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The question

x

⇤ = argmin
x

f (x)

measures disagreement of

predictions with ground truth

weights aka

parameters

Many, many variants: 
AdaGrad, rmsprop, Adam,


SAG, SVRG, Catalyst,

APPA, Natasha, Katyusha…

x

k+1 = x

k

� ⌘ +fb(xk )

Stochastic gradient descent

Why is SGD 
so special?

Cat Dog ...
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Short negative tail
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Empirical evidence: wide “minima”



‣ Energy landscape of a binary perceptron
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‣ Wide minima are a large deviations phenomenon

Few wide minima,!
but generalize better!
[Baldassi et al., '15]

Many sharp minima

A bit of statistical physics



x

⇤ = argmin

x

f (x)

= argmax

x

e

�f (x)

‣ Local Entropy [Chaudhari et al., ICLR '17]
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⇡ argmin

x

� log
⇣
G

�

⇤ e

�f (x)⌘

Gaussian kernel!
of variance�

Tilting the Gibbs measure



Wide-ResNet: CIFAR-10 All-CNN: CIFAR-10 (25% data)

‣ State-of-the-art performance [Chaudhari et al., SysML '18]

6

Parle: parallelization of SGD



7

The question

Why is SGD 
so special?
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A continuous-time view of SGD

‣ Diffusion matrix: variance of mini-batch gradients

‣ Temperature: ratio of learning rate and step-size

��1 =
⌘

2b

var
⇣
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A continuous-time view of SGD

‣ Continuous-time limit of discrete-time updates

will assume x 2 ⌦ ⇢ “d

‣ Fokker-Planck (FP) equation gives the distribution on the  
weight space induced by SGD

where x(t ) ⇠ ⇢(t )⇢t = div
⇣
+f ⇢|{z}
drift

+ ��1div
⇣
D ⇢
⌘

|          {z          }
di↵usion

⌘

dx = �+f (x) d t|{z}
,⌘

+
q
2��1D (x) dW (t )
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Wasserstein gradient flow

1

2

Z

⌦

�
+⇢(x)

�2
dx

‣ Heat equation                      performs steepest descent on the  
Dirichlet energy

⇢t = div
⇣
I +⇢

⌘

�H (⇢) =

Z

⌦
log ⇢ d⇢

⇢⌧k+1 2 argmin
⇢

8><>:�H (⇢) +
◊2

2(⇢, ⇢
⌧
k
)

2⌧

9>=>;
converges to trajectories


of the heat equation

‣ It is also the steepest descent in the Wasserstein metric for

⇢ssheat = argmin
⇢
�H (⇢)

‣ Negative entropy is a Lyapunov functional for Brownian motion
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Wasserstein gradient flow: with drift

‣ If          , the Fokker-Planck equation

⇢t = div
⇣
+f ⇢ + ��1I +⇢

⌘

‣ FP is the steepest descent on JKO in the Wasserstein metric

D = I

has the Jordan-Kinderleher-Otto (JKO) functional [Jordan et al., '97]

as the Lyapunov functional.

⇢ss(x) = argmin
⇢

≈x⇠⇢
f
f (x)

g
|        {z        }
energetic term

� ��1 H (⇢)|     {z     }
entropic term
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What happens for non-isotropic noise?

⇢t = div
⇣
+f ⇢|{z}
drift

+ ��1div
⇣
D ⇢
⌘

|          {z          }
di↵usion

⌘

‣ FP monotonically minimizes the free energy

⇢ss(x) = argmin
⇢

≈x⇠⇢
f
�(x)

g
� ��1H (⇢)

F (⇢) = ��1KL (⇢ `` ⇢ss)

‣ Rewrite as

compare with |x - x*| for deterministic optimization.
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SGD performs variational inference

Theorem [Chaudhari & Soatto, ICLR '18]

The functional 

is minimized monotonically by trajectories of the

Fokker-Planck equation

with        as the steady-state distribution. Moreover,⇢ss

⇢t = div
⇣
+f ⇢ + ��1div (D ⇢)

⌘

F (⇢) = ��1KL (⇢ `` ⇢ss)

up to a constant.

� = ���1 log ⇢ss



14

Some implications

‣ Learning rate should scale linearly with batch-size

��1 =
⌘

2b
should not be small

‣ Sampling with replacement regularizes better than without

��1
w/o replacement

=
⌘

2b

 
1 � b

N

!

also generalizes better
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Information Bottleneck Principle

‣ Minimize mutual information of the representation with the training data 
[Tishby '99, Achille & Soatto '17]

‣ Minimizing these functionals is hard, SGD does it naturally

IB

�

(✓) = ≈
x⇠⇢

✓

f
f (x)

g
� ��1 KL

⇣
⇢

✓

`` prior
⌘
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Potential Phi vs. original loss f

‣ The solution of the variational problem is

‣ The two losses are equal if and only if noise is isotropic

D (x) = I , �(x) = f (x)

‣ Key point
Most likely locations of

SGD are not the critical

points of the original loss

⇢

ss(x) ,
1

Z

0
�

e

�� f (x)

⇢

ss(x) =
1

Z

�

e

�� �(x)
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Deep networks have highly non-isotropic noise

CIFAR-10

�(D ) = 0.27 ± 0.84
rank(D ) = 0.34%

CIFAR-100

�(D ) = 0.98 ± 2.16
rank(D ) = 0.47%

‣ Evaluate neural architectures using the diffusion matrix
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How different are cats and dogs, really?



is such that

Theorem [Chaudhari & Soatto, ICLR '18]

The most likely trajectories of SGD are 

where the "leftover" vector field

ẋ = j (x),

div j (x) = 0.

j (x) = �+f (x) + D (x) +�(x) � ��1divD (x)
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SGD converges to limit cycles
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Trajectories of SGD

FFT of x

i

k+1 � x ik

‣ Run SGD for       epochs105
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An example

j (x) = 0

+�(x) = 0

very large
�
j (x)

�

saddle-point

�
j (x)

�
is small

force-field
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Most likely locations are not the critical points of the original loss

Theorem [Chaudhari & Soatto, ICLR '18]

The Ito SDE

with the same steady-state                          if

is equivalent to an A-type SDE

dx = �
⇣
D + Q

⌘
+� d t +

q
2��1D dW (t )

⇢

ss / e

���(x)

+f =
⇣
D + Q

⌘
+� � ��1 div

⇣
D + Q

⌘
.

dx = �+f d t +
q
2��1D dW (t )
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Knots in our understanding

ARCHITECTURE
OPTIMIZATION

GENERALIZATION
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Punchline

Is SGD special?



Thank you, questions?
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Stochastic gradient descent performs variational inference,

converges to limit cycles for deep networks,

Pratik Chaudhari and Stefano Soatto.
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