
1/44

Deep Geometric Matrix
Completion

Federico Monti

Università della Svizzera italiana

Switzerland

federico.monti@usi.ch

Joint work with M. M. Bronstein (USI) and X. Bresson (NTU)

2/44

Deep Geometric Matrix
Completion

Federico Monti

Università della Svizzera italiana

Switzerland

federico.monti@usi.ch

Joint work with M. M. Bronstein (USI) and X. Bresson (NTU)

4/44

Matrix completion: ‘Netflix challenge’

n users

m
m

o
vi

es

3

3

1

5

5

4

min
X∈Rm×n

‖X‖∗ + µ‖Ω ◦ (X−A)‖2F

Candès 2008

4/44

Geometric matrix completion: ‘Netflix challenge’

user graph

m
o

vi
e

g
ra

p
h

1

5

5

5

4

5

5

4

5

2

1

4

min
X∈Rm×n

‖Ω ◦ (X−A)‖2F + µc tr(X∆cX
>)︸ ︷︷ ︸

‖X‖2Gc

+ µr tr(X>∆rX)︸ ︷︷ ︸
‖X‖2Gr

Kalofolias et al. 2014

5/44

Factorized geometric matrix completion models

user graph

m
o

vi
e

g
ra

p
h

W

H>

min
W∈Rm×s
H∈Rn×s

‖Ω ◦ (X−A)‖2F + µctr(H
>∆cH) + µrtr(W

>∆rW)

Do not fully exploit the local stationary structures that
users/items graphs present.

Rao et al. 2015

5/44

Factorized geometric matrix completion models

user graph

m
o

vi
e

g
ra

p
h

W

H>

min
W∈Rm×s
H∈Rn×s

‖Ω ◦ (X−A)‖2F + µctr(H
>∆cH) + µrtr(W

>∆rW)

Do not fully exploit the local stationary structures that
users/items graphs present.

5/44

Factorized geometric matrix completion models

user graph

m
o

vi
e

g
ra

p
h

W

H>

min
W∈Rm×s
H∈Rn×s

‖Ω ◦ (X−A)‖2F + µctr(H
>∆cH) + µrtr(W

>∆rW)

Do not fully exploit the local stationary structures that
users/items graphs present.
Number of parameters to train is at least linear wrt the number of
users and item.

6/44

Graph Convolutional Neural
Networks

7/44

A new challenge: geometric data

7/44

A new challenge: geometric data

8/44

Different formulations of CNN on graphs

Spectral domain1,2,3 Spatial domain4,5,6

Embedding domain7,8

1Bruna et al. 2014; 2Henaff, Bruna, LeCun 2015; 3Defferrard, Bresson,
Vandergheynst 2016; 4Masci et al. 2015; 5Boscaini et al. 2016; 6Monti et al. 2017;
7Sinha, Bai, Ramani 2016; 8Maron et al. 2017

9/44

Laplacian eigenfunctions

10/44

Convolution Theorem

• Given two functions f, h : Z → R their convolution is a function

(f ? h)(x) =

K/2∑
x′=−K/2

f(x− x′)h(x′) = F−1{F{f} · F{h}}

• Given two functions f, h : V → R their convolution is a function

10/44

Convolution Theorem

• Given two functions f, h : Z → R their convolution is a function

(f ? h)(x) =

K/2∑
x′=−K/2

f(x− x′)h(x′) = F−1{F{f} · F{h}}

• Given two functions f, h : V → R their convolution is a function

10/44

Convolution Theorem

• Given two functions f, h : Z → R their convolution is a function

(f ? h)(x) =

K/2∑
x′=−K/2

f(x− x′)h(x′) = F−1{F{f} · F{h}}

• Given two functions f, h : V → R their convolution is a function

10/44

Convolution Theorem

• Given two functions f, h : Z → R their convolution is a function

(f ? h)(x) =

K/2∑
x′=−K/2

f(x− x′)h(x′) = F−1{F{f} · F{h}}

• Given two functions f, h : V → R their convolution is a function

11/44

Spectral graph CNN

Convolutional layer expressed in the spectral domain

gl = ξ

 p∑
l′=1

Φ

ĥ
(l,l′)
1

. . .

ĥ
(l,l′)
N

Φ>fl′

 l = 1, . . . , q
l′ = 1, . . . , p

where q is the number of features in output and p in input.

O(N) parameters per layer

O(N2) computation of forward and inverse Fourier transforms
Φ>,Φ (no FFT on graphs)

No guarantee of spatial localization of filters

Bruna et al. 2014

11/44

Spectral graph CNN

Convolutional layer expressed in the spectral domain

gl = ξ

 p∑
l′=1

Φ

ĥ
(l,l′)
1

. . .

ĥ
(l,l′)
N

Φ>fl′

 l = 1, . . . , q
l′ = 1, . . . , p

where q is the number of features in output and p in input.

O(N) parameters per layer

O(N2) computation of forward and inverse Fourier transforms
Φ>,Φ (no FFT on graphs)

No guarantee of spatial localization of filters

Bruna et al. 2014

12/44

Spectral graph CNN with polynomial filters

Represent spectral transfer function as a polynomial or order r

τα(λ) =
r∑
j=0

αjλ
j

where α = (α0, . . . , αr)
> is the vector of filter parameters

,

Tj(λ̃) = 2λ̃Tj−1(λ̃)− Tj−2(λ̃) T0(λ̃) = 1, T1(λ̃) = λ̃

and −1 ≤ λ̃ ≤ 1 is normalized frequency.

O(1) parameters per layer

Filters have guaranteed r-hops support

No explicit computation of Φ>,Φ ⇒ O(r|E|) computational
complexity

Defferrard, Bresson, Vandergheynst 2016

12/44

Spectral graph CNN with polynomial filters

Represent spectral transfer function as a Chebyshev polynomial or order r

τα(λ̃) =
r∑
j=0

αjTj(λ̃)

where α = (α0, . . . , αr)
> is the vector of filter parameters,

Tj(λ̃) = 2λ̃Tj−1(λ̃)− Tj−2(λ̃) T0(λ̃) = 1, T1(λ̃) = λ̃

and −1 ≤ λ̃ ≤ 1 is normalized frequency.

O(1) parameters per layer

Filters have guaranteed r-hops support

No explicit computation of Φ>,Φ ⇒ O(r|E|) computational
complexity

Defferrard, Bresson, Vandergheynst 2016

12/44

Spectral graph CNN with polynomial filters

Represent spectral transfer function as a Chebyshev polynomial or order r

τα(λ̃) =
r∑
j=0

αjTj(λ̃)

where α = (α0, . . . , αr)
> is the vector of filter parameters,

Tj(λ̃) = 2λ̃Tj−1(λ̃)− Tj−2(λ̃) T0(λ̃) = 1, T1(λ̃) = λ̃

and −1 ≤ λ̃ ≤ 1 is normalized frequency.

Application of the filter to scaled Laplacian ∆̃ = D−0.5∆D−0.5 − I =
ΦΛ̃ΦT :

g = Φ(
r∑
j=0

αjTj(Λ̃))ΦT f =
r∑
j=0

αjTj(∆̃)f

O(1) parameters per layer

Filters have guaranteed r-hops support

No explicit computation of Φ>,Φ ⇒ O(r|E|) computational
complexity

Defferrard, Bresson, Vandergheynst 2016

12/44

Spectral graph CNN with polynomial filters

Represent spectral transfer function as a Chebyshev polynomial or order r

τα(λ̃) =
r∑
j=0

αjTj(λ̃)

where α = (α0, . . . , αr)
> is the vector of filter parameters,

Tj(λ̃) = 2λ̃Tj−1(λ̃)− Tj−2(λ̃) T0(λ̃) = 1, T1(λ̃) = λ̃

and −1 ≤ λ̃ ≤ 1 is normalized frequency.

Application of the filter to scaled Laplacian ∆̃ = D−0.5∆D−0.5 − I =
ΦΛ̃ΦT :

g = Φ(
r∑
j=0

αjTj(Λ̃))ΦT f =
r∑
j=0

αjTj(∆̃)f

O(1) parameters per layer

Filters have guaranteed r-hops support

No explicit computation of Φ>,Φ ⇒ O(r|E|) computational
complexity

Defferrard, Bresson, Vandergheynst 2016

13/44

Community graph example

Synthetic graph with 15 communities

0 200 400

0

5

10

15

Unnorm. Laplacian eigenvalues

0 200 400

0

0.5

1

Normalized Laplacian eigenvalues

Levie et al. 2017

14/44

Community graph example

λmin λmax

0

1

|τ
(λ
)|

Example of Chebyshev filters learned on the 15-communities graph

Levie et al. 2017

15/44

Chebyshev: community graph example

1 3 5 7 9 11 13

20

40

60

80

100

Order r

A
cc

u
ra

cy
%

ChebNet

Community detection accuracy of ChebNet on the synthetic

15-community graph

Levie et al. 2017

16/44

Spectral CNNs

• SplineNet: Bruna, Zaremba, Szlam, LeCun 2014; Henaff, Bruna,
LeCun 2015

• ChebNet: Defferrard, Bresson, Vandergheynst 2016

• CayleyNet: Levie*, Monti*, Bresson, Bronstein 2017

17/44

Spectral zoom

Cayley transform C(λ) = λ−i
λ+i is a smooth bijection from R to eiR \ {1}

Applying Cayley transform to the scaled eigenvalues hλ

C(hλ) = (hλ− i)(hλ+ i)−1

results in a non-linear transformation of the eigenvalues (spectral zoom)

−1 −0.5 0 0.5 1

−1

−0.5

0

Re

Im

−1 −0.5 0 0.5 1

−1

−0.5

0

Re

Im

−1 −0.5 0 0.5 1

−1

−0.5

0

Re

Im

Cayley transform C(hλ) for (left-to-right) h = 0.1, 1, and 10

of the 15-communities graph Laplacian spectrum

Levie et al. 2017

17/44

Spectral zoom

Cayley transform C(λ) = λ−i
λ+i is a smooth bijection from R to eiR \ {1}

Applying Cayley transform to the scaled eigenvalues hλ

C(hλ) = (hλ− i)(hλ+ i)−1

results in a non-linear transformation of the eigenvalues (spectral zoom)

−1 −0.5 0 0.5 1

−1

−0.5

0

Re

Im

−1 −0.5 0 0.5 1

−1

−0.5

0

Re

Im

−1 −0.5 0 0.5 1

−1

−0.5

0

Re

Im

Cayley transform C(hλ) for (left-to-right) h = 0.1, 1, and 10

of the 15-communities graph Laplacian spectrum

Levie et al. 2017

17/44

Spectral zoom

Cayley transform C(λ) = λ−i
λ+i is a smooth bijection from R to eiR \ {1}

Applying Cayley transform to the scaled eigenvalues hλ

C(hλ) = (hλ− i)(hλ+ i)−1

results in a non-linear transformation of the eigenvalues (spectral zoom)

−1 −0.5 0 0.5 1

−1

−0.5

0

Re

Im

−1 −0.5 0 0.5 1

−1

−0.5

0

Re

Im

−1 −0.5 0 0.5 1

−1

−0.5

0

Re

Im

Cayley transform C(hλ) for (left-to-right) h = 0.1, 1, and 10

of the 15-communities graph Laplacian spectrum

Levie et al. 2017

18/44

Cayley polynomials

Cayley polynomials of order r are a family of real-valued rational
functions with complex coefficients cj

τc(h∆) = Φ

(
c0 +

r∑
j=1

cjC(hΛ)j +

r∑
j=1

c̄jC(hΛ)−j
)

ΦT =

= c0 +

r∑
j=1

cjC(h∆)j +

r∑
j=1

c̄jC(h∆)−j =

= c0 + 2Re
{ r∑
j=1

cjC(h∆)j
}

Note that: ΦC(hΛ)ΦT = C(h∆) = (h∆− iI)(h∆ + iI)−1

(Cayley 1846); Levie et al. 2017

19/44

Chebyshev vs Cayley: community graph example

λmin λmax

0

1

|τ
(λ
)|

Example of Cayley filters learned on the 15-communities graph

Levie et al. 2017

20/44

Chebyshev vs Cayley: community graph example

1 3 5 7 9 11 13

20

40

60

80

100

Order r

A
cc

u
ra

cy
%

ChebNet

CayleyNet

Community detection accuracy of ChebNet and CayleyNet

on the synthetic 15-community graph

Levie et al. 2017

21/44

Fast inversion

Application of Cayley filters τc(h∆)f = Re
{∑r

j=0 cjC(h∆)j
}

f requires

the computation of

y0 = f

y1 = C(h∆)f

= C(h∆)y0

y2 = C(h∆)2f

= C(h∆)y1

...

yr = C(h∆)rf

= C(h∆)yr−1

with C(h∆) = (h∆− iI)(h∆ + iI)−1 → O(n3) operations.

For a generic power j we have therefore

yj = C(h∆)yj−1 = (h∆− iI)(h∆ + iI)−1yj−1

↓

(h∆ + iI)yj = (h∆− iI)yj−1

(Jacobi 1834); Levie et al. 2017

21/44

Fast inversion

Application of Cayley filters τc(h∆)f = Re
{∑r

j=0 cjC(h∆)j
}

f requires

the computation of

y0 = f

y1 = C(h∆)f = C(h∆)y0

y2 = C(h∆)2f = C(h∆)y1

...

yr = C(h∆)rf = C(h∆)yr−1

with C(h∆) = (h∆− iI)(h∆ + iI)−1 → O(n3) operations.

For a generic power j we have therefore

yj = C(h∆)yj−1 = (h∆− iI)(h∆ + iI)−1yj−1

↓

(h∆ + iI)yj = (h∆− iI)yj−1

(Jacobi 1834); Levie et al. 2017

21/44

Fast inversion

Application of Cayley filters τc(h∆)f = Re
{∑r

j=0 cjC(h∆)j
}

f requires

the computation of

y0 = f

y1 = C(h∆)f = C(h∆)y0

y2 = C(h∆)2f = C(h∆)y1

...

yr = C(h∆)rf = C(h∆)yr−1

For a generic power j we have therefore

yj = C(h∆)yj−1 = (h∆− iI)(h∆ + iI)−1yj−1

↓

(h∆ + iI)yj = (h∆− iI)yj−1

(Jacobi 1834); Levie et al. 2017

22/44

Fast inversion

Approximate solution ỹj ≈ yj using K Jacobi iterations

ỹ
(k+1)
j = Jỹ

(k)
j + Diag−1(h∆ + iI)(h∆− iI)ỹj−1

ỹ
(0)
j = Diag−1(h∆ + iI)(h∆− iI)ỹj−1

with J = −Diag−1(h∆ + iI)Off(h∆ + iI)

Cost:
∑r
j=0 cjỹj ≈ τ(h∆)f has O(rK|E|) complexity for sparse graphs.

(Jacobi 1834); Levie et al. 2017

22/44

Fast inversion

Approximate solution ỹj ≈ yj using K Jacobi iterations

ỹ
(k+1)
j = Jỹ

(k)
j + Diag−1(h∆ + iI)(h∆− iI)ỹj−1

ỹ
(0)
j = Diag−1(h∆ + iI)(h∆− iI)ỹj−1

with J = −Diag−1(h∆ + iI)Off(h∆ + iI)

Cost:
∑r
j=0 cjỹj ≈ τ(h∆)f has O(rK|E|) complexity for sparse graphs.

(Jacobi 1834); Levie et al. 2017

23/44

Computational complexity of approximate inversion

Training times

1 3 5 7 9 11 13

0

0.5

1

5

9

13

full

Cheb

Order r

T
im

e
(s

ec
)

Training times

200 400 600 800 1,000

0

0.5

1

5

9

13

Cheb

fu
ll

#Vertices n

T
im

e
(s

ec
)

Training computational complexities of CayleyNet

Levie et al. 2017

24/44

Error bound

Unnormalized Laplacian: d = maxj djj and κ = ‖J‖∞ = hd√
h2d2+1

< 1

Normalized Laplacian: Assume that (h∆̃ + iI) is dominant diagonal s.t.
κ = ‖J‖∞ < 1

Theorem 1 (approximation error) Under the above assumptions∥∥∥∑r
j=0 cjỹj − τ(h∆)f

∥∥∥
2

‖τ(h∆)f‖2
< MκK

where M =
√
n
∑r
j=1 j|cj | for a general graph and M =

∑r
j=1 j|cj | for

a regular graph

(Jacobi 1834); Levie et al. 2017

24/44

Error bound

Unnormalized Laplacian: d = maxj djj and κ = ‖J‖∞ = hd√
h2d2+1

< 1

Normalized Laplacian: Assume that (h∆̃ + iI) is dominant diagonal s.t.
κ = ‖J‖∞ < 1

Theorem 1 (approximation error) Under the above assumptions∥∥∥∑r
j=0 cjỹj − τ(h∆)f

∥∥∥
2

‖τ(h∆)f‖2
< MκK

where M =
√
n
∑r
j=1 j|cj | for a general graph and M =

∑r
j=1 j|cj | for

a regular graph

(Jacobi 1834); Levie et al. 2017

25/44

Exponential decay

Exponential decay on graphs f ∈ Lp(V), 1 ≤ p ≤ ∞ has exponential
decay about vertex m if ∃γ ∈ (0, 1) and c > 0 such that for any k

‖f |N ck,m‖p ≤ cγ
k‖f‖p

where Nk,m is the k-hop neighborhood of vertex m

Levie et al. 2017

25/44

Exponential decay

Exponential decay on graphs f ∈ Lp(V), 1 ≤ p ≤ ∞ has exponential
decay about vertex m if ∃γ ∈ (0, 1) and c > 0 such that for any k

‖f |N ck,m‖p ≤ cγ
k‖f‖p

where Nk,m is the k-hop neighborhood of vertex m

Compare to

Exponential decay in R f(x) has exponential decay (about 0) if ∃γ ∈
(0, 1) and c > 0 such that for any ρ > 0

‖f |Bcρ‖∞ ≤ cγ
−ρ‖f‖∞

where Bρ is a ball of radius ρ about 0.

Levie et al. 2017

25/44

Exponential decay

Exponential decay on graphs f ∈ Lp(V), 1 ≤ p ≤ ∞ has exponential
decay about vertex m if ∃γ ∈ (0, 1) and c > 0 such that for any k

‖f |N ck,m‖p ≤ cγ
k‖f‖p

where Nk,m is the k-hop neighborhood of vertex m

Theorem 2 (exponential decay of Cayley filters) Let τ(h∆) be a
Cayley filter of order r and δm a delta-function at vertex m of the
graph. Then, τ(h∆)δm has exponential decay about m with p = 2,
c = 2M/‖τ(∆)δm‖2 and γ = κ1/r (where M =

√
n
∑r
j=1 j|cj |, κ =

‖J‖∞ as in Theorem 1)

Levie et al. 2017

26/44

Chebyshev vs Cayley

λmin λmax

0

1

|τ
(λ
)|

Example of Chebyshev filters (order r = 3) on Euclidean grid

26/44

Chebyshev vs Cayley

λmin λmax

0

1

|τ
(λ
)|

Example of Chebyshev filters (order r = 7) on Euclidean grid

26/44

Chebyshev vs Cayley

λmin λmax

0

1

|τ
(λ
)|

Example of Cayley filters (order r = 3) on Euclidean grid

27/44

Poster

MotifNet: a motif-based Graph Convolutional
Network for directed graphs

F. Monti, K. Otness, M. M. Bronstein

28/44

Accuracy of approximate inversion

1 3 5 7 9 11 13

20

40

60

80

100

1

5

9

13

Cheb

full

Order r

A
cc

u
ra

cy
%

Community detection accuracy of CayleyNet using approximate Jacobi inversion

on the synthetic 15-community graph

Levie et al. 2017

29/44

Cora dataset

• Citations network representing papers
(vertices) and citations (edges).

• Goal: vertex-wise classification
(paper topic).

• 2708 documents, 7 topics.

• Training set: 1,708 vertices;
validation set: 500 vertices;
test set: 500 vertices.

Set et al. 2008

30/44

Chebyshev vs Cayley: Cora example

1 2 3 4 5 6

82

84

86

88

87.1 86.6 86.2 85.2 84.9 84.587.9 86.9 87.1 86.6 86.5 86.8

Order r

A
cc

u
ra

cy
%

Normalized Laplacian

1 2 3 4 5 6

75

80

85

90

78.0 85.7 86.6 87.5 87.7 87.487.7 86.0 86.8 85.7 85.2 85.1

Order r

A
cc

u
ra

cy
%

Scaled unnormalized Laplacian

46K 69K 92K 115K 138K 161K

82

84

86

88

87.1 86.6 86.2 85.2 84.9 84.587.3 86.9 86.2 86.4 85.3 85.3

#Params

A
cc

u
ra

cy
%

46K 69K 92K 115K 138K 161K

75

80

85

90

78.0 85.7 86.6 87.5 87.7 87.488.1 88.0 87.6 86.4 86.5 86.7

#Params

A
cc

u
ra

cy
%

ChebNet (blue) and CayleyNet (orange) test accuracies on the CORA dataset.

Polynomials with complex coefficients (top) and real coefficients (bottom) have

been exploited with CayleyNet in the two analysis.

Levie et al. 2017; data: Set et al. 2008

31/44

CayleyNet: Spectral graph CNN with Cayley polynomials

Represent spectral transfer function as a Cayley polynomial or order r

τc,h(λ) = c0 + 2Re
{ r∑
j=1

cj(hλ− i)j(hλ+ i)−j
}

where the filter parameters are the vector of real/complex coefficients
c = (c0, . . . , cr)

> and the spectral zoom h

O(1) parameters per layer

Filters have guaranteed exponential spatial decay

O(r|E|) computational complexity with Jacobi approximate
inversion (assuming sparsely-connected graph)

Levie et al. 2017

31/44

CayleyNet: Spectral graph CNN with Cayley polynomials

Represent spectral transfer function as a Cayley polynomial or order r

τc,h(λ) = c0 + 2Re
{ r∑
j=1

cj(hλ− i)j(hλ+ i)−j
}

where the filter parameters are the vector of real/complex coefficients
c = (c0, . . . , cr)

> and the spectral zoom h

O(1) parameters per layer

Filters have guaranteed exponential spatial decay

O(r|E|) computational complexity with Jacobi approximate
inversion (assuming sparsely-connected graph)

Levie et al. 2017

31/44

CayleyNet: Spectral graph CNN with Cayley polynomials

Represent spectral transfer function as a Cayley polynomial or order r

τc,h(λ) = c0 + 2Re
{ r∑
j=1

cj(hλ− i)j(hλ+ i)−j
}

where the filter parameters are the vector of real/complex coefficients
c = (c0, . . . , cr)

> and the spectral zoom h

O(1) parameters per layer

Filters have guaranteed exponential spatial decay

O(r|E|) computational complexity with Jacobi approximate
inversion (assuming sparsely-connected graph)

Spectral zoom property allowing to better localize in frequency

Levie et al. 2017

31/44

CayleyNet: Spectral graph CNN with Cayley polynomials

Represent spectral transfer function as a Cayley polynomial or order r

τc,h(λ) = c0 + 2Re
{ r∑
j=1

cj(hλ− i)j(hλ+ i)−j
}

where the filter parameters are the vector of real/complex coefficients
c = (c0, . . . , cr)

> and the spectral zoom h

O(1) parameters per layer

Filters have guaranteed exponential spatial decay

O(r|E|) computational complexity with Jacobi approximate
inversion (assuming sparsely-connected graph)

Spectral zoom property allowing to better localize in frequency

Richer class of filters than Chebyshev for the same order

Levie et al. 2017

32/44

MGCNN

33/44

2D Fourier transform

X

Column-wise trasform + Row-wise transform = 2D transform

33/44

2D Fourier transform

Φ> X(x̂1, . . . , x̂n)

×=

Column-wise trasform

+ Row-wise transform = 2D transform

33/44

2D Fourier transform

Φ> ΦXX̂

× ×=

Column-wise trasform + Row-wise transform = 2D transform

34/44

Multi-graph Fourier transform

column graph
ro

w
g

ra
p

h

Multi-graph Fourier transform

X̂ = Φ>r XΦc

where Φc and Φr are the eigenvectors of the column- and row-graph
Laplacians ∆c and ∆r, respectively

Monti, Bresson, Bronstein 2017

34/44

Multi-graph convolution

column graph
ro

w
g

ra
p

h

Multi-graph spectral convolution

X ?Y = Φr(X̂ ◦ Ŷ)Φ>c

Monti, Bresson, Bronstein 2017

35/44

Multi-Graph CNN

Multi-graph spectral coefficient parametrization

τΘ(λ̃c, λ̃r) =

r∑
j,j′=0

θjj′Tj(λ̃c)Tj′(λ̃r)

Multi-graph spectral convolutional layer

Yl = ξ

 p∑
l′=1

r∑
j,j′=0

θjj′ll′Tj(∆̃r)Xl′Tj′(∆̃c)

 l = 1, . . . , q
l′ = 1, . . . , p

applied to p input channels (m× n matrices X1, . . . ,Xp) and producing
q output channels (m× n matrices Y1, . . . ,Yq)

O(1) parameters per layer

Filters have guaranteed r-hops support on both graphs

Monti, Bresson, Bronstein 2017

35/44

Multi-Graph CNN

Multi-graph spectral convolutional layer

Yl = ξ

 p∑
l′=1

r∑
j,j′=0

θjj′ll′Tj(∆̃r)Xl′Tj′(∆̃c)

 l = 1, . . . , q
l′ = 1, . . . , p

applied to p input channels (m× n matrices X1, . . . ,Xp) and producing
q output channels (m× n matrices Y1, . . . ,Yq)

O(1) parameters per layer

Filters have guaranteed r-hops support on both graphs

Monti, Bresson, Bronstein 2017

35/44

Multi-Graph CNN

Multi-graph spectral convolutional layer

Yl = ξ

 p∑
l′=1

r∑
j,j′=0

θjj′ll′Tj(∆̃r)Xl′Tj′(∆̃c)

 l = 1, . . . , q
l′ = 1, . . . , p

applied to p input channels (m× n matrices X1, . . . ,Xp) and producing
q output channels (m× n matrices Y1, . . . ,Yq)

O(1) parameters per layer

Filters have guaranteed r-hops support on both graphs

Monti, Bresson, Bronstein 2017

35/44

Multi-Graph CNN

Multi-graph spectral convolutional layer

Yl = ξ

 p∑
l′=1

r∑
j,j′=0

θjj′ll′Tj(∆̃r)Xl′Tj′(∆̃c)

 l = 1, . . . , q
l′ = 1, . . . , p

applied to p input channels (m× n matrices X1, . . . ,Xp) and producing
q output channels (m× n matrices Y1, . . . ,Yq)

O(1) parameters per layer

Filters have guaranteed r-hops support on both graphs

O(nm) computational complexity

Monti, Bresson, Bronstein 2017

36/44

Separable multi-graph spectral filters

user graph

m
o

vi
e

g
ra

p
h

Separable filters applied to row- and column factors independently

ul =

r∑
j=0

θr,jTj(∆̃r)wl vl =

r∑
j′=0

θc,j′Tj′(∆̃c)hl l = 1, . . . , s

where θr = (θr,0, . . . , θr,r) and θc = (θc,0, . . . , θc,r) are the parameters of
the row- and column- filters, W = (w1, . . . ,ws) and H = (h1, . . . ,hs)

Monti, Bresson, Bronstein 2017

37/44

Separable Multi-Graph CNN

Two spectral convolutional layers applied to each of the factors W,H

ul = ξ

 p∑
l′=1

r∑
j=0

θr,jll′Tj(∆̃r)wl′

 l = 1, . . . , q
l′ = 1, . . . , p

vl = ξ

 p∑
l′=1

r∑
j′=0

θc,j′ll′Tj′(∆̃c)hl′

O(1) parameters per layer

Filters have guaranteed r-hops support on both graphs

Monti, Bresson, Bronstein 2017

37/44

Separable Multi-Graph CNN

Two spectral convolutional layers applied to each of the factors W,H

ul = ξ

 p∑
l′=1

r∑
j=0

θr,jll′Tj(∆̃r)wl′

 l = 1, . . . , q
l′ = 1, . . . , p

vl = ξ

 p∑
l′=1

r∑
j′=0

θc,j′ll′Tj′(∆̃c)hl′

O(1) parameters per layer

Filters have guaranteed r-hops support on both graphs

Monti, Bresson, Bronstein 2017

37/44

Separable Multi-Graph CNN

Two spectral convolutional layers applied to each of the factors W,H

ul = ξ

 p∑
l′=1

r∑
j=0

θr,jll′Tj(∆̃r)wl′

 l = 1, . . . , q
l′ = 1, . . . , p

vl = ξ

 p∑
l′=1

r∑
j′=0

θc,j′ll′Tj′(∆̃c)hl′

O(1) parameters per layer

Filters have guaranteed r-hops support on both graphs

O(n+m) computational complexity (assuming sparse graph)

Monti, Bresson, Bronstein 2017

38/44

Matrix completion with Recurrent Multi-Graph CNN

X
X(t) Y(t)

Θ σ

MGCNN RNN

dX(t)

X(t+1) = X(t) + dX(t)

Recurrent multigraph CNN (RMCNN) architecture

for matrix completion

min
Θ,σ

‖X(T)
Θ,σ‖

2
Gr + ‖X(T)

Θ,σ‖
2
Gc +

µ

2
‖Ω ◦ (X

(T)
Θ,σ −Y)‖2F

Monti, Bresson, Bronstein 2017

39/44

Matrix completion with Recurrent Multi-Graph CNN

W

H>
H(t) U(t)

W(t) V(t)

MGCNN RNN

Θc σc

MGCNN RNN

Θr σr

dH(t)

dW(t)

W(t+1) = W(t) + dW(t)

H(t+1) = H(t) + dH(t)

row filter

column filter

Separable recurrent multigraph CNN (sRMCNN) architecture

for matrix completion in factorized form

min
θr,θr,σr,σc

‖W(T)
θr,σr
‖2Gr + ‖H(T)

θc,σc
‖2Gc +

µ

2
‖Ω ◦ (W

(T)
θr,σr

(H
(T)
θc,σc

)>−Y)‖2F

Monti, Bresson, Bronstein 2017

40/44

Incremental updates with RNN

Non-factorized (RMGCNN)

RMSE=2.26

Factorized (sRMGCNN)

RMSE=1.15

Matrix completion results on a synthetic dataset.

t = 0

Monti, Bresson, Bronstein 2017

40/44

Incremental updates with RNN

Non-factorized (RMGCNN)

RMSE=0.52

Factorized (sRMGCNN)

RMSE=0.76

Matrix completion results on a synthetic dataset.

t = 5

Monti, Bresson, Bronstein 2017

40/44

Incremental updates with RNN

Non-factorized (RMGCNN)

RMSE=0.38

Factorized (sRMGCNN)

RMSE=0.27

Matrix completion results on a synthetic dataset.

t = 8

Monti, Bresson, Bronstein 2017

40/44

Incremental updates with RNN

Non-factorized (RMGCNN)

RMSE=0.01

Factorized (sRMGCNN)

RMSE=0.01

Matrix completion results on a synthetic dataset.

t = 10

Monti, Bresson, Bronstein 2017

41/44

Matrix completion methods comparison

Method #Params Complexity RMSE
GMC1 mn mn 0.3693
GRALS2 m+ n m+ n 0.0114
sRMGCNN3 1 m+ n 0.0106
RMGCNN3 1 mn 0.0053

Comparison of geometric matrix completion methods on synthetic data

using both users and movies graphs

Method Params Architecture RMSE
MGCNN3layers 9K 1MGC32, 32MGC10, 10MGC1 0.0116
MGCNN4layers 53K 1MGC32, 32MGC32 × 2, 32MGC1 0.0073
MGCNN5layers 78K 1MGC32, 32MGC32 × 3, 32MGC1 0.0074
MGCNN6layers 104K 1MGC32, 32MGC32 × 4, 32MGC1 0.0064
RMGCNN3 9K 1MGC32 + LSTM 0.0053

Reconstruction errors with multi-layer MGCNNs and the proposed solution.

q′MGCq denotes a multi-graph convolution with q′/q input/output features.

Methods: 1Kalofolias et al. 2014; 2Rao et al. 2015; 3Monti, Bresson, Bronstein 2017;

42/44

Matrix completion methods comparison

Method MovieLens1 Flixster2 Douban3 Yahoo4

IMC5 1.653 – – –
GMC6 0.996 – – –
MC7 0.973 – – –
GRALS8 0.945 1.313/1.245 0.833 38.042
sRMGCNN (Cheby, r=4)9 0.929 1.179/0.926 0.801 22.415
sRMGCNN (Cheby, r=8)9 0.925 – – –
sRMGCNN (Cayley, r=4)10 0.922 – – –

Performance (RMS error) on several datasets. For Douban and YahooMusic, a

single graph (of users and items respectively) was used. For Flixster, two

settings are shown: users+items graphs / only users graph.

Data: 1Miller et al. 2003; 2Jamali, Ester 2010; 3Ma et al. 2011; 4Dror et al. 2012
Methods: 5Jain, Dhillon 2013; 6Kalofolias et al. 2014; 7Candès, Recht 2012; 8Rao et
al. 2015; 9Monti, Bresson, Bronstein 2017; 10Levie et al. 2017

43/44

Conclusions

• We presented a new spectral approach with spectral zoom properties
(CayleyNet).

• We introduced MGCNN, the first Multi-Graph Convolutional Neural
Network.

• We showed how coupling MGCNN with a RNN a learnable diffusion
process can be realized for reconstructing missing information.

• Our Geometric Deep Learning approach outperforms previous state
of the art solutions on the matrix completion problem.

geometricdeeplearning.com

44/44

Thank You!

