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The question
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Empirical evidence: wide “minima”
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A bit of statistical physics

» Energy landscape of a binary perceptron

Many sharp minima

Few wide minima,
but generalize better
[Baldassi et al., '15]

» Wide minima are a large deviations phenomenon



Tilting the Gibbs measure

» Local Entropy [Chaudhari et al., ICLR '17]
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top1 error (%)

Parle: parallelization of SGD

» State-of-the-art performance [Chaudhari et al., SysML '18]
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The gquestion

Why is SGD

so special?




A continuous-time view of SGD

> Diffusion matrix: variance of mini-batch gradients

D(x)
6

var(Vf{;(x)) =
1 1 . T T
= - (N kZka(x) Vi (x)T = VF(x) VF(x) )

1

> Temperature: ratio of learning rate and step-size

B~



A continuous-time view of SGD

» Continuous-time limit of discrete-time updates

dx = —Vf(x)£L+\/2ﬁ‘1D(x) dW (t)

1 will assume x € Q c R?

> Fokker-Planck (FP) equation gives the distribution on the
weight space induced by SGD

Pt = diV(l’Z’/ + ,B_1diV(D P) ) where x(t) ~ p(t)
drift

-~

diffusion



Wasserstein gradient flow

» Heat equation p: = div(I Vp) performs steepest descent on the
Dirichlet energy

% f Vo(x)|* dx
Q

> |t is also the steepest descent in the Wasserstein metric for

] | W2(p. p%)

converges to trajectories
of the heat equation

> Negative entropy is a Lyapunov functional for Brownian motion

Pheat = argmin—H(p)
0
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Wasserstein gradient flow: with drift

» |If D =1, the Fokker-Planck equation
Pt = div(pr +B7'I Vp)

has the Jordan-Kinderleher-Otto (JKO) functional [Jordan et al., '97]

-
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p>=(x) = arg;nin EEXNP[f(x)] — B H(pz

-~

energetic term entropic term

as the Lyapunov functional.

> FP is the steepest descent on JKO in the Wasserstein metric
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What happens for non-isotropic noise?

pr = div(lfﬁ + B 'div(D p) )
drift

-~

diffusion

» FP monotonically minimizes the free energy

p>=(x) = arg;nin Ex-p [CD(X)] — B "H(p)

» Rewrite as

F(p) =B~ 'KL(p || p*)

compare with |x - x*| for deterministic optimization.
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SGD performs variational inference

Theorem [Chaudhari & Soatto, ICLR '18]

The functional
F(p) =B~'KL(p |l p*)

Is minimized monotonically by trajectories of the
Fokker-Planck equation

pe =div(Vfp + B~ 'div(D p))

with o as the steady-state distribution. Moreover,

® = -8 logp*™
up to a constant.
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Some implications

> | earning rate should scale linearly with batch-size

B~ = = should not be small

also generalizes better
» Sampling with replacement regularizes better than without

- _ N 6
:BW/O replacement ﬁ (1 — N)
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Information Bottleneck Principle

» Minimize mutual information of the representation with the training data
[Tishby '99, Achille & Soatto '17]

1IBg(6) = Ex-p, [f(x)] —- B KL(pg | prior)

> Minimizing these functionals is hard, SGD does it naturally
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Potential Phi vs. original loss f

» The solution of the variational problem is

Zp
> Key point
1 Most likely locations of
pS(x) # —e P SGD are not the critical
Zﬁ points of the original loss

> The two losses are equal if and only if noise is isotropic

Dix)=1 & ®(x)="Ff(x)
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Deep networks have highly non-isotropic noise
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» Evaluate neural architectures using the diffusion matrix
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How different are cats and dogs, really?
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SGD converges to limit cycles

Theorem [Chaudhari & Soatto, ICLR '18]

The most likely trajectories of SGD are
x = j(x),
where the "leftover” vector field
j(x) = =VFf(x) + D(x) V& (x) = B~ divD(x)

IS such that
div j(x) = 0.
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Trajectories of SGD

» Run SGD for 10° epochs

FFT of x,,, — x|
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Most likely locations are not the critical points of the original loss

Theorem [Chaudhari & Soatto, ICLR '18]

The Ito SDE

dx = —Vf dt +[28-1D dW/(t)

Is equivalent to an A-type SDE

dx =—(D+ Q) Vo dt + \/2,3—10 dw(t)

with the same steady-state p5 o« e PP(X) jf

VF=(D+Q) Ve -p"div(D+0).
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Knots In our understanding

ARCHIT
ZATION
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Is SGD special?
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Stochastic gradient descent performs variational inference,
converges to limit cycles for deep networks,
Pratik Chaudhari and Stefano Soatto.

www.pratikac.info

Thank you, questions?
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