048 per minibatch

Jure Leskovec, Stanford University 26



GraphSAGE: Inference

§ Use MapReduce for
model inference

§ Avoids repeated computation

Jure Leskovec, Stanford University 27



Experiments

Related Pin recommendations
§ Given user is looking at pin Q, predict 

what pin X are they going to save next 
§ Baselines for comparison

§ Visual: VGG-16 visual features
§ Annotation: Word2Vec model
§ Combined: combine visual and annotation
§ RW: Random-walk based algorithm
§ GraphSAGE

§ Setup: Embed 2B pins, perform nearest 
neighbor to generate recommendations

Jure Leskovec, Stanford University 28



Results: Ranking
Task: Given Q, rank X as high as possible 
among 2B pins
§ Hit-rate: Pct. P was among top-k
§ MRR: Mean reciprocal rank

Jure Leskovec, Stanford University 29

Method Hit-rate MRR

Visual 17% 0.23

Annotation 14% 0.19

Combined 27% 0.37

GraphSAGE 46% 0.56



Example Recommendations

Jure Leskovec, Stanford University 30
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GraphSAGE: Summary

§ Graph Convolution Networks
§ Generalize beyond simple convolutions

§ Fuses node features & graph info
§ State-of-the-art accuracy for node 

classification and link prediction.

§ Model size independent of graph size; 
can scale to billions of nodes
§ Largest embedding to date (3B nodes, 20B edges)

§ Leads to significant performance gains
Jure Leskovec, Stanford University 31
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How can this technology 
be used for biomedical 

problems?

§ Two examples:
§ Pairs of nodes: Predicting side-effects 

of drug combinations
§ Subgraph prediction: Predicting which 

drug treats what disease
Modeling polypharmacy side effects with graph convolutional networks. M. Zitnik, M. 
Agrawal, J. Leskovec. BioArxiv, 2017.



Polypharmacy Side Effects

,

Patient’s side effectsPatient’s medications

Polypharmacy side 
effect

Drug combination



Polypharmacy Side Effects

,

Patient’s side effectsPatient’s medications

Polypharmacy side 
effect

s

§ Polypharmacy is common to treat complex 
diseases and co-existing conditions

§ High risk of side effects due to interactions
§ 15% of the U.S. population affected
§ Annual costs exceed $177 billion
§ Difficult to identify manually:

§ Rare, occur only in a subset of patients 
§ Not observed in clinical testing



Network & Indications Data
§ Idea:  Construct a heterogeneous graph of 

drugs and proteins
§ Train: Fit a model to predict known 

associations of drug pairs and side effects
§ Test: Given a query drug pair, predict 

candidate polypharmacy side effects

Data:
§ Protein-protein interaction network [Menche et al. Science 15]

§ 19K nodes, 350K edges
§ Drug-protein and disease-protein links:

§ 9k proteins,  800k drug-protein links
§ Drug side effects: SIDER, OFFSIDES, TWOSIDES

35Jure Leskovec, Stanford University



Heterogeneous Graph



Link Prediction Task

§ Predict labeled edges between drugs

§ Given a drug pair (", $),	predict how 
likely an edge (", '(, $) exists

§ Meaning: Drug combination (", $)
leads to polypharmacy side effect '(



Neural Architecture: Encoder

Graph encoder:
§ Input: graph, additional 

node features
§ Output: node embeddings



Neural Architecture: Decoder

Graph decoder:
§ Input: Query drug pairs 

and their embeddings
§ Output: predicted links 



Prediction Performance

§ Up to 54% improvement over baselines

§ First time to computationally identify side 
effects of drugs

40
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How can this technology 
be used for biomedical 

problems?

§ Two examples:
§ Pairs of nodes: Predicting side-effects 

of drug combinations
§ Subgraph prediction: Predicting which 

drug treats what disease



Prediction Problem

Goal: Predict which diseases a new drug 
(molecule) could treat

Graph convolutional 
drug repurposing

42Jure Leskovec, Stanford University



Insight: Networks

§ Subgraphs of disease-associated proteins 

§ Subgraphs of drug target proteins
43Jure Leskovec, Stanford University



A Rationale for Graphs

A drug is likely to treat a disease if they 
are nearby in “pharmacological space”

44
[Menche et al. Science 2015; Guney et al. Nat Commun 2016; Hodos et al. Systems Biology and Medicine 2016]

Jure Leskovec, Stanford University



Link Prediction on Subgraphs

§ Drug repurposing: Link prediction 
problem on subgraphs

§ Predict new indications:
§ Obtain subgraphs by projecting drug and 

disease on the graph
§ Predict links between subgraphs 45Jure Leskovec, Stanford University



SUGAR: Message Passing

Embedding for subgraph !:

46Jure Leskovec, Stanford University



Neural Network Model

47Jure Leskovec, Stanford University



Network & Indications Data
§ Protein-protein interaction network culled from 15 

knowledge databases [Menche et al. Science 15]
§ 19K nodes, 350K edges

§ Drug-protein and disease-protein links:
§ DrugBank, OMIM, DisGeNET, STITCH DB and others
§ 5K drugs, 20K diseases
§ 20K drug-protein links, 560K disease-protein links

§ Drug medical indications: 
§ DrugBank, MEDI-HPS, DailyMed, RepoDB and others
§ 6K drug-disease indications

§ Side information: Molecular pathways, disease 
symptoms, side effects

48Jure Leskovec, Stanford University



Experimental Setup

§ Disease-centric cross-validation

§ For each cross-validation fold:
§ Exclude all indications of test diseases

§ Use the remaining data to train a model

§ Query: Given a disease, rank all 
drugs based on scores returned by 
the model

49Jure Leskovec, Stanford University



Experimental Results
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Comparison to current state of the art:
§ Up to 49% improvement over methods for drug 

repurposing
§ Up to 172% improvement over methods for scoring 

drug-disease pairs
Jure Leskovec, Stanford University



Integrating Side Information

Including additional biomedical knowledge:

51

geneticsmolecular 
pathways

metabolic 
pathways

Jure Leskovec, Stanford University



Drug Repurposing @ SPARK
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Drug Disease
N-acetyl-cysteine cystic fibrosis Rank:   14/5000

Xamoterol neurodegeneration Rank:   26/5000

Plerixafor cancer           Rank:   54/5000

Sodium selenite cancer Rank:   36/5000

Ebselen C difficile Rank:   10/5000

Itraconazole cancer Rank:   26/5000

Bestatin lymphedema Rank:   11/5000

Bestatin pulmonary arterial hypertension Rank:   16/5000

Ketaprofen lymphedema Rank:   28/5000

Sildenafil lymphatic malformation Rank:   26/5000

Tacrolimus pulmonary arterial hypertension Rank:   46/5000

Benzamil      psoriasis Rank: 114/5000

Carvedilol Chagas’ disease Rank:     9/5000

Benserazide BRCA1 cancer Rank:   41/5000

Pioglitazone interstitial cystitis Rank:   13/5000

Sirolimus dystrophic epidermolysis bullosa Rank:   46/5000

Given C difficile, where 
does Ebselen rank among 
all approved drugs?

Jure Leskovec, Stanford University



SUGAR’s Predictions
Drug Disease
N-acetyl-cysteine cystic fibrosis Rank:   14/5000
Xamoterol neurodegeneration Rank:   26/5000
Plerixafor cancer           Rank:   54/5000
Sodium selenite cancer Rank:   36/5000
Ebselen C difficile Rank:   10/5000
Itraconazole cancer Rank:   26/5000
Bestatin lymphedema Rank:   11/5000
Bestatin pulmonary arterial hypertension Rank:   16/5000
Ketaprofen lymphedema Rank:   28/5000
Sildenafil lymphatic malformation Rank:   26/5000
Tacrolimus pulmonary arterial hypertension Rank:   46/5000
Benzamil      psoriasis Rank: 114/5000
Carvedilol Chagas’ disease Rank:     9/5000
Benserazide BRCA1 cancer Rank:   41/5000
Pioglitazone interstitial cystitis Rank:   13/5000
Sirolimus dystrophic epidermolysis bullosa Rank:   46/5000

53

Higher rank is better 
Example: SUGAR predicted Ebselen as 10th most likely candidate drug for C difficile

Jure Leskovec, Stanford University



Conclusion

Results from the past 1-2 years have shown:

§ Representation learning paradigm can be 
extended to graphs

§ No feature engineering necessary

§ Can effectively combine node attribute data 
with the network information

§ State-of-the-art results in a number of 
domains/tasks

§ Use end-to-end training instead of 
multi-stage approaches for better performance

Jure Leskovec, Stanford University 54



Conclusion

Next steps:

§ Multimodal & dynamic/evolving settings

§ Domain-specific adaptations 
(e.g. for recommender systems) 

§ Graph generation 

§ Prediction beyond simple parwise edges

§ Multi-hop edge prediction

§ Theory

Jure Leskovec, Stanford University 55
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