

Toward natural language semantics in learned representations

Sam Bowman

Asst. Prof. of Linguistics and Data Science, NYU

IPAM Workshop: New Deep Learning Techniques

Context: Deep learning in NLP

As in vision and elsewhere, deep learning techniques have yielded very fast progress on a few important data-rich tasks:

Reading comprehension questions

Near human performance (but brittle)

Translation

 Large, perceptually obvious improvements over past systems.

Syntactic parsing

 Measurable improvements on a longstanding state of the art

The Question

Can current neural network methods learn to do anything that resembles *compositional semantics*?

The Question

Can current neural network methods learn to do anything that resembles *compositional semantics*?

If we take this as a goal to work toward, what's our metric?

Proposal:
Natural language
inference as a
research task

Natural Language Inference (NLI)

also known as recognizing textual entailment (RTE)

James Byron Dean refused to move without blue jeans

{entails, contradicts, neither}

James Dean didn't dance without pants

Example: MacCartney thesis '09

Judging Understanding with NLI

To reliably perform well at NLI, your representations of meaning must handle with the full complexity of compositional semantics:*

- Lexical entailment (cat vs. animal, cat vs. dog)
- Quantification (all, most, fewer than eight)
- Lexical ambiguity and scope ambiguity (bank, ...)
- Modality (might, should, ...)
- Common sense background knowledge

• • •

^{*} without grounding to the outside world.

Why not Other Tasks?

Many tasks that have been used to evaluate sentence representation models don't require all that much language understanding:

- Sentiment analysis
- Sentence similarity

...

Why not Other Tasks?

NP VP John V NP hit Det N the ball

NLI isn't the only task to require high-quality natural language understanding, see also:

- Machine translation
- Question answering
- Goal-driven dialog
- Semantic parsing
- Syntactic parsing

• •

But it's the easiest of these.

Outline

- Background: NLI as a research task for NLU
- Part 1 Data and early results
- Part 2 More data, more results
- Part 3 Next steps: Discovering structure
- Conclusion

Part I

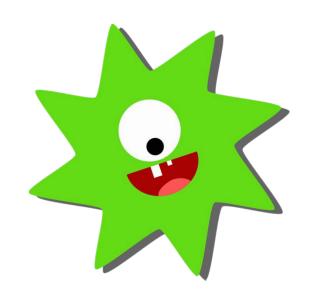
The Stanford NLI Corpus

Samuel R. Bowman
Gabor Angeli
Christopher Potts
Christopher D. Manning

Natural Language Inference Data

Corpus	Size	Natural	Validated
FraCaS	.3k	~	√
RTE	7k	✓	✓
SICK	10k	✓	✓
DG	728k	~	
Levy	1,500k		
PPDB2	100,000k	~	

Natural Language Inference Data



Corpus	Size	Natural	Validated
FraCaS	.3k	~	✓
RTE	7k	✓	✓
SICK	10k	✓	✓
SNLI	570k	✓	✓
DG	728k	~	
Levy	1,500k		
PPDB2	100,000k	~	

Our data collection prompt

The Stanford University NLP Group is collecting data for use in research on computer understanding of English. We appreciate your help!

We will show you the caption for a photo. We will not show you the photo. Using only the caption and what you know about the world:

- Write one alternate caption that is definitely a true description of the photo.
- · Write one alternate caption that might be a true description of the photo.
- · Write one alternate caption that is definitely a false description of the photo.

Photo caption An older man in gray khakis walks with a young boy in a green shirt along the edge of a fountain in a park.

Definitely correct Example: For the caption "Two dogs are running through a field." you could write "There are animals outdoors."

Write a sentence that follows from the given caption.

Maybe correct Example: For the caption "Two dogs are running through a field." you could write "Some puppies are running to catch a stick."

Write a sentence which may be true given the caption, and may not be.

Definitely incorrect Example: For the caption "Two dogs are running through a field." you could write "The pets are sitting on a couch." This is different from the maybe correct category because it's impossible for the dogs to be both running and sitting.

Write a sentence which contradicts the caption.

The Stanford University NLP Group is collecting data for use in research on computer understanding of English. We appreciate your help!

We will show you the caption for a photo. We will not show you the photo. Using only the caption and what you know about the world:

- Write one alternate caption that is definitely a true description of the photo.
- · Write one alternate caption that might be a true description of the photo.
- Write one alternate caption that is definitely a false description of the photo.

Photo caption An older man in gray khakis walks with a young boy in a green shirt along the edge of a fountain in a park.

Definitely correct Example: For the caption "Two dogs are running through a field." you could write "There are animals outdoors."

Write a sentence that follows from the given caption.

Entailment

Maybe correct Example: For the caption "Two dogs are running through a field." you could write "Some puppies are running to catch a stick."

Write a sentence which may be true given the caption, and may not be.

Definitely incorrect Example: For the caption "Two dogs are running through a field." you could write "The pets are sitting on a couch." This is different from the maybe correct category because it's impossible for the dogs to be both running and sitting.

Write a sentence which contradicts the caption.

The Stanford University NLP Group is collecting data for use in research on computer understanding of English. We appreciate your help!

We will show you the caption for a photo. We will not show you the photo. Using only the caption and what you know about the world:

- · Write one alternate caption that is definitely a true description of the photo.
- · Write one alternate caption that might be a true description of the photo.
- · Write one alternate caption that is definitely a false description of the photo.

Photo caption An older man in gray khakis walks with a young boy in a green shirt along the edge of a fountain in a park.

Definitely correct Example: For the caption "Two dogs are running through a field." you could write "There are animals outdoors."

Write a sentence that follows from the given caption.

Entailment

Maybe correct Example: For the caption "Two dogs are running through a field." you could write "Some puppies are running to catch a stick."

Write a sentence which may be true given the caption, and may not be.

Neutral

Definitely incorrect Example: For the caption "Two dogs are running through a field." you could write "The pets are sitting on a couch." This is different from the maybe correct category because it's impossible for the dogs to be both running and sitting.

Write a sentence which contradicts the caption.

The Stanford University NLP Group is collecting data for use in research on computer understanding of English. We appreciate your help!

We will show you the caption for a photo. We will not show you the photo. Using only the caption and what you know about the world:

- · Write one alternate caption that is definitely a true description of the photo.
- · Write one alternate caption that might be a true description of the photo.
- Write one alternate caption that is definitely a false description of the photo.

Photo caption An older man in gray khakis walks with a young boy in a green shirt along the edge of a fountain in a park.

Definitely correct Example: For the caption "Two dogs are running through a field." you could write "There are animals outdoors."

Write a sentence that follows from the given caption.

Entailment

Maybe correct Example: For the caption "Two dogs are running through a field." you could write "Some puppies are running to catch a stick."

Write a sentence which may be true given the caption, and may not be.

Neutral

Definitely incorrect Example: For the caption "Two dogs are running through a field." you could write "The pets are sitting on a couch." This is different from the maybe correct category because it's impossible for the dogs to be both running and sitting.

Write a sentence which contradicts the caption.

Contradiction

What we got

Some Sample Results

Premise: Two women are embracing while holding to go packages.

Hypothesis: Two woman are holding packages.

Label: Entailment

Some Sample Results

Premise: A man in a blue shirt standing in front of a garage-like structure painted with geometric designs.

Hypothesis: A man is repainting a garage

Label: Neutral

Some Sample Results

Premise: A man selling donuts to a customer during a world exhibition event held in the city of Angeles

Hypothesis: A woman drinks her coffee in a small cafe.

Label: Contradiction

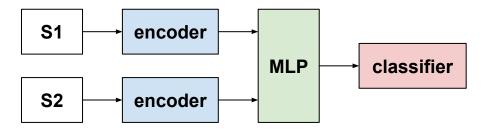
Results on SNLI

Some Results on SNLI

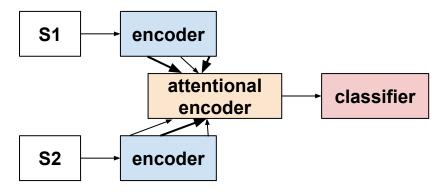
Model	Test accuracy
Most frequent class	34.2%
Big lexicalized classifier	78.2%

Two Classes of Neural Network

• Sentence encoder-based models



Attention and memory models



Some Results on SNLI

Model	Test accuracy
Most frequent class	34.2%
Big lexicalized classifier	78.2%
300D CBOW	80.6%
300D BiLSTM	81.5%

Some Results on SNLI

Model	Test accuracy
Most frequent class	34.2%
Big lexicalized classifier	78.2%
300D CBOW	80.6%
300D BiLSTM	81.5%
REINFORCE-Trained Self-Attention (Tao Shen et al. '18)	86.3%
Self-Attention/Cross-Attention + Ensemble (Yi Tay et al. '18)	89.3%

Success?

- We're not at human performance yet...
- ...but with 100+ published experiments, the best systems rarely stray too far from the standard toolkit:
 - LSTMs
 - Attention
 - Pretrained word embeddings
 - Ensembling

Part II

The Multi-genre NLI Corpus

Adina Williams Nikita Nangia Samuel R. Bowman

SNLI is Showing its Limitations

- Little headroom left:
 - o SotA: 89.3%
 - Human performance: ~96%
- Many linguistic phenomena underattested or ignored
 - Tense
 - Beliefs
 - Modality (possibility/permission)

••

The MultiGenre NLI Corpus

Genre	Train	Dev	Test
Captions (SNLI Corpus)	(550,152)	(10,000)	(10,000)
Fiction	77,348	2,000	2,000
Government	77,350	2,000	2,000
Slate	77,306	2,000	2,000
Switchboard (Telephone Speech)	83,348	2,000	2,000
Travel Guides	77,350	2,000	2,000

The MultiGenre NLI Corpus

Genre	Train	Dev	Test
Captions (SNLI Corpus)	(550,152)	(10,000)	(10,000)
Fiction	77,348	2,000	2,000
Government	77,350	2,000	2,000
Slate	77,306	2,000	2,000
Switchboard (Telephone Speech)	83,348	2,000	2,000
Travel Guides	77,350	2,000	2,000
9/11 Report	0	2,000	2,000
Face-to-Face Speech	0	2,000	2,000
Letters	0	2,000	2,000
OUP (Nonfiction Books)	0	2,000	2,000
Verbatim (Magazine)	0	2,000	2,000
Total	392,702	20,000	20,000

The MultiGenre NLI Corpus

Genre	Train	Dev	Test	
Captions (SNLI Corpus)	(550,152)	(10,000)	(10,000))
Fiction	77,348	2,000	2,000	
Government	77,350	2,000	2,000	genre-matched evaluation
Slate	77,306	2,000	2,000	
Switchboard (Telephone Speech)	83,348	2,000	2,000	
Travel Guides	77,350	2,000	2,000	
9/11 Report	0	2,000	2,000	
Face-to-Face Speech	0	2,000	2,000	
Letters	0	2,000	2,000	genre-mismatched evaluation
OUP (Nonfiction Books)	0	2,000	2,000	
Verbatim (Magazine)	0	2,000	2,000	
Total	392,702	20,000	20,000	

What we got

Typical Dev Set Examples

Premise: In contrast, suppliers that have continued to innovate and expand their use of the four practices, as well as other activities described in previous chapters, keep outperforming the industry as a whole.

Hypothesis: The suppliers that continued to innovate in their use of the four practices consistently underperformed in the industry.

Label: Contradiction

Genre: Oxford University Press (Nonfiction books)

Typical Dev Set Examples

Premise: someone else noticed it and i said well i guess that's true and it was somewhat melodious in other words it wasn't just you know it was really funny

Hypothesis: No one noticed and it wasn't funny at all.

Label: Contradiction

Genre: Switchboard (Telephone Speech)

Typical Dev Set Examples

Premise: The father can beget new offspring safe from Macbeth's hand; the son is the palpable threat.

Hypothesis: The son wants to kill him to marry his mom

Label: Neutral

Genre: Verbatim (Magazine)

Key Findings

- Inter-annotator agreement measures are *identical* between SNLI and MultiNLI (within 0.5%):
 - MultiNLI is not hard for humans.
- State-of-the-art SNLI models perform around 15
 percentage points worse when re-trained and tested on
 MultiNLI.
 - MultiNLI is hard for machine learning models.

Key Figures

Tag	SNLI	MultiNLI
Pronouns (PTB)	34	68
Quantifiers	33	63
Modals (PTB)	<1	28
Negation (PTB)	5	31
'Wh' Words (PTB)	5	30
Belief Verbs	<1	19
Time Terms	19	36
Conversational Pivots	<1	14
Presupposition Triggers	8	22
Comparatives/Superlatives (PTB)	3	17
Conditionals	4	15
Tense Match (PTB)	62	69
Interjections (PTB)	<1	5
>20 Words	<1	5
Existentials (PTB)	5	8

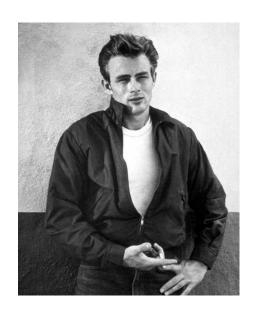
Early Results

Model	Matched Test Acc.	Mismatched Test Acc.
Most frequent class	36.5%	35.6%
Deep BiLSTMs with gated skips (Chen et al. '17)	74.9%	74.9%
Attention+convolutions (Gong et al. '18)	80.0%	78.7%

NLI as a Pretraining Task

Model	MR	CR	SUBJ	MPQA	SST	TREC	MRPC	SICK-R	SICK-E	STS14
Unsupervised representation training (unordered sentences)										
Unigram-TFIDF	73.7	79.2	90.3	82.4	-	85.0	73.6/81.7	-	-	.58/.57
word2vec BOW	73.6	77.3	89.2	85.0	-	82.2	69.3/77.2	×	11	.58/.57
SIF	-	_	-	-	82.2	-	-	-	84.6	<u>.68</u> / -
ParagraphVec (DBOW)	60.2	66.9	76.3	70.7	-	59.4	72.9/81.1	-	-	.42/.43
SDAE	74.6	78.0	90.8	86.9	-	78.4	73.7 /80.7	-	-	.37/.38
GloVe BOW [†]	78.7	78.8	90.6	87.6	79.4	77.4	73.0/81.6	0.799	78.7	.46/.50
GloVe Positional Encoding [†]	76.3	77.4	90.4	87.1	80.6	80.8	72.5/81.2	0.789	77.9	.44/.48
BiLSTM-Max (untrained) [†]	77.5	81.3	89.6	88.7	80.7	85.8	73.2/81.6	0.860	83.4	.39/.48
Unsupervised representation training (ordered sentences)										
FastSent	70.8	78.4	88.7	80.6	-	76.8	72.2/80.3	_	-	.63/.64
FastSent+AE	71.8	76.7	88.8	81.5	-	80.4	71.2/79.1	-	-	.62/.62
SkipThought	76.5	80.1	93.6	87.1	82.0	<u>92.2</u>	73.0/82.0	0.858	82.3	.29/.35
SkipThought-LN	79.4	83.1	<u>93.7</u>	89.3	82.9	88.4	-	0.858	79.5	.44/.45
Supervised representation training										
CaptionRep (bow)	61.9	69.3	77.4	70.8	-	72.2	-	-	-	.46/.42
DictRep (bow)	76.7	78.7	90.7	87.2	-	81.0	68.4/76.8	-	-	.67/.70
NMT En-to-Fr	64.7	70.1	84.9	81.5	-	82.8	-	-		.43/.42
Paragram-phrase	-	-	-	-	79.7	-	-	0.849	83.1	- / <u>.71</u>
BiLSTM-Max (on SST) [†]	(*)	83.7	90.2	89.5	(*)	86.0	72.7/80.9	0.863	83.1	.55/.54
BiLSTM-Max (on SNLI) [†]	79.9	84.6	92.1	89.8	83.3	88.7	75.1/82.3	<u>0.885</u>	<u>86.3</u>	.66/.64
BiLSTM-Max (on AllNLI) [†]	<u>81.1</u>	<u>86.3</u>	92.4	<u>90.2</u>	<u>84.6</u>	88.2	<u>76.2/83.1</u>	0.884	<u>86.3</u>	<u>.68</u> /.65

Discussion: NLI



- NLI lets you judge the degree to which models can learn to understand natural language sentences.
- With SNLI, it's now possible to train low-bias machine learning models like NNs on NLI.
- MultiNLI makes it possible to test models' ability to understand American English in nearly its full range of uses.
- Sentence encoders trained on NLI, like InferSent, are likely the best general-purpose encoders we have.

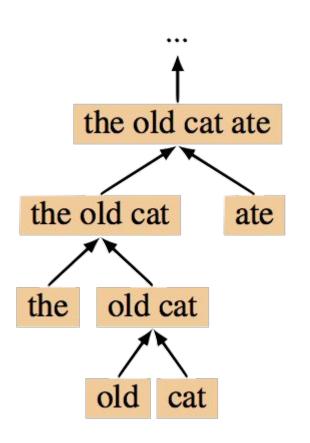
Part III

Next Steps: Learning Syntax from Semantics

> Adina Williams Andrew Drozdov Samuel R. Bowman

TACL 2018

Background: TreeLSTMs



TreeLSTMs replace the linear sequence of an LSTM RNN with a binary tree from a trained parser.

TreeLSTMs outperform comparable LSTM RNNs by small but consistent margins on tasks like sentiment, translation, and NLI.

entailment **MLP** the old cat ate the old cat ate old cat the old cat **PARSER** the old cat ate

Goal: Learn syntax from semantics

What?

- Build one model that can:
 - Parse sentences
 - Use resulting parses in a TreeRNN text classifier
- Train the full model (including the parser!) on SNLI or MultiNLI

Why?

- Engineering objective:
 Identify better parsing strategies for NLU
- Scientific objective:

Discover what syntactic structures are both valuable and learnable.

entailment **MLP** the old cat ate the old cat ate old cat the old cat **PARSER** the old cat ate

Results to Date

Three 2017 papers on SNLI report that TreeLSTMs learned trees outperform ones based on trees from an external parser:

- Yogatama et al.:
 - Shift-reduce parser + REINFORCE
- Maillard et al.:
 - Chart parser + soft gating
- Choi et al.:
 - Novel parser + Straight through Gumbel softmax

Limited analysis of the resulting parses so far.

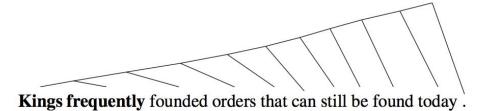
entailment **MLP** the old cat ate the old cat ate old cat the old cat **PARSER** the old cat ate

Our Findings

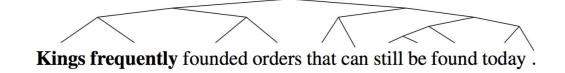
We reproduced the numeric results for the best two of these.

If thoroughly tuned for dev set performance, both learn:

Trivial left- or right-branching trees (RNN-equivalent)



...or trivial balanced trees.



entailment **MLP** the old cat ate the old cat ate old cat the old cat **PARSER** the old cat ate

Our Findings

No categorical successes yet.

Open problems:

- The performance gain from discovering correct trees is small, and therefore difficult to optimize for with current tools. Could better models improve this?
- How do we explore possible parsing strategies when it may take many gradient updates to the rest of the model to know if any strategy helps?

Thanks!

Questions, code, & data:

nyu.edu/projects/bowman

Plus:

- Adina Williams is on the job market in cognitive science!
- Nikita Nangia and Andrew Drozdov are applying to PhD programs in NLP!

