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Networks: Common Language
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Example: Node Classification

? ?

AN -
? ¥
? . >
0 I\/Iachllne
/ Learning

?

/

Many possible ways to create node features:
= Node degree, PageRank score, motifs, ...

= Degree of nelghbors PageRank of
neighbors, .
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Machine Learning Litecycle
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Network Node Learning
[ Data { Features { Algorithm { Mode }
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Automatically Downstream
Egefheangg learn the features prediction task

(Supervised) Machine Learning Lifecycle:
This feature, that feature.
—very single timel
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Feature Learning in Graphs

This talk: Feature learning
for networks!

node vector
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Feature representation,
O embedding




GraphSAGE:

Graph Convolutional
NEIWVeI(E

Inductive Representation Learning on Large Graphs.
W. Hamilton, R. Ying, J. Leskovec. Neural Information Processing Systems (NIPS), 2017.

Representation Learning on Graphs: Methods and Applications.
W. Hamilton, R. Ying, J. Leskovec. |IEEE Data Engineering Bulletin, 2017.
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From Images to Networks

Single CNN layer with 3x3 filter:
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Image Graph

Transform information at the neighbbors and combine it
= Jransform “messages” h; from neighbors: W; h;
= Add them up: };; W; h;
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Real-World Graphs

Sut what iIf your graphs look like this”
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= Examples:

Social networks, Information networks,
Knowledge graphs, Communication
networks, Web graph, ...
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A Nalve Approach

= Join adjacency matrix and features
= Feed them into a deep neural net:

hidden layer 1  hidden layer 2 hidden layer 3

input layer
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= |ssues with this idea:
= O(N) parameters
= Not applicable to graphs of different sizes
= Not invariant to node ordering
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Graph Convolutional Networks

= Graph Convolutional Networks:

normalize

-

subgraph

receptive field

...... reads ve;mdedge /// \\\

\@D attributes = channels 1/[2][3][4][5][1][2]]3

= Problem: For a given subgraph how to
come with Canonlcal node orderlng’?

Niepert, Mathias, Mohamed Ahmed, and Konstantin Kutzkov. "Lea volutional neural networks for graphs." ICML. 2016. (image s 10




Desiderata

Invariant to node ordering

= No graph isomorphism problem ‘ 4

Locality — operations depend

on the neighbors of a given node

Number of model parameters should

be independent of graph size

Model should be independent of graph

structure and we should be a
transfer the model across gra

nle to
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GraphSAGE

= Adapt the GCN idea to inductive node
embedding

= (Generalize beyond simple convolutions
= Demonstrate that this generalization

= | eads to significant performance
gains

= Allows the model to learn about local
structures



l[dea: Graph defines computation

l[dea: Node’s neighborhood defines a
computation graph
i —l

Determine node Propagate and
computation graph transform information

Learn how to propagate information across
the graph to compute node features

Semi-Supervised Classification with Graph Convolutional Networks. T. N. Kipf, M. Welling, ICLR 2017
Jure Leskovec, Stanford University 13




Our Approach: GraphSAGE
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= Each node defines its own computational

graph

= Fach edge in this graph is a
transformation/aggregation function
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Our Approach: GraphSAGE
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Transform and aggregate
features of node A

features from level k features of neighbors n

= 1'% = attributes of node 4
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Semi-Supervised Classification with Graph Convolutional Networks. T. N. Kipf, M. Welling, ICLR 2017




GraphSAGE Algorithm

initialize representations as features

\ K = “search depth”

hY <« x,, Vv % | | |

for  — 1. K do aggregate information from neighbors
forv eV do

Y.,y < AGGREGATEj({hy ™", Vu € N(v)});
bt o (W"- concat (bt~ by,

end

k k k
hy < hy/[[hi]2, Vo € Vconcatenate neighborhood info with

end current representation and propagate
7, < h% Vv eV

\

Q
1
J = —log (0(2,20)) — 0l Y By np, ) log (—0(2, 2v,))
g=1

classification (cross-entrapy) loss



WL Isomorphism test

= [he classic Weisfeller-Lehman graph

iIsomorphism test is a special case of
GraphSAGE

= We replace the hash function with trainable
neural nets:

h! « x,, Vv €V ;
fork =1...K do
forveVdo HASH

hjﬁv(v) ¢ AGEREGATE, ({hF~1 Yu € N(v)});
k k k—1 k
hy < ¥ (W - CONCAT (hy ,hN(v))>
end

]Hk: é lqk:( hk:' o))
v v v (129

end
z, <+ hi Vo eV

Shervashidze, Nino, et al. "Weisfeiler-Lehman graph kernels." Journal of Machine Learning Research (2011).
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GraphSAGE: Training

= Assume parameter sharing:

BATCH OF NETWORKS
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= [wo types of parameters:

= Aggregate function can have params.
= Matrix WK

= Adapt to inductive setting (e.g., unsupervised loss,
neighborhood sampling, minibatch optimization)

= (Generalized notion of “aggregating neighborhood”

Jure Leskovec, Stanford University 18



GraphSAGE: Benefits

s e
o 'O
h)
h(Al) / B “
y ~
2) g . : , -
N(A) h.
¥
o n
w e

Can use different aggregators y

= Mean (simple element-wise mean), LSTM (to a random
order of nodes), Max-pooling (element-wise max)

Can use different loss functions:
= (Cross entropy, Hinge loss, ranking loss

Model has a constant number of parameters
Fast scalable inference
Can be applied to any node in any network

Jure Leskovec, Stanford University 19



GraphSAGE Performance:
Experiments

= Compare GraphSAGE to alternative methods
= Logistic regression on features (N0 network information)
= Node2vec, extended node2vec with features

= Task: Node classification, transfer learning
= Citation graph: 302,424 papers from 2000-05

= Predict 6 subject codes; Train on 2000-04, test on ‘05
= Reddit posts: 232,965 posts, 50 communities, Sep ‘14

= What community does a post belong to? Train on first 20
days, test on remaining 10 days

= Protein-protein interaction networks: 24 PPI networks
from different tissues

= Transfer learning of protein function: Train on 20 networks,
test on 2

DARPA SIMPLEX Pl Mesting, February 6, 2018 MINER Project 20



GraphSAGE Performance: Results
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GraphSAGE performs best in all experiments.
Achieves ~40% average improvement over raw features.

DARPA SIMPLEX Pl Mesting, February 6, 2018 MINER Project 21



Application: Pinterest

Human curated collection of pins

Pin: A visual bookmark someone
has saved from the internet to a
board they’ve created.

Pin: Image, text, link

L
;
11w - LI
Gzt iz’ B
Tod century modern Man Style

mene+stylel = Plants Men's Style

Board: A greater collection of ideas (pins having sth. in common).

Jure Leskovec, Stanford University 22



L arge-Scale Application

= Semi-Supervised node embedding for
graph-based reco

= Graph: 2
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Pinterest Graph
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Task: [tem-ltem Recs

Related Pin recommendations

= Given user is looking at pin Q, what
pin X are they going to sa

i\
l

Query Positive Rnd. negative = Hard negative

Jure Leskovec, Stanford University 25



GraphSAGE Training

= |_everage inductive capability, and
train on individual subgraphs

= 300 million nodes, 1 billion edges,
1.2 billion pin pairs (Q, X)

BATCH OF NETWORKS
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= [arge batch size: 2048 per minibatch



GraphSAGE: Inference

= Use MapReduce for e
model inference —
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= Avolids repeated computation

nford University



EXperiments

Related Pin recommendations

= Given user is looking at pin Q, predict
what pin X are they going to save next
= Baselines for comparison
= Visual: VGG-16 visual features
= Annotation: Word2Vec model
= Combined: combine visual and annotation
= RW: Random-walk based algorithm
= GraphSAGE

= Setup: Embed 2B pins, perform nearest
neighbor to generate recommendatlons

c, Stanford Uni




Results: Ranking

Task: Given Q, rank X as high as possible
among 2B pins

= Hit-rate: Pct. P was among top-k

= MRR: Mean reciprocal rank

Visual 17% 0.23
Annotation 14% 0.19
Combined 27% 0.37

GraphSAGE 46% 0.56

Jure Leskovec, Stanford University 29



Example Recommendations

Visual

a

How to Grow
Swiss Chard

. Fotp = o ]

Jure Leskovec, Stanford University 30



GraphSAGE: Summary

Graph Convolution Networks
= (Generalize beyond simple convolutions

Fuses node features & graph info

= State-of-the-art accuracy for node
classification and link prediction.

Model size independent of graph size;

can scale to billions of nodes
= [argest embedding to date (3B nodes, 20B edges)

Leads to significant performance gains

Jure Leskovec, Stanford University 31



How can this technology

be used for biomedical
oroblems”?

= Two examples:

= Pairs of nodes: Predicting side-effects
of drug combinations

= Subgraph prediction: Predicting which
drug treats what disease

Modeling polypharmacy side effects with graph convolutional networks. M. Zitnik, M.
Agrawal, J. Leskovec. BioArxiv, 2017.

Jure Leskovec, Stanford University 32



Polypharmacy Side Effects

Patient’s medications Patient’s side effects

p m—) | |

Drug combination Polypharmacy side




Polypharmacy Side Effects

Polypharmacy is common to treat complex
diseases and co-existing conditions

High risk of side effects due to interactions
16% of the U.S. population affected

Annual costs exceed $177 billion
Difficult to identify manually:

= Rare, occur only in a subset of patients
= Not observed in clinical testing




Network & Indications Data

= |dea: Construct a heterogeneous graph of
drugs and proteins

= Train: Fit a model to predict known
associations of drug pairs and side effects

= TJest: Given a query drug pair, predict
candidate polypharmacy side effects

Data:
= Protein-protein interaction network [Menche et al. Science 15]
19K nodes, 350K edges

= Drug-protein and disease-protein links:
= Ok proteins, 800k drug-protein links

= Drug side effects: SIDER, OFFSIDES, TWOSIDES

Jure Leskovec, Stanford University 35



Heterogeneous Graph

Doxycycline Q /@ Simvastatin
r

r1_® Mupirocin

Ciprofloxacin

ODrug @ Gene H Feature vector
ry Gastrointestinal bleed effect ©—@O Drug target interaction
I'2 Bradycardia effect @—©@ Physical protein binding



Link Prediction Task

= Predict labeled edges between drugs

= Given a drug pair (¢, s), predict how
Ikely an edge (¢, 1y, s) exists

= Meaning: Drug combination (c, s)
eads to polypharmacy side effect r,

Simvastatin @
¥.
Ciproﬂoxacir@
2 T,
© Drug © Gene E Feature vector :
ry Gastrointestinal bleed effect ©—@O Drug target interaction DOXYCYCllne b Mupirocin

2 Bradycardia effect @—@ Physical protein binding



Neural Architecture: Encoder

B =

k (
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= |nput: graph, additional
node features

= Qutput: node embeddings ‘%gg
D

ODrug @ Gene H Feature vector
ry Gastrointestinal bleed effect ©—@O Drug target interaction
I'2 Bradycardia effect @—©@ Physical protein binding

rug target relation




Neural Architecture: Decoder

| | polypharmacy
Sumvastatln’ side effects
r p(‘ ’ r1’ 0)
Ciproﬂoxacirﬁ e
drug pair
i P 1 ©)

Doxycycline d b Mupirocin
p(O ’ r4, O)

p(‘ ’ I"5, O)

Graph decoder:

= [nput: Query drug pairs
and their embeddings
= Qutput: predicted links

© Drug @ Gene g Feature vector

ry Gastrointestinal bleed effect ©—@O Drug target interactior p(@ 5 I'n, 0)

I'2 Bradycardia effect @—@ Physical protein bindil



Prediction Performance

AUROC AUPRC AP@50

Decagon (3-layer) 0.834 0.776 0.731
Decagon (2-layer) 0.809 0.762 0.713
RESCAL tensor factorization 0.693 0.613 0.476
DEDICOM tensor factorization 0.705 0.637 0.567
Node2vec neural embeddings 0.725 0.708 0.643
Concatenated drug features 0.736 0.722 0.679

= Up to 54% improvement over baselines

= First time to computationally identify side
effects of drugs

40



How can this technology

be used for biomedical
oroblems”?

= Two examples:

= Pairs of nodes: Predicting side-effects
of drug combinations

= Subgraph prediction: Predicting which
drug treats what disease

Jure Leskovec, Stanford University



Prediction Problem

Graph convolutional
drug repurposing

LY oo
Qe s/ # Y

Goal: Predict which diseases a new drug
(molecule) could treat

Jure Leskovec, Stanford University 42



Insight: Networks

on X ay)
& Bl

rojl®

= Subgraphs of disease-associated proteins
= Subgraphs of drug target proteins

Jure Leskovec, Stanford University 43




A Rationale for Graphs

A drug Is likely to treat a disease if they
are nearby in “pharmacological space”

[Menche et al. Science 2015; Guney et al. Nat Commun 2016; Hodos et al. Systems Biology and Medicine 2016]
Jure Leskovec, Stanford University 44



Link Prediction on Subgraphs

= Drug repurposing: Link prediction
oroblem on subgraphs
= Predict new indications:

= Obtain subgraphs by projecting drug and
disease on the graph

= Predict links between subgraphs




SUGAR: Message Passing

—mbedding for subgraph C:




Neural Network Model
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Network & Indications Data

Protein-protein interaction network culled from 15
kKnowledge databases [Menche et al. Science 15]
= 19K nodes, 350K edges

Drug-protein and disease-protein links:
= DrugBank, OMIM, DisGeNET, STITCH DB and others
= 5K drugs, 20K diseases
= 20K drug-protein links, 560K disease-protein links

Drug medical indications:
= DrugBank, MEDI-HPS, DailyMed, RepoDB and others
= BK drug-disease indications

Side information: Molecular pathways, disease
symptoms, side effects

Jure Leskovec, Stanford University 48



Experimental Setup

= Disease-centric cross-validation

= For each cross-validation fold:
= Exclude all iIndications of test diseases
= Use the remaining data to train a model

= Query: Given a disease, rank all
drugs based on scores returned by

the model



Experimental Results

Approach AUPRC AUROC

(MBIiRW)
Heterogeneous graph inference (TL_HGBI)

Drug-disease network closeness (r.)
Drug-disease network dispersion (rg)
Gene-based drug-disease network overlap (r,) 0.512

Comparison to current state of the art:

= Up to 49% improvement over methods for drug
repurposing

= Up to 172% improvement over methods for scoring
drug-disease pairs

Jure Leskovec, Stanford University 50




Integrating Side Information

Including additional biomedical knowledge:

genetics

metabolic
pathways

Metabolic Molecular Biological  Cellular

: AUPRC AUROC
pathways functions processes components

0.851 0.888
v 0.869 0.893
v v 0.874 0.912
v v v 0.893 0.912

v v A 0.901 0.928

51



Drug Repurposing @ SPARK

Drug

N-acetyl-cysteine

Xamoterol
Plerixafor

Sodium selenite

Ebselen
ltraconazole
Bestatin
Bestatin
Ketaprofen
Sildenafil
Tacrolimus
Benzamil
Carvedilol
Benserazide
Pioglitazone
Sirolimus

Disease , —
cystic fibrosis Given C difficile, where

neurodegeneration does Ebselen rank among

cancer
cancer all approved drugs?
C difficile
cancer
lymphedema
pulmonary arterial hypertension
lymphedema

lymphatic malformation
pulmonary arterial hypertension
psoriasis

Chagas’ disease

BRCA1 cancer

interstitial cystitis

dystrophic epidermolysis bullosa

P Stanford | spark Translational Research Program
‘ MEDICINE | FromBenchtoBedside

Jure Leskovec, niversity 52



Drug

N-acetyl-cysteine

Xamoterol
Plerixafor

Sodium selenite

Ebselen
ltraconazole
Bestatin
Bestatin
Ketaprofen
Sildenafil
Tacrolimus
Benzamil
Carvedilol
Benserazide
Pioglitazone
Sirolimus

Disease

cystic fibrosis
neurodegeneration

cancer

cancer

C difficile

cancer

lymphedema

pulmonary arterial hypertension
lymphedema

lymphatic malformation
pulmonary arterial hypertension
psoriasis

Chagas’ disease

BRCA1 cancer

interstitial cystitis

dystrophic epidermolysis bullosa

SUGAR’s Predictions

14/5000
26/5000
54/5000
36/5000
10/5000
26/5000
11/5000
16/5000
28/5000
26/5000
46/5000

: 114/5000

9/5000
41/5000
13/5000
46/5000

Higher rank is better
Example: SUGAR predicted Ebselen as 10" most likely candidate drug for C difficile

L N A 1 AT Y
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Conclusion

Results from the past 1-2 years have shown:

= Representation learning paradigm can be
extended to graphs

= No feature engineering necessary

= (Can effectively combine node attribute data
with the network information

= State-of-the-art results in a number of
domains/tasks

= Use end-to-end training instead of
multi-stage approaches for better performance

Jure Leskovec, Stanford University 54



Conclusion

Next steps:

Multimodal & dynamic/evolving settings

Domain-specific adaptations
(e.g. for recommender systems)

Graph generation

Prediction beyond simple parwise edges
= Multi-nop edge prediction

Theory
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Code:

=  hitp://snap.stanford.edu/node2vec
= hittp://snap.stanford.edu/graphsage
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