
Daniel Rueckert
Biomedical Image Analysis Group

Department of Computing
Imperial College London, UK

Deep learning in medical imaging: Techniques 
for image reconstruction, super-resolution and 

segmentation



Machine learning in medical imaging: 
There is a lot of hype 

AI In Medicine: Rise Of The 
Machines (Forbes, 2017)



Machine learning in medical imaging: 
There is a lot of hype 

"To the question, will AI replace radiologists, I 
say the answer is no…” 

“They should stop training radiologists now.”
Geoffrey Hinton (godfather of deep learning) in 2017

“… but radiologists who do AI will replace 
radiologists who don’t." 
Curtis Langlotz in 2017



• Big data is slowly arriving in medical imaging

Machine learning for medical imaging: Opportunities

UK Biobank will provide large-scale imaging data from 100,000 subjects
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Machine learning for medical imaging: Opportunities

Computer Aided Interpretation

Semantic Image Interpretation

Quantification of Imaging Biomarkers

Image Enhancement

Image Acquisition and Reconstruction

Computer Aided Diagnosis

Automated scan planning 
Accelerated imaging

Super-resolution

Organ localisation 
Organ segmentation

Tumour quantification 
Radiomics

Screening



• Training data is imperfect:
– training data may be wrongly labelled

Practical challenges for ML in medical imaging

Crowdsourcing

Experts

• Training data is expensive:
– manpower, cost, time
– years of training and expertise required

• Most ML approaches are supervised: 
Training data is key

If tra
ining data is not perfect how do we validate?

• How to obtain training data?



Practical challenges for ML in medical imaging

• ML-based solutions often degrade 
when deployed in clinical scenarios

• This is caused by differences between 
training and test data, e.g. 

• different scanner hardware
• scanner protocols/sequences
• artefacts

• Manually annotating new data for each 
test domain is not a feasible solution

Siemens

Philips

GE
Transfer learning problem



Overview

Image reconstruction Image super-resolution

Image registrationImage segmentation

Figure 13: Examples of segmentations performed by our system on the train-
ing datasets of (SISS) ISLES 2015. (top and middle) The system is capable of
satisfying segmentation of both large and smaller lesions. (bottom) Common
mistakes are performed due to the challenge of di↵erentiating stroke lesions
from White Matter lesions.

not found necessary in the scope of this work.

5. Discussion and Conclusion

We have presented DeepMedic, a 3D CNN architecture for automatic le-
sion segmentation that surpasses state-of-the-art on challenging data. The
proposed novel training scheme is not only computationally e�cient but also
o↵ers an adaptive way of partially alleviating the inherent class-imbalance
of segmentation problems. We analyzed the benefits of using small convolu-
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MR image acquisition: Challenges

• Magnetic Resonance Imaging (MRI)
– MRI acquisition is inherently a slow process
– Slow acquisition is 

• ok for static objects (e.g. brain, bones, etc)
• problematic for moving objects (e.g. heart, liver, fetus)

– Options for MRI acquisition:
• real-time MRI: fast, but 2D and relatively poor image quality
• gated MRI: fine for period motion, e.g. respiration or cardiac motion but 

requires gating (ECG or navigators) leading to long acquisition times (30-90 
min).



Example: Cardiac imaging

Myocardium!

Left Ventricle!

Right Ventricle!



Cardiac MRI: Full acquisition is slow

• MRI acquisition is performed in k-space by sequentially 
traversing sampling trajectories.

K-space

t = 0

Signal space

Image acquisition is slow
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• MRI acquisition is performed in k-space by sequentially 
traversing sampling trajectories.

t = 1

K-space Signal space



Cardiac MRI: Full acquisition is slow

• MRI acquisition is performed in k-space by sequentially 
traversing sampling trajectories.

K-space

t = 2

Signal space



Cardiac MRI: Full acquisition is slow

• MRI acquisition is performed in k-space by sequentially 
traversing sampling trajectories.

K-space

t = T

Signal space

There is significant spatio-temporal re
dundancy



K-space undersampling

• Acquiring a fraction of k-space accelerates the process but 
introduces aliasing in signal space.



• Acquiring a fraction of k-space accelerates the process but 
introduces aliasing in signal space.

K-space undersampling

K-space Signal space

Full sampling 
(slow)

25% sampling 
(4-fold 

acceleration)

learning-based
reconstruction

e.g. compressed
sensing



Image reconstruction from 
undersampled k-space

• One can recover full k-space through compressed sensing 
techniques:
– Lustig et al., MRM 2007
– Jung et al., MRM 2009
– Otazo et al., MRM 2010

• More recently other techniques have shown to be powerful for 
this task as well:
– Caballero et al., IEEE TMI 2014: Dictionary learning
– Bhatia et al., MICCAI 2016: Manifold learning
– Schlemper et al., IEEE TMI 2017: Deep learning for cardiac MRI
– K. Hammernik et al., MRM 2017: Deep learning for knee MRI

Based on generic priors, e.g.  
sparsity or low-rank

Based on  
learnt priors



• Reconstruct image               given undersampled k-space 
measurements                               :

Problem formulation492 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 37, NO. 2, FEBRUARY 2018

redundancies can also be used to complement the sparse
modelling of inherent redundancies [10], [11].

Recently, deep learning has been successful at tackling
many computer vision problems. Deep neural network archi-
tectures, in particular convolutional neural networks (CNNs),
are becoming the state-of-the-art technique for various imaging
problems including image classification [12], object local-
isation [13] and image segmentation [14]. Deep architec-
tures are capable of extracting features from data to build
increasingly abstract representations, replacing the traditional
approach of carefully hand-crafting features and algorithms.
For example, it has already been demonstrated that CNNs
outperform sparsity-based methods in super-resolution [15] in
terms of both reconstruction quality and speed [16]. One of the
contributions of our work is to explore the application of CNNs
in undersampled MR reconstruction and investigate whether
they can exploit data redundancy through learned representa-
tions. In fact, CNNs have already been applied to compressed
sensing from random Gaussian measurements [17]. Despite the
popularity of CNNs, there has only been preliminary research
on CNN-based MR image reconstruction [18], [19], hence the
applicability of CNNs to this problem for various imaging
protocols has yet to be fully explored.

In this work we consider reconstructing dynamic sequences
of 2D cardiac MR images with Cartesian undersampling,
as well as reconstructing each frame independently, using
CNNs. We view the reconstruction problem as a de-aliasing
problem in the image domain. Reconstruction of undersampled
MR images is challenging because the images typically have
low signal-to-noise ratio, yet often high-quality reconstructions
are needed for clinical applications. To resolve this issue,
we propose a deep network architecture which forms a cas-
cade of CNNs.1 Our cascade network closely resembles the
iterative reconstruction of DL-based methods, however, our
approach allows end-to-end optimization of the reconstruction
algorithm. For 2D reconstruction, the proposed method is
compared to Dictionary Learning MRI (DLMRI) [2] and for
dynamic reconstruction, the method is compared to Dictionary
Learning with Temporal Gradient (DLTG) [3], kt Sparse and
Low-Rank (kt-SLR) [20] and Low-Rank Plus Sparse Matrix
Decomposition (L+S) [21], which are the state-of-the-art com-
pressed sensing and low-rank approaches. We show that the
proposed method outperforms them in terms of reconstruc-
tion error and perceptual quality, especially for aggressive
undersampling rates. Moreover, owing to GPU-accelerated
libraries, images can be reconstructed efficiently using the
approach. In particular, for 2D reconstruction, each image can
be reconstructed in about 23ms, which is fast enough to enable
real-time applications. For the dynamic case, sequences can be
reconstructed within 10s, which is reasonably fast for off-line
reconstruction methods.

II. PROBLEM FORMULATION

Let x ∈ CN represent a sequence of 2D complex-valued
MR images stacked as a column vector, where N = Nx Ny Nt .

1Code available at https://github.com/js3611/
Deep-MRI-Reconstruction

Our problem is to reconstruct x from y ∈ CM (M ≪ N),
undersampled measurements in k-space, such that:

y = Fux + e (1)

Here Fu ∈ CM×N is an undersampled Fourier encoding
matrix and e ∈ CM is acquisition noise modelled as addi-
tive white Gaussian (AWG) noise. In the case of Cartesian
acquisition, we have Fu = MF, where F ∈ CN×N applies
two-dimensional Discrete Fourier Transform (DFT) to each
frame in the sequence and M ∈ CM×N is an undersam-
pling mask selecting lines in k-space to be sampled for
each frame. The corresponding subset of indices sampled in
k-space is indicated by !. For the fully-sampled case, M = N ,
the sequence is reconstructed by applying the 2D inverse DFT
(IDFT) to each frame. However, Eq. (1) is underdetermined
even in the absence of noise, and hence the inversion is ill-
posed; in particular, applying IDFT, which in this case is
also called zero-filled reconstruction, results in a sequence of
aliased images xu = FH

u y due to sub-Nyquist sampling. Note
that FH

u is the Hermitian of the encoding matrix, which first
maps y ∈ CM to the k-t coordinate and then applies the 2D
IDFT frame-wise. Examples of the aliased images are shown
in Fig. 1. Therefore, in order to reconstruct x, one must exploit
a-priori knowledge of its properties, which can be done by
formulating an unconstrained optimisation problem:

min.
x

R(x) + λ∥y − Fux∥2
2 (2)

R expresses regularisation terms on x and λ ∈ R allows
the adjustment of data fidelity based on the noise level
of the acquired measurements y. For CS-based methods,
the regularisation terms R typically involve ℓ0 or ℓ1 norms
in the sparsifying domain of x. Our formulation is inspired by
DL-based reconstruction approaches [2], in which the problem
is formulated as:

min.
x,D,{γ i }

∑

i

(
∥Ri x− Dγ i∥2

2+ν∥γ i∥0

)
+ λ∥y− Fux∥2

2 (3)

Here Ri is an operator which extracts a spatio-temporal
image patch at i , γ i is the corresponding sparse code with
respect to a dictionary D. In this approach, the regularisation
terms force x to be approximated by the reconstructions from
the sparse code of patches. By taking the same approach, for
our CNN formulation, we force x to be well-approximated by
the CNN reconstruction:

min.
x

∥x − fcnn(xu |θ)∥2
2 + λ∥Fux − y∥2

2 (4)

Here fcnn is the forward mapping of the CNN parameterised
by θ , possibly containing millions of adjustable network
weights, which takes in the zero-filled reconstruction xu and
directly produces a reconstruction as an output. Since xu
is heavily affected by aliasing from sub-Nyquist sampling,
the CNN reconstruction can therefore be seen as solving
a de-aliasing problem in the image domain. The approach
of Eq. (4), however, is limited in the sense that the CNN
reconstruction and the data fidelity are two independent terms.
In particular, since the CNN operates in the image domain,
it is trained to reconstruct the sequence without a-priori
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redundancies can also be used to complement the sparse
modelling of inherent redundancies [10], [11].

Recently, deep learning has been successful at tackling
many computer vision problems. Deep neural network archi-
tectures, in particular convolutional neural networks (CNNs),
are becoming the state-of-the-art technique for various imaging
problems including image classification [12], object local-
isation [13] and image segmentation [14]. Deep architec-
tures are capable of extracting features from data to build
increasingly abstract representations, replacing the traditional
approach of carefully hand-crafting features and algorithms.
For example, it has already been demonstrated that CNNs
outperform sparsity-based methods in super-resolution [15] in
terms of both reconstruction quality and speed [16]. One of the
contributions of our work is to explore the application of CNNs
in undersampled MR reconstruction and investigate whether
they can exploit data redundancy through learned representa-
tions. In fact, CNNs have already been applied to compressed
sensing from random Gaussian measurements [17]. Despite the
popularity of CNNs, there has only been preliminary research
on CNN-based MR image reconstruction [18], [19], hence the
applicability of CNNs to this problem for various imaging
protocols has yet to be fully explored.

In this work we consider reconstructing dynamic sequences
of 2D cardiac MR images with Cartesian undersampling,
as well as reconstructing each frame independently, using
CNNs. We view the reconstruction problem as a de-aliasing
problem in the image domain. Reconstruction of undersampled
MR images is challenging because the images typically have
low signal-to-noise ratio, yet often high-quality reconstructions
are needed for clinical applications. To resolve this issue,
we propose a deep network architecture which forms a cas-
cade of CNNs.1 Our cascade network closely resembles the
iterative reconstruction of DL-based methods, however, our
approach allows end-to-end optimization of the reconstruction
algorithm. For 2D reconstruction, the proposed method is
compared to Dictionary Learning MRI (DLMRI) [2] and for
dynamic reconstruction, the method is compared to Dictionary
Learning with Temporal Gradient (DLTG) [3], kt Sparse and
Low-Rank (kt-SLR) [20] and Low-Rank Plus Sparse Matrix
Decomposition (L+S) [21], which are the state-of-the-art com-
pressed sensing and low-rank approaches. We show that the
proposed method outperforms them in terms of reconstruc-
tion error and perceptual quality, especially for aggressive
undersampling rates. Moreover, owing to GPU-accelerated
libraries, images can be reconstructed efficiently using the
approach. In particular, for 2D reconstruction, each image can
be reconstructed in about 23ms, which is fast enough to enable
real-time applications. For the dynamic case, sequences can be
reconstructed within 10s, which is reasonably fast for off-line
reconstruction methods.

II. PROBLEM FORMULATION

Let x ∈ CN represent a sequence of 2D complex-valued
MR images stacked as a column vector, where N = Nx Ny Nt .

1Code available at https://github.com/js3611/
Deep-MRI-Reconstruction

Our problem is to reconstruct x from y ∈ CM (M ≪ N),
undersampled measurements in k-space, such that:

y = Fux + e (1)

Here Fu ∈ CM×N is an undersampled Fourier encoding
matrix and e ∈ CM is acquisition noise modelled as addi-
tive white Gaussian (AWG) noise. In the case of Cartesian
acquisition, we have Fu = MF, where F ∈ CN×N applies
two-dimensional Discrete Fourier Transform (DFT) to each
frame in the sequence and M ∈ CM×N is an undersam-
pling mask selecting lines in k-space to be sampled for
each frame. The corresponding subset of indices sampled in
k-space is indicated by !. For the fully-sampled case, M = N ,
the sequence is reconstructed by applying the 2D inverse DFT
(IDFT) to each frame. However, Eq. (1) is underdetermined
even in the absence of noise, and hence the inversion is ill-
posed; in particular, applying IDFT, which in this case is
also called zero-filled reconstruction, results in a sequence of
aliased images xu = FH

u y due to sub-Nyquist sampling. Note
that FH

u is the Hermitian of the encoding matrix, which first
maps y ∈ CM to the k-t coordinate and then applies the 2D
IDFT frame-wise. Examples of the aliased images are shown
in Fig. 1. Therefore, in order to reconstruct x, one must exploit
a-priori knowledge of its properties, which can be done by
formulating an unconstrained optimisation problem:

min.
x

R(x) + λ∥y − Fux∥2
2 (2)

R expresses regularisation terms on x and λ ∈ R allows
the adjustment of data fidelity based on the noise level
of the acquired measurements y. For CS-based methods,
the regularisation terms R typically involve ℓ0 or ℓ1 norms
in the sparsifying domain of x. Our formulation is inspired by
DL-based reconstruction approaches [2], in which the problem
is formulated as:

min.
x,D,{γ i }

∑

i

(
∥Ri x− Dγ i∥2

2+ν∥γ i∥0

)
+ λ∥y− Fux∥2

2 (3)

Here Ri is an operator which extracts a spatio-temporal
image patch at i , γ i is the corresponding sparse code with
respect to a dictionary D. In this approach, the regularisation
terms force x to be approximated by the reconstructions from
the sparse code of patches. By taking the same approach, for
our CNN formulation, we force x to be well-approximated by
the CNN reconstruction:

min.
x

∥x − fcnn(xu |θ)∥2
2 + λ∥Fux − y∥2

2 (4)

Here fcnn is the forward mapping of the CNN parameterised
by θ , possibly containing millions of adjustable network
weights, which takes in the zero-filled reconstruction xu and
directly produces a reconstruction as an output. Since xu
is heavily affected by aliasing from sub-Nyquist sampling,
the CNN reconstruction can therefore be seen as solving
a de-aliasing problem in the image domain. The approach
of Eq. (4), however, is limited in the sense that the CNN
reconstruction and the data fidelity are two independent terms.
In particular, since the CNN operates in the image domain,
it is trained to reconstruct the sequence without a-priori
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redundancies can also be used to complement the sparse
modelling of inherent redundancies [10], [11].

Recently, deep learning has been successful at tackling
many computer vision problems. Deep neural network archi-
tectures, in particular convolutional neural networks (CNNs),
are becoming the state-of-the-art technique for various imaging
problems including image classification [12], object local-
isation [13] and image segmentation [14]. Deep architec-
tures are capable of extracting features from data to build
increasingly abstract representations, replacing the traditional
approach of carefully hand-crafting features and algorithms.
For example, it has already been demonstrated that CNNs
outperform sparsity-based methods in super-resolution [15] in
terms of both reconstruction quality and speed [16]. One of the
contributions of our work is to explore the application of CNNs
in undersampled MR reconstruction and investigate whether
they can exploit data redundancy through learned representa-
tions. In fact, CNNs have already been applied to compressed
sensing from random Gaussian measurements [17]. Despite the
popularity of CNNs, there has only been preliminary research
on CNN-based MR image reconstruction [18], [19], hence the
applicability of CNNs to this problem for various imaging
protocols has yet to be fully explored.

In this work we consider reconstructing dynamic sequences
of 2D cardiac MR images with Cartesian undersampling,
as well as reconstructing each frame independently, using
CNNs. We view the reconstruction problem as a de-aliasing
problem in the image domain. Reconstruction of undersampled
MR images is challenging because the images typically have
low signal-to-noise ratio, yet often high-quality reconstructions
are needed for clinical applications. To resolve this issue,
we propose a deep network architecture which forms a cas-
cade of CNNs.1 Our cascade network closely resembles the
iterative reconstruction of DL-based methods, however, our
approach allows end-to-end optimization of the reconstruction
algorithm. For 2D reconstruction, the proposed method is
compared to Dictionary Learning MRI (DLMRI) [2] and for
dynamic reconstruction, the method is compared to Dictionary
Learning with Temporal Gradient (DLTG) [3], kt Sparse and
Low-Rank (kt-SLR) [20] and Low-Rank Plus Sparse Matrix
Decomposition (L+S) [21], which are the state-of-the-art com-
pressed sensing and low-rank approaches. We show that the
proposed method outperforms them in terms of reconstruc-
tion error and perceptual quality, especially for aggressive
undersampling rates. Moreover, owing to GPU-accelerated
libraries, images can be reconstructed efficiently using the
approach. In particular, for 2D reconstruction, each image can
be reconstructed in about 23ms, which is fast enough to enable
real-time applications. For the dynamic case, sequences can be
reconstructed within 10s, which is reasonably fast for off-line
reconstruction methods.

II. PROBLEM FORMULATION

Let x ∈ CN represent a sequence of 2D complex-valued
MR images stacked as a column vector, where N = Nx Ny Nt .

1Code available at https://github.com/js3611/
Deep-MRI-Reconstruction

Our problem is to reconstruct x from y ∈ CM (M ≪ N),
undersampled measurements in k-space, such that:

y = Fux + e (1)

Here Fu ∈ CM×N is an undersampled Fourier encoding
matrix and e ∈ CM is acquisition noise modelled as addi-
tive white Gaussian (AWG) noise. In the case of Cartesian
acquisition, we have Fu = MF, where F ∈ CN×N applies
two-dimensional Discrete Fourier Transform (DFT) to each
frame in the sequence and M ∈ CM×N is an undersam-
pling mask selecting lines in k-space to be sampled for
each frame. The corresponding subset of indices sampled in
k-space is indicated by !. For the fully-sampled case, M = N ,
the sequence is reconstructed by applying the 2D inverse DFT
(IDFT) to each frame. However, Eq. (1) is underdetermined
even in the absence of noise, and hence the inversion is ill-
posed; in particular, applying IDFT, which in this case is
also called zero-filled reconstruction, results in a sequence of
aliased images xu = FH

u y due to sub-Nyquist sampling. Note
that FH

u is the Hermitian of the encoding matrix, which first
maps y ∈ CM to the k-t coordinate and then applies the 2D
IDFT frame-wise. Examples of the aliased images are shown
in Fig. 1. Therefore, in order to reconstruct x, one must exploit
a-priori knowledge of its properties, which can be done by
formulating an unconstrained optimisation problem:

min.
x

R(x) + λ∥y − Fux∥2
2 (2)

R expresses regularisation terms on x and λ ∈ R allows
the adjustment of data fidelity based on the noise level
of the acquired measurements y. For CS-based methods,
the regularisation terms R typically involve ℓ0 or ℓ1 norms
in the sparsifying domain of x. Our formulation is inspired by
DL-based reconstruction approaches [2], in which the problem
is formulated as:

min.
x,D,{γ i }

∑

i

(
∥Ri x− Dγ i∥2

2+ν∥γ i∥0

)
+ λ∥y− Fux∥2

2 (3)

Here Ri is an operator which extracts a spatio-temporal
image patch at i , γ i is the corresponding sparse code with
respect to a dictionary D. In this approach, the regularisation
terms force x to be approximated by the reconstructions from
the sparse code of patches. By taking the same approach, for
our CNN formulation, we force x to be well-approximated by
the CNN reconstruction:

min.
x

∥x − fcnn(xu |θ)∥2
2 + λ∥Fux − y∥2

2 (4)

Here fcnn is the forward mapping of the CNN parameterised
by θ , possibly containing millions of adjustable network
weights, which takes in the zero-filled reconstruction xu and
directly produces a reconstruction as an output. Since xu
is heavily affected by aliasing from sub-Nyquist sampling,
the CNN reconstruction can therefore be seen as solving
a de-aliasing problem in the image domain. The approach
of Eq. (4), however, is limited in the sense that the CNN
reconstruction and the data fidelity are two independent terms.
In particular, since the CNN operates in the image domain,
it is trained to reconstruct the sequence without a-priori

Undersampled Fourier encoding matrix Acquisition noise
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                     applies the 2D Fourier transform and
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redundancies can also be used to complement the sparse
modelling of inherent redundancies [10], [11].

Recently, deep learning has been successful at tackling
many computer vision problems. Deep neural network archi-
tectures, in particular convolutional neural networks (CNNs),
are becoming the state-of-the-art technique for various imaging
problems including image classification [12], object local-
isation [13] and image segmentation [14]. Deep architec-
tures are capable of extracting features from data to build
increasingly abstract representations, replacing the traditional
approach of carefully hand-crafting features and algorithms.
For example, it has already been demonstrated that CNNs
outperform sparsity-based methods in super-resolution [15] in
terms of both reconstruction quality and speed [16]. One of the
contributions of our work is to explore the application of CNNs
in undersampled MR reconstruction and investigate whether
they can exploit data redundancy through learned representa-
tions. In fact, CNNs have already been applied to compressed
sensing from random Gaussian measurements [17]. Despite the
popularity of CNNs, there has only been preliminary research
on CNN-based MR image reconstruction [18], [19], hence the
applicability of CNNs to this problem for various imaging
protocols has yet to be fully explored.

In this work we consider reconstructing dynamic sequences
of 2D cardiac MR images with Cartesian undersampling,
as well as reconstructing each frame independently, using
CNNs. We view the reconstruction problem as a de-aliasing
problem in the image domain. Reconstruction of undersampled
MR images is challenging because the images typically have
low signal-to-noise ratio, yet often high-quality reconstructions
are needed for clinical applications. To resolve this issue,
we propose a deep network architecture which forms a cas-
cade of CNNs.1 Our cascade network closely resembles the
iterative reconstruction of DL-based methods, however, our
approach allows end-to-end optimization of the reconstruction
algorithm. For 2D reconstruction, the proposed method is
compared to Dictionary Learning MRI (DLMRI) [2] and for
dynamic reconstruction, the method is compared to Dictionary
Learning with Temporal Gradient (DLTG) [3], kt Sparse and
Low-Rank (kt-SLR) [20] and Low-Rank Plus Sparse Matrix
Decomposition (L+S) [21], which are the state-of-the-art com-
pressed sensing and low-rank approaches. We show that the
proposed method outperforms them in terms of reconstruc-
tion error and perceptual quality, especially for aggressive
undersampling rates. Moreover, owing to GPU-accelerated
libraries, images can be reconstructed efficiently using the
approach. In particular, for 2D reconstruction, each image can
be reconstructed in about 23ms, which is fast enough to enable
real-time applications. For the dynamic case, sequences can be
reconstructed within 10s, which is reasonably fast for off-line
reconstruction methods.

II. PROBLEM FORMULATION

Let x ∈ CN represent a sequence of 2D complex-valued
MR images stacked as a column vector, where N = Nx Ny Nt .

1Code available at https://github.com/js3611/
Deep-MRI-Reconstruction

Our problem is to reconstruct x from y ∈ CM (M ≪ N),
undersampled measurements in k-space, such that:

y = Fux + e (1)

Here Fu ∈ CM×N is an undersampled Fourier encoding
matrix and e ∈ CM is acquisition noise modelled as addi-
tive white Gaussian (AWG) noise. In the case of Cartesian
acquisition, we have Fu = MF, where F ∈ CN×N applies
two-dimensional Discrete Fourier Transform (DFT) to each
frame in the sequence and M ∈ CM×N is an undersam-
pling mask selecting lines in k-space to be sampled for
each frame. The corresponding subset of indices sampled in
k-space is indicated by !. For the fully-sampled case, M = N ,
the sequence is reconstructed by applying the 2D inverse DFT
(IDFT) to each frame. However, Eq. (1) is underdetermined
even in the absence of noise, and hence the inversion is ill-
posed; in particular, applying IDFT, which in this case is
also called zero-filled reconstruction, results in a sequence of
aliased images xu = FH

u y due to sub-Nyquist sampling. Note
that FH

u is the Hermitian of the encoding matrix, which first
maps y ∈ CM to the k-t coordinate and then applies the 2D
IDFT frame-wise. Examples of the aliased images are shown
in Fig. 1. Therefore, in order to reconstruct x, one must exploit
a-priori knowledge of its properties, which can be done by
formulating an unconstrained optimisation problem:

min.
x

R(x) + λ∥y − Fux∥2
2 (2)

R expresses regularisation terms on x and λ ∈ R allows
the adjustment of data fidelity based on the noise level
of the acquired measurements y. For CS-based methods,
the regularisation terms R typically involve ℓ0 or ℓ1 norms
in the sparsifying domain of x. Our formulation is inspired by
DL-based reconstruction approaches [2], in which the problem
is formulated as:

min.
x,D,{γ i }

∑

i

(
∥Ri x− Dγ i∥2

2+ν∥γ i∥0

)
+ λ∥y− Fux∥2

2 (3)

Here Ri is an operator which extracts a spatio-temporal
image patch at i , γ i is the corresponding sparse code with
respect to a dictionary D. In this approach, the regularisation
terms force x to be approximated by the reconstructions from
the sparse code of patches. By taking the same approach, for
our CNN formulation, we force x to be well-approximated by
the CNN reconstruction:

min.
x

∥x − fcnn(xu |θ)∥2
2 + λ∥Fux − y∥2

2 (4)

Here fcnn is the forward mapping of the CNN parameterised
by θ , possibly containing millions of adjustable network
weights, which takes in the zero-filled reconstruction xu and
directly produces a reconstruction as an output. Since xu
is heavily affected by aliasing from sub-Nyquist sampling,
the CNN reconstruction can therefore be seen as solving
a de-aliasing problem in the image domain. The approach
of Eq. (4), however, is limited in the sense that the CNN
reconstruction and the data fidelity are two independent terms.
In particular, since the CNN operates in the image domain,
it is trained to reconstruct the sequence without a-priori
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redundancies can also be used to complement the sparse
modelling of inherent redundancies [10], [11].

Recently, deep learning has been successful at tackling
many computer vision problems. Deep neural network archi-
tectures, in particular convolutional neural networks (CNNs),
are becoming the state-of-the-art technique for various imaging
problems including image classification [12], object local-
isation [13] and image segmentation [14]. Deep architec-
tures are capable of extracting features from data to build
increasingly abstract representations, replacing the traditional
approach of carefully hand-crafting features and algorithms.
For example, it has already been demonstrated that CNNs
outperform sparsity-based methods in super-resolution [15] in
terms of both reconstruction quality and speed [16]. One of the
contributions of our work is to explore the application of CNNs
in undersampled MR reconstruction and investigate whether
they can exploit data redundancy through learned representa-
tions. In fact, CNNs have already been applied to compressed
sensing from random Gaussian measurements [17]. Despite the
popularity of CNNs, there has only been preliminary research
on CNN-based MR image reconstruction [18], [19], hence the
applicability of CNNs to this problem for various imaging
protocols has yet to be fully explored.

In this work we consider reconstructing dynamic sequences
of 2D cardiac MR images with Cartesian undersampling,
as well as reconstructing each frame independently, using
CNNs. We view the reconstruction problem as a de-aliasing
problem in the image domain. Reconstruction of undersampled
MR images is challenging because the images typically have
low signal-to-noise ratio, yet often high-quality reconstructions
are needed for clinical applications. To resolve this issue,
we propose a deep network architecture which forms a cas-
cade of CNNs.1 Our cascade network closely resembles the
iterative reconstruction of DL-based methods, however, our
approach allows end-to-end optimization of the reconstruction
algorithm. For 2D reconstruction, the proposed method is
compared to Dictionary Learning MRI (DLMRI) [2] and for
dynamic reconstruction, the method is compared to Dictionary
Learning with Temporal Gradient (DLTG) [3], kt Sparse and
Low-Rank (kt-SLR) [20] and Low-Rank Plus Sparse Matrix
Decomposition (L+S) [21], which are the state-of-the-art com-
pressed sensing and low-rank approaches. We show that the
proposed method outperforms them in terms of reconstruc-
tion error and perceptual quality, especially for aggressive
undersampling rates. Moreover, owing to GPU-accelerated
libraries, images can be reconstructed efficiently using the
approach. In particular, for 2D reconstruction, each image can
be reconstructed in about 23ms, which is fast enough to enable
real-time applications. For the dynamic case, sequences can be
reconstructed within 10s, which is reasonably fast for off-line
reconstruction methods.

II. PROBLEM FORMULATION

Let x ∈ CN represent a sequence of 2D complex-valued
MR images stacked as a column vector, where N = Nx Ny Nt .

1Code available at https://github.com/js3611/
Deep-MRI-Reconstruction

Our problem is to reconstruct x from y ∈ CM (M ≪ N),
undersampled measurements in k-space, such that:

y = Fux + e (1)

Here Fu ∈ CM×N is an undersampled Fourier encoding
matrix and e ∈ CM is acquisition noise modelled as addi-
tive white Gaussian (AWG) noise. In the case of Cartesian
acquisition, we have Fu = MF, where F ∈ CN×N applies
two-dimensional Discrete Fourier Transform (DFT) to each
frame in the sequence and M ∈ CM×N is an undersam-
pling mask selecting lines in k-space to be sampled for
each frame. The corresponding subset of indices sampled in
k-space is indicated by !. For the fully-sampled case, M = N ,
the sequence is reconstructed by applying the 2D inverse DFT
(IDFT) to each frame. However, Eq. (1) is underdetermined
even in the absence of noise, and hence the inversion is ill-
posed; in particular, applying IDFT, which in this case is
also called zero-filled reconstruction, results in a sequence of
aliased images xu = FH

u y due to sub-Nyquist sampling. Note
that FH

u is the Hermitian of the encoding matrix, which first
maps y ∈ CM to the k-t coordinate and then applies the 2D
IDFT frame-wise. Examples of the aliased images are shown
in Fig. 1. Therefore, in order to reconstruct x, one must exploit
a-priori knowledge of its properties, which can be done by
formulating an unconstrained optimisation problem:

min.
x

R(x) + λ∥y − Fux∥2
2 (2)

R expresses regularisation terms on x and λ ∈ R allows
the adjustment of data fidelity based on the noise level
of the acquired measurements y. For CS-based methods,
the regularisation terms R typically involve ℓ0 or ℓ1 norms
in the sparsifying domain of x. Our formulation is inspired by
DL-based reconstruction approaches [2], in which the problem
is formulated as:

min.
x,D,{γ i }

∑

i

(
∥Ri x− Dγ i∥2

2+ν∥γ i∥0

)
+ λ∥y− Fux∥2

2 (3)

Here Ri is an operator which extracts a spatio-temporal
image patch at i , γ i is the corresponding sparse code with
respect to a dictionary D. In this approach, the regularisation
terms force x to be approximated by the reconstructions from
the sparse code of patches. By taking the same approach, for
our CNN formulation, we force x to be well-approximated by
the CNN reconstruction:

min.
x

∥x − fcnn(xu |θ)∥2
2 + λ∥Fux − y∥2

2 (4)

Here fcnn is the forward mapping of the CNN parameterised
by θ , possibly containing millions of adjustable network
weights, which takes in the zero-filled reconstruction xu and
directly produces a reconstruction as an output. Since xu
is heavily affected by aliasing from sub-Nyquist sampling,
the CNN reconstruction can therefore be seen as solving
a de-aliasing problem in the image domain. The approach
of Eq. (4), however, is limited in the sense that the CNN
reconstruction and the data fidelity are two independent terms.
In particular, since the CNN operates in the image domain,
it is trained to reconstruct the sequence without a-priori
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redundancies can also be used to complement the sparse
modelling of inherent redundancies [10], [11].

Recently, deep learning has been successful at tackling
many computer vision problems. Deep neural network archi-
tectures, in particular convolutional neural networks (CNNs),
are becoming the state-of-the-art technique for various imaging
problems including image classification [12], object local-
isation [13] and image segmentation [14]. Deep architec-
tures are capable of extracting features from data to build
increasingly abstract representations, replacing the traditional
approach of carefully hand-crafting features and algorithms.
For example, it has already been demonstrated that CNNs
outperform sparsity-based methods in super-resolution [15] in
terms of both reconstruction quality and speed [16]. One of the
contributions of our work is to explore the application of CNNs
in undersampled MR reconstruction and investigate whether
they can exploit data redundancy through learned representa-
tions. In fact, CNNs have already been applied to compressed
sensing from random Gaussian measurements [17]. Despite the
popularity of CNNs, there has only been preliminary research
on CNN-based MR image reconstruction [18], [19], hence the
applicability of CNNs to this problem for various imaging
protocols has yet to be fully explored.

In this work we consider reconstructing dynamic sequences
of 2D cardiac MR images with Cartesian undersampling,
as well as reconstructing each frame independently, using
CNNs. We view the reconstruction problem as a de-aliasing
problem in the image domain. Reconstruction of undersampled
MR images is challenging because the images typically have
low signal-to-noise ratio, yet often high-quality reconstructions
are needed for clinical applications. To resolve this issue,
we propose a deep network architecture which forms a cas-
cade of CNNs.1 Our cascade network closely resembles the
iterative reconstruction of DL-based methods, however, our
approach allows end-to-end optimization of the reconstruction
algorithm. For 2D reconstruction, the proposed method is
compared to Dictionary Learning MRI (DLMRI) [2] and for
dynamic reconstruction, the method is compared to Dictionary
Learning with Temporal Gradient (DLTG) [3], kt Sparse and
Low-Rank (kt-SLR) [20] and Low-Rank Plus Sparse Matrix
Decomposition (L+S) [21], which are the state-of-the-art com-
pressed sensing and low-rank approaches. We show that the
proposed method outperforms them in terms of reconstruc-
tion error and perceptual quality, especially for aggressive
undersampling rates. Moreover, owing to GPU-accelerated
libraries, images can be reconstructed efficiently using the
approach. In particular, for 2D reconstruction, each image can
be reconstructed in about 23ms, which is fast enough to enable
real-time applications. For the dynamic case, sequences can be
reconstructed within 10s, which is reasonably fast for off-line
reconstruction methods.

II. PROBLEM FORMULATION

Let x ∈ CN represent a sequence of 2D complex-valued
MR images stacked as a column vector, where N = Nx Ny Nt .

1Code available at https://github.com/js3611/
Deep-MRI-Reconstruction

Our problem is to reconstruct x from y ∈ CM (M ≪ N),
undersampled measurements in k-space, such that:

y = Fux + e (1)

Here Fu ∈ CM×N is an undersampled Fourier encoding
matrix and e ∈ CM is acquisition noise modelled as addi-
tive white Gaussian (AWG) noise. In the case of Cartesian
acquisition, we have Fu = MF, where F ∈ CN×N applies
two-dimensional Discrete Fourier Transform (DFT) to each
frame in the sequence and M ∈ CM×N is an undersam-
pling mask selecting lines in k-space to be sampled for
each frame. The corresponding subset of indices sampled in
k-space is indicated by !. For the fully-sampled case, M = N ,
the sequence is reconstructed by applying the 2D inverse DFT
(IDFT) to each frame. However, Eq. (1) is underdetermined
even in the absence of noise, and hence the inversion is ill-
posed; in particular, applying IDFT, which in this case is
also called zero-filled reconstruction, results in a sequence of
aliased images xu = FH

u y due to sub-Nyquist sampling. Note
that FH

u is the Hermitian of the encoding matrix, which first
maps y ∈ CM to the k-t coordinate and then applies the 2D
IDFT frame-wise. Examples of the aliased images are shown
in Fig. 1. Therefore, in order to reconstruct x, one must exploit
a-priori knowledge of its properties, which can be done by
formulating an unconstrained optimisation problem:

min.
x

R(x) + λ∥y − Fux∥2
2 (2)

R expresses regularisation terms on x and λ ∈ R allows
the adjustment of data fidelity based on the noise level
of the acquired measurements y. For CS-based methods,
the regularisation terms R typically involve ℓ0 or ℓ1 norms
in the sparsifying domain of x. Our formulation is inspired by
DL-based reconstruction approaches [2], in which the problem
is formulated as:

min.
x,D,{γ i }

∑

i

(
∥Ri x− Dγ i∥2

2+ν∥γ i∥0
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+ λ∥y− Fux∥2
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Here Ri is an operator which extracts a spatio-temporal
image patch at i , γ i is the corresponding sparse code with
respect to a dictionary D. In this approach, the regularisation
terms force x to be approximated by the reconstructions from
the sparse code of patches. By taking the same approach, for
our CNN formulation, we force x to be well-approximated by
the CNN reconstruction:

min.
x

∥x − fcnn(xu |θ)∥2
2 + λ∥Fux − y∥2

2 (4)

Here fcnn is the forward mapping of the CNN parameterised
by θ , possibly containing millions of adjustable network
weights, which takes in the zero-filled reconstruction xu and
directly produces a reconstruction as an output. Since xu
is heavily affected by aliasing from sub-Nyquist sampling,
the CNN reconstruction can therefore be seen as solving
a de-aliasing problem in the image domain. The approach
of Eq. (4), however, is limited in the sense that the CNN
reconstruction and the data fidelity are two independent terms.
In particular, since the CNN operates in the image domain,
it is trained to reconstruct the sequence without a-priori
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redundancies can also be used to complement the sparse
modelling of inherent redundancies [10], [11].

Recently, deep learning has been successful at tackling
many computer vision problems. Deep neural network archi-
tectures, in particular convolutional neural networks (CNNs),
are becoming the state-of-the-art technique for various imaging
problems including image classification [12], object local-
isation [13] and image segmentation [14]. Deep architec-
tures are capable of extracting features from data to build
increasingly abstract representations, replacing the traditional
approach of carefully hand-crafting features and algorithms.
For example, it has already been demonstrated that CNNs
outperform sparsity-based methods in super-resolution [15] in
terms of both reconstruction quality and speed [16]. One of the
contributions of our work is to explore the application of CNNs
in undersampled MR reconstruction and investigate whether
they can exploit data redundancy through learned representa-
tions. In fact, CNNs have already been applied to compressed
sensing from random Gaussian measurements [17]. Despite the
popularity of CNNs, there has only been preliminary research
on CNN-based MR image reconstruction [18], [19], hence the
applicability of CNNs to this problem for various imaging
protocols has yet to be fully explored.

In this work we consider reconstructing dynamic sequences
of 2D cardiac MR images with Cartesian undersampling,
as well as reconstructing each frame independently, using
CNNs. We view the reconstruction problem as a de-aliasing
problem in the image domain. Reconstruction of undersampled
MR images is challenging because the images typically have
low signal-to-noise ratio, yet often high-quality reconstructions
are needed for clinical applications. To resolve this issue,
we propose a deep network architecture which forms a cas-
cade of CNNs.1 Our cascade network closely resembles the
iterative reconstruction of DL-based methods, however, our
approach allows end-to-end optimization of the reconstruction
algorithm. For 2D reconstruction, the proposed method is
compared to Dictionary Learning MRI (DLMRI) [2] and for
dynamic reconstruction, the method is compared to Dictionary
Learning with Temporal Gradient (DLTG) [3], kt Sparse and
Low-Rank (kt-SLR) [20] and Low-Rank Plus Sparse Matrix
Decomposition (L+S) [21], which are the state-of-the-art com-
pressed sensing and low-rank approaches. We show that the
proposed method outperforms them in terms of reconstruc-
tion error and perceptual quality, especially for aggressive
undersampling rates. Moreover, owing to GPU-accelerated
libraries, images can be reconstructed efficiently using the
approach. In particular, for 2D reconstruction, each image can
be reconstructed in about 23ms, which is fast enough to enable
real-time applications. For the dynamic case, sequences can be
reconstructed within 10s, which is reasonably fast for off-line
reconstruction methods.

II. PROBLEM FORMULATION

Let x ∈ CN represent a sequence of 2D complex-valued
MR images stacked as a column vector, where N = Nx Ny Nt .

1Code available at https://github.com/js3611/
Deep-MRI-Reconstruction

Our problem is to reconstruct x from y ∈ CM (M ≪ N),
undersampled measurements in k-space, such that:

y = Fux + e (1)

Here Fu ∈ CM×N is an undersampled Fourier encoding
matrix and e ∈ CM is acquisition noise modelled as addi-
tive white Gaussian (AWG) noise. In the case of Cartesian
acquisition, we have Fu = MF, where F ∈ CN×N applies
two-dimensional Discrete Fourier Transform (DFT) to each
frame in the sequence and M ∈ CM×N is an undersam-
pling mask selecting lines in k-space to be sampled for
each frame. The corresponding subset of indices sampled in
k-space is indicated by !. For the fully-sampled case, M = N ,
the sequence is reconstructed by applying the 2D inverse DFT
(IDFT) to each frame. However, Eq. (1) is underdetermined
even in the absence of noise, and hence the inversion is ill-
posed; in particular, applying IDFT, which in this case is
also called zero-filled reconstruction, results in a sequence of
aliased images xu = FH

u y due to sub-Nyquist sampling. Note
that FH

u is the Hermitian of the encoding matrix, which first
maps y ∈ CM to the k-t coordinate and then applies the 2D
IDFT frame-wise. Examples of the aliased images are shown
in Fig. 1. Therefore, in order to reconstruct x, one must exploit
a-priori knowledge of its properties, which can be done by
formulating an unconstrained optimisation problem:

min.
x

R(x) + λ∥y − Fux∥2
2 (2)

R expresses regularisation terms on x and λ ∈ R allows
the adjustment of data fidelity based on the noise level
of the acquired measurements y. For CS-based methods,
the regularisation terms R typically involve ℓ0 or ℓ1 norms
in the sparsifying domain of x. Our formulation is inspired by
DL-based reconstruction approaches [2], in which the problem
is formulated as:

min.
x,D,{γ i }

∑
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(
∥Ri x− Dγ i∥2

2+ν∥γ i∥0

)
+ λ∥y− Fux∥2

2 (3)

Here Ri is an operator which extracts a spatio-temporal
image patch at i , γ i is the corresponding sparse code with
respect to a dictionary D. In this approach, the regularisation
terms force x to be approximated by the reconstructions from
the sparse code of patches. By taking the same approach, for
our CNN formulation, we force x to be well-approximated by
the CNN reconstruction:

min.
x

∥x − fcnn(xu |θ)∥2
2 + λ∥Fux − y∥2

2 (4)

Here fcnn is the forward mapping of the CNN parameterised
by θ , possibly containing millions of adjustable network
weights, which takes in the zero-filled reconstruction xu and
directly produces a reconstruction as an output. Since xu
is heavily affected by aliasing from sub-Nyquist sampling,
the CNN reconstruction can therefore be seen as solving
a de-aliasing problem in the image domain. The approach
of Eq. (4), however, is limited in the sense that the CNN
reconstruction and the data fidelity are two independent terms.
In particular, since the CNN operates in the image domain,
it is trained to reconstruct the sequence without a-priori
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redundancies can also be used to complement the sparse
modelling of inherent redundancies [10], [11].

Recently, deep learning has been successful at tackling
many computer vision problems. Deep neural network archi-
tectures, in particular convolutional neural networks (CNNs),
are becoming the state-of-the-art technique for various imaging
problems including image classification [12], object local-
isation [13] and image segmentation [14]. Deep architec-
tures are capable of extracting features from data to build
increasingly abstract representations, replacing the traditional
approach of carefully hand-crafting features and algorithms.
For example, it has already been demonstrated that CNNs
outperform sparsity-based methods in super-resolution [15] in
terms of both reconstruction quality and speed [16]. One of the
contributions of our work is to explore the application of CNNs
in undersampled MR reconstruction and investigate whether
they can exploit data redundancy through learned representa-
tions. In fact, CNNs have already been applied to compressed
sensing from random Gaussian measurements [17]. Despite the
popularity of CNNs, there has only been preliminary research
on CNN-based MR image reconstruction [18], [19], hence the
applicability of CNNs to this problem for various imaging
protocols has yet to be fully explored.

In this work we consider reconstructing dynamic sequences
of 2D cardiac MR images with Cartesian undersampling,
as well as reconstructing each frame independently, using
CNNs. We view the reconstruction problem as a de-aliasing
problem in the image domain. Reconstruction of undersampled
MR images is challenging because the images typically have
low signal-to-noise ratio, yet often high-quality reconstructions
are needed for clinical applications. To resolve this issue,
we propose a deep network architecture which forms a cas-
cade of CNNs.1 Our cascade network closely resembles the
iterative reconstruction of DL-based methods, however, our
approach allows end-to-end optimization of the reconstruction
algorithm. For 2D reconstruction, the proposed method is
compared to Dictionary Learning MRI (DLMRI) [2] and for
dynamic reconstruction, the method is compared to Dictionary
Learning with Temporal Gradient (DLTG) [3], kt Sparse and
Low-Rank (kt-SLR) [20] and Low-Rank Plus Sparse Matrix
Decomposition (L+S) [21], which are the state-of-the-art com-
pressed sensing and low-rank approaches. We show that the
proposed method outperforms them in terms of reconstruc-
tion error and perceptual quality, especially for aggressive
undersampling rates. Moreover, owing to GPU-accelerated
libraries, images can be reconstructed efficiently using the
approach. In particular, for 2D reconstruction, each image can
be reconstructed in about 23ms, which is fast enough to enable
real-time applications. For the dynamic case, sequences can be
reconstructed within 10s, which is reasonably fast for off-line
reconstruction methods.

II. PROBLEM FORMULATION

Let x ∈ CN represent a sequence of 2D complex-valued
MR images stacked as a column vector, where N = Nx Ny Nt .

1Code available at https://github.com/js3611/
Deep-MRI-Reconstruction

Our problem is to reconstruct x from y ∈ CM (M ≪ N),
undersampled measurements in k-space, such that:

y = Fux + e (1)

Here Fu ∈ CM×N is an undersampled Fourier encoding
matrix and e ∈ CM is acquisition noise modelled as addi-
tive white Gaussian (AWG) noise. In the case of Cartesian
acquisition, we have Fu = MF, where F ∈ CN×N applies
two-dimensional Discrete Fourier Transform (DFT) to each
frame in the sequence and M ∈ CM×N is an undersam-
pling mask selecting lines in k-space to be sampled for
each frame. The corresponding subset of indices sampled in
k-space is indicated by !. For the fully-sampled case, M = N ,
the sequence is reconstructed by applying the 2D inverse DFT
(IDFT) to each frame. However, Eq. (1) is underdetermined
even in the absence of noise, and hence the inversion is ill-
posed; in particular, applying IDFT, which in this case is
also called zero-filled reconstruction, results in a sequence of
aliased images xu = FH

u y due to sub-Nyquist sampling. Note
that FH

u is the Hermitian of the encoding matrix, which first
maps y ∈ CM to the k-t coordinate and then applies the 2D
IDFT frame-wise. Examples of the aliased images are shown
in Fig. 1. Therefore, in order to reconstruct x, one must exploit
a-priori knowledge of its properties, which can be done by
formulating an unconstrained optimisation problem:

min.
x

R(x) + λ∥y − Fux∥2
2 (2)

R expresses regularisation terms on x and λ ∈ R allows
the adjustment of data fidelity based on the noise level
of the acquired measurements y. For CS-based methods,
the regularisation terms R typically involve ℓ0 or ℓ1 norms
in the sparsifying domain of x. Our formulation is inspired by
DL-based reconstruction approaches [2], in which the problem
is formulated as:

min.
x,D,{γ i }

∑
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(
∥Ri x− Dγ i∥2
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+ λ∥y− Fux∥2
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Here Ri is an operator which extracts a spatio-temporal
image patch at i , γ i is the corresponding sparse code with
respect to a dictionary D. In this approach, the regularisation
terms force x to be approximated by the reconstructions from
the sparse code of patches. By taking the same approach, for
our CNN formulation, we force x to be well-approximated by
the CNN reconstruction:

min.
x

∥x − fcnn(xu |θ)∥2
2 + λ∥Fux − y∥2

2 (4)

Here fcnn is the forward mapping of the CNN parameterised
by θ , possibly containing millions of adjustable network
weights, which takes in the zero-filled reconstruction xu and
directly produces a reconstruction as an output. Since xu
is heavily affected by aliasing from sub-Nyquist sampling,
the CNN reconstruction can therefore be seen as solving
a de-aliasing problem in the image domain. The approach
of Eq. (4), however, is limited in the sense that the CNN
reconstruction and the data fidelity are two independent terms.
In particular, since the CNN operates in the image domain,
it is trained to reconstruct the sequence without a-priori
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redundancies can also be used to complement the sparse
modelling of inherent redundancies [10], [11].

Recently, deep learning has been successful at tackling
many computer vision problems. Deep neural network archi-
tectures, in particular convolutional neural networks (CNNs),
are becoming the state-of-the-art technique for various imaging
problems including image classification [12], object local-
isation [13] and image segmentation [14]. Deep architec-
tures are capable of extracting features from data to build
increasingly abstract representations, replacing the traditional
approach of carefully hand-crafting features and algorithms.
For example, it has already been demonstrated that CNNs
outperform sparsity-based methods in super-resolution [15] in
terms of both reconstruction quality and speed [16]. One of the
contributions of our work is to explore the application of CNNs
in undersampled MR reconstruction and investigate whether
they can exploit data redundancy through learned representa-
tions. In fact, CNNs have already been applied to compressed
sensing from random Gaussian measurements [17]. Despite the
popularity of CNNs, there has only been preliminary research
on CNN-based MR image reconstruction [18], [19], hence the
applicability of CNNs to this problem for various imaging
protocols has yet to be fully explored.

In this work we consider reconstructing dynamic sequences
of 2D cardiac MR images with Cartesian undersampling,
as well as reconstructing each frame independently, using
CNNs. We view the reconstruction problem as a de-aliasing
problem in the image domain. Reconstruction of undersampled
MR images is challenging because the images typically have
low signal-to-noise ratio, yet often high-quality reconstructions
are needed for clinical applications. To resolve this issue,
we propose a deep network architecture which forms a cas-
cade of CNNs.1 Our cascade network closely resembles the
iterative reconstruction of DL-based methods, however, our
approach allows end-to-end optimization of the reconstruction
algorithm. For 2D reconstruction, the proposed method is
compared to Dictionary Learning MRI (DLMRI) [2] and for
dynamic reconstruction, the method is compared to Dictionary
Learning with Temporal Gradient (DLTG) [3], kt Sparse and
Low-Rank (kt-SLR) [20] and Low-Rank Plus Sparse Matrix
Decomposition (L+S) [21], which are the state-of-the-art com-
pressed sensing and low-rank approaches. We show that the
proposed method outperforms them in terms of reconstruc-
tion error and perceptual quality, especially for aggressive
undersampling rates. Moreover, owing to GPU-accelerated
libraries, images can be reconstructed efficiently using the
approach. In particular, for 2D reconstruction, each image can
be reconstructed in about 23ms, which is fast enough to enable
real-time applications. For the dynamic case, sequences can be
reconstructed within 10s, which is reasonably fast for off-line
reconstruction methods.

II. PROBLEM FORMULATION

Let x ∈ CN represent a sequence of 2D complex-valued
MR images stacked as a column vector, where N = Nx Ny Nt .

1Code available at https://github.com/js3611/
Deep-MRI-Reconstruction

Our problem is to reconstruct x from y ∈ CM (M ≪ N),
undersampled measurements in k-space, such that:

y = Fux + e (1)

Here Fu ∈ CM×N is an undersampled Fourier encoding
matrix and e ∈ CM is acquisition noise modelled as addi-
tive white Gaussian (AWG) noise. In the case of Cartesian
acquisition, we have Fu = MF, where F ∈ CN×N applies
two-dimensional Discrete Fourier Transform (DFT) to each
frame in the sequence and M ∈ CM×N is an undersam-
pling mask selecting lines in k-space to be sampled for
each frame. The corresponding subset of indices sampled in
k-space is indicated by !. For the fully-sampled case, M = N ,
the sequence is reconstructed by applying the 2D inverse DFT
(IDFT) to each frame. However, Eq. (1) is underdetermined
even in the absence of noise, and hence the inversion is ill-
posed; in particular, applying IDFT, which in this case is
also called zero-filled reconstruction, results in a sequence of
aliased images xu = FH

u y due to sub-Nyquist sampling. Note
that FH

u is the Hermitian of the encoding matrix, which first
maps y ∈ CM to the k-t coordinate and then applies the 2D
IDFT frame-wise. Examples of the aliased images are shown
in Fig. 1. Therefore, in order to reconstruct x, one must exploit
a-priori knowledge of its properties, which can be done by
formulating an unconstrained optimisation problem:

min.
x

R(x) + λ∥y − Fux∥2
2 (2)

R expresses regularisation terms on x and λ ∈ R allows
the adjustment of data fidelity based on the noise level
of the acquired measurements y. For CS-based methods,
the regularisation terms R typically involve ℓ0 or ℓ1 norms
in the sparsifying domain of x. Our formulation is inspired by
DL-based reconstruction approaches [2], in which the problem
is formulated as:

min.
x,D,{γ i }
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(
∥Ri x− Dγ i∥2
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Here Ri is an operator which extracts a spatio-temporal
image patch at i , γ i is the corresponding sparse code with
respect to a dictionary D. In this approach, the regularisation
terms force x to be approximated by the reconstructions from
the sparse code of patches. By taking the same approach, for
our CNN formulation, we force x to be well-approximated by
the CNN reconstruction:

min.
x

∥x − fcnn(xu |θ)∥2
2 + λ∥Fux − y∥2

2 (4)

Here fcnn is the forward mapping of the CNN parameterised
by θ , possibly containing millions of adjustable network
weights, which takes in the zero-filled reconstruction xu and
directly produces a reconstruction as an output. Since xu
is heavily affected by aliasing from sub-Nyquist sampling,
the CNN reconstruction can therefore be seen as solving
a de-aliasing problem in the image domain. The approach
of Eq. (4), however, is limited in the sense that the CNN
reconstruction and the data fidelity are two independent terms.
In particular, since the CNN operates in the image domain,
it is trained to reconstruct the sequence without a-priori
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Problem formulation

• We are trying to solve the following unconstrained optimisation 
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redundancies can also be used to complement the sparse
modelling of inherent redundancies [10], [11].

Recently, deep learning has been successful at tackling
many computer vision problems. Deep neural network archi-
tectures, in particular convolutional neural networks (CNNs),
are becoming the state-of-the-art technique for various imaging
problems including image classification [12], object local-
isation [13] and image segmentation [14]. Deep architec-
tures are capable of extracting features from data to build
increasingly abstract representations, replacing the traditional
approach of carefully hand-crafting features and algorithms.
For example, it has already been demonstrated that CNNs
outperform sparsity-based methods in super-resolution [15] in
terms of both reconstruction quality and speed [16]. One of the
contributions of our work is to explore the application of CNNs
in undersampled MR reconstruction and investigate whether
they can exploit data redundancy through learned representa-
tions. In fact, CNNs have already been applied to compressed
sensing from random Gaussian measurements [17]. Despite the
popularity of CNNs, there has only been preliminary research
on CNN-based MR image reconstruction [18], [19], hence the
applicability of CNNs to this problem for various imaging
protocols has yet to be fully explored.

In this work we consider reconstructing dynamic sequences
of 2D cardiac MR images with Cartesian undersampling,
as well as reconstructing each frame independently, using
CNNs. We view the reconstruction problem as a de-aliasing
problem in the image domain. Reconstruction of undersampled
MR images is challenging because the images typically have
low signal-to-noise ratio, yet often high-quality reconstructions
are needed for clinical applications. To resolve this issue,
we propose a deep network architecture which forms a cas-
cade of CNNs.1 Our cascade network closely resembles the
iterative reconstruction of DL-based methods, however, our
approach allows end-to-end optimization of the reconstruction
algorithm. For 2D reconstruction, the proposed method is
compared to Dictionary Learning MRI (DLMRI) [2] and for
dynamic reconstruction, the method is compared to Dictionary
Learning with Temporal Gradient (DLTG) [3], kt Sparse and
Low-Rank (kt-SLR) [20] and Low-Rank Plus Sparse Matrix
Decomposition (L+S) [21], which are the state-of-the-art com-
pressed sensing and low-rank approaches. We show that the
proposed method outperforms them in terms of reconstruc-
tion error and perceptual quality, especially for aggressive
undersampling rates. Moreover, owing to GPU-accelerated
libraries, images can be reconstructed efficiently using the
approach. In particular, for 2D reconstruction, each image can
be reconstructed in about 23ms, which is fast enough to enable
real-time applications. For the dynamic case, sequences can be
reconstructed within 10s, which is reasonably fast for off-line
reconstruction methods.

II. PROBLEM FORMULATION

Let x ∈ CN represent a sequence of 2D complex-valued
MR images stacked as a column vector, where N = Nx Ny Nt .

1Code available at https://github.com/js3611/
Deep-MRI-Reconstruction

Our problem is to reconstruct x from y ∈ CM (M ≪ N),
undersampled measurements in k-space, such that:

y = Fux + e (1)

Here Fu ∈ CM×N is an undersampled Fourier encoding
matrix and e ∈ CM is acquisition noise modelled as addi-
tive white Gaussian (AWG) noise. In the case of Cartesian
acquisition, we have Fu = MF, where F ∈ CN×N applies
two-dimensional Discrete Fourier Transform (DFT) to each
frame in the sequence and M ∈ CM×N is an undersam-
pling mask selecting lines in k-space to be sampled for
each frame. The corresponding subset of indices sampled in
k-space is indicated by !. For the fully-sampled case, M = N ,
the sequence is reconstructed by applying the 2D inverse DFT
(IDFT) to each frame. However, Eq. (1) is underdetermined
even in the absence of noise, and hence the inversion is ill-
posed; in particular, applying IDFT, which in this case is
also called zero-filled reconstruction, results in a sequence of
aliased images xu = FH

u y due to sub-Nyquist sampling. Note
that FH

u is the Hermitian of the encoding matrix, which first
maps y ∈ CM to the k-t coordinate and then applies the 2D
IDFT frame-wise. Examples of the aliased images are shown
in Fig. 1. Therefore, in order to reconstruct x, one must exploit
a-priori knowledge of its properties, which can be done by
formulating an unconstrained optimisation problem:

min.
x

R(x) + λ∥y − Fux∥2
2 (2)

R expresses regularisation terms on x and λ ∈ R allows
the adjustment of data fidelity based on the noise level
of the acquired measurements y. For CS-based methods,
the regularisation terms R typically involve ℓ0 or ℓ1 norms
in the sparsifying domain of x. Our formulation is inspired by
DL-based reconstruction approaches [2], in which the problem
is formulated as:

min.
x,D,{γ i }

∑

i

(
∥Ri x− Dγ i∥2

2+ν∥γ i∥0

)
+ λ∥y− Fux∥2

2 (3)

Here Ri is an operator which extracts a spatio-temporal
image patch at i , γ i is the corresponding sparse code with
respect to a dictionary D. In this approach, the regularisation
terms force x to be approximated by the reconstructions from
the sparse code of patches. By taking the same approach, for
our CNN formulation, we force x to be well-approximated by
the CNN reconstruction:

min.
x

∥x − fcnn(xu |θ)∥2
2 + λ∥Fux − y∥2

2 (4)

Here fcnn is the forward mapping of the CNN parameterised
by θ , possibly containing millions of adjustable network
weights, which takes in the zero-filled reconstruction xu and
directly produces a reconstruction as an output. Since xu
is heavily affected by aliasing from sub-Nyquist sampling,
the CNN reconstruction can therefore be seen as solving
a de-aliasing problem in the image domain. The approach
of Eq. (4), however, is limited in the sense that the CNN
reconstruction and the data fidelity are two independent terms.
In particular, since the CNN operates in the image domain,
it is trained to reconstruct the sequence without a-priori

Regularisation term 
(in CS usually the l0 or l1 norm) Data fidelity term



Problem formulation

• We are trying to solve the following unconstrained optimisation 
problem:

• For CNN based reconstruction we formulate the problem as
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redundancies can also be used to complement the sparse
modelling of inherent redundancies [10], [11].

Recently, deep learning has been successful at tackling
many computer vision problems. Deep neural network archi-
tectures, in particular convolutional neural networks (CNNs),
are becoming the state-of-the-art technique for various imaging
problems including image classification [12], object local-
isation [13] and image segmentation [14]. Deep architec-
tures are capable of extracting features from data to build
increasingly abstract representations, replacing the traditional
approach of carefully hand-crafting features and algorithms.
For example, it has already been demonstrated that CNNs
outperform sparsity-based methods in super-resolution [15] in
terms of both reconstruction quality and speed [16]. One of the
contributions of our work is to explore the application of CNNs
in undersampled MR reconstruction and investigate whether
they can exploit data redundancy through learned representa-
tions. In fact, CNNs have already been applied to compressed
sensing from random Gaussian measurements [17]. Despite the
popularity of CNNs, there has only been preliminary research
on CNN-based MR image reconstruction [18], [19], hence the
applicability of CNNs to this problem for various imaging
protocols has yet to be fully explored.

In this work we consider reconstructing dynamic sequences
of 2D cardiac MR images with Cartesian undersampling,
as well as reconstructing each frame independently, using
CNNs. We view the reconstruction problem as a de-aliasing
problem in the image domain. Reconstruction of undersampled
MR images is challenging because the images typically have
low signal-to-noise ratio, yet often high-quality reconstructions
are needed for clinical applications. To resolve this issue,
we propose a deep network architecture which forms a cas-
cade of CNNs.1 Our cascade network closely resembles the
iterative reconstruction of DL-based methods, however, our
approach allows end-to-end optimization of the reconstruction
algorithm. For 2D reconstruction, the proposed method is
compared to Dictionary Learning MRI (DLMRI) [2] and for
dynamic reconstruction, the method is compared to Dictionary
Learning with Temporal Gradient (DLTG) [3], kt Sparse and
Low-Rank (kt-SLR) [20] and Low-Rank Plus Sparse Matrix
Decomposition (L+S) [21], which are the state-of-the-art com-
pressed sensing and low-rank approaches. We show that the
proposed method outperforms them in terms of reconstruc-
tion error and perceptual quality, especially for aggressive
undersampling rates. Moreover, owing to GPU-accelerated
libraries, images can be reconstructed efficiently using the
approach. In particular, for 2D reconstruction, each image can
be reconstructed in about 23ms, which is fast enough to enable
real-time applications. For the dynamic case, sequences can be
reconstructed within 10s, which is reasonably fast for off-line
reconstruction methods.

II. PROBLEM FORMULATION

Let x ∈ CN represent a sequence of 2D complex-valued
MR images stacked as a column vector, where N = Nx Ny Nt .

1Code available at https://github.com/js3611/
Deep-MRI-Reconstruction

Our problem is to reconstruct x from y ∈ CM (M ≪ N),
undersampled measurements in k-space, such that:

y = Fux + e (1)

Here Fu ∈ CM×N is an undersampled Fourier encoding
matrix and e ∈ CM is acquisition noise modelled as addi-
tive white Gaussian (AWG) noise. In the case of Cartesian
acquisition, we have Fu = MF, where F ∈ CN×N applies
two-dimensional Discrete Fourier Transform (DFT) to each
frame in the sequence and M ∈ CM×N is an undersam-
pling mask selecting lines in k-space to be sampled for
each frame. The corresponding subset of indices sampled in
k-space is indicated by !. For the fully-sampled case, M = N ,
the sequence is reconstructed by applying the 2D inverse DFT
(IDFT) to each frame. However, Eq. (1) is underdetermined
even in the absence of noise, and hence the inversion is ill-
posed; in particular, applying IDFT, which in this case is
also called zero-filled reconstruction, results in a sequence of
aliased images xu = FH

u y due to sub-Nyquist sampling. Note
that FH

u is the Hermitian of the encoding matrix, which first
maps y ∈ CM to the k-t coordinate and then applies the 2D
IDFT frame-wise. Examples of the aliased images are shown
in Fig. 1. Therefore, in order to reconstruct x, one must exploit
a-priori knowledge of its properties, which can be done by
formulating an unconstrained optimisation problem:

min.
x

R(x) + λ∥y − Fux∥2
2 (2)

R expresses regularisation terms on x and λ ∈ R allows
the adjustment of data fidelity based on the noise level
of the acquired measurements y. For CS-based methods,
the regularisation terms R typically involve ℓ0 or ℓ1 norms
in the sparsifying domain of x. Our formulation is inspired by
DL-based reconstruction approaches [2], in which the problem
is formulated as:

min.
x,D,{γ i }

∑

i

(
∥Ri x− Dγ i∥2

2+ν∥γ i∥0

)
+ λ∥y− Fux∥2

2 (3)

Here Ri is an operator which extracts a spatio-temporal
image patch at i , γ i is the corresponding sparse code with
respect to a dictionary D. In this approach, the regularisation
terms force x to be approximated by the reconstructions from
the sparse code of patches. By taking the same approach, for
our CNN formulation, we force x to be well-approximated by
the CNN reconstruction:

min.
x

∥x − fcnn(xu |θ)∥2
2 + λ∥Fux − y∥2

2 (4)

Here fcnn is the forward mapping of the CNN parameterised
by θ , possibly containing millions of adjustable network
weights, which takes in the zero-filled reconstruction xu and
directly produces a reconstruction as an output. Since xu
is heavily affected by aliasing from sub-Nyquist sampling,
the CNN reconstruction can therefore be seen as solving
a de-aliasing problem in the image domain. The approach
of Eq. (4), however, is limited in the sense that the CNN
reconstruction and the data fidelity are two independent terms.
In particular, since the CNN operates in the image domain,
it is trained to reconstruct the sequence without a-priori
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redundancies can also be used to complement the sparse
modelling of inherent redundancies [10], [11].

Recently, deep learning has been successful at tackling
many computer vision problems. Deep neural network archi-
tectures, in particular convolutional neural networks (CNNs),
are becoming the state-of-the-art technique for various imaging
problems including image classification [12], object local-
isation [13] and image segmentation [14]. Deep architec-
tures are capable of extracting features from data to build
increasingly abstract representations, replacing the traditional
approach of carefully hand-crafting features and algorithms.
For example, it has already been demonstrated that CNNs
outperform sparsity-based methods in super-resolution [15] in
terms of both reconstruction quality and speed [16]. One of the
contributions of our work is to explore the application of CNNs
in undersampled MR reconstruction and investigate whether
they can exploit data redundancy through learned representa-
tions. In fact, CNNs have already been applied to compressed
sensing from random Gaussian measurements [17]. Despite the
popularity of CNNs, there has only been preliminary research
on CNN-based MR image reconstruction [18], [19], hence the
applicability of CNNs to this problem for various imaging
protocols has yet to be fully explored.

In this work we consider reconstructing dynamic sequences
of 2D cardiac MR images with Cartesian undersampling,
as well as reconstructing each frame independently, using
CNNs. We view the reconstruction problem as a de-aliasing
problem in the image domain. Reconstruction of undersampled
MR images is challenging because the images typically have
low signal-to-noise ratio, yet often high-quality reconstructions
are needed for clinical applications. To resolve this issue,
we propose a deep network architecture which forms a cas-
cade of CNNs.1 Our cascade network closely resembles the
iterative reconstruction of DL-based methods, however, our
approach allows end-to-end optimization of the reconstruction
algorithm. For 2D reconstruction, the proposed method is
compared to Dictionary Learning MRI (DLMRI) [2] and for
dynamic reconstruction, the method is compared to Dictionary
Learning with Temporal Gradient (DLTG) [3], kt Sparse and
Low-Rank (kt-SLR) [20] and Low-Rank Plus Sparse Matrix
Decomposition (L+S) [21], which are the state-of-the-art com-
pressed sensing and low-rank approaches. We show that the
proposed method outperforms them in terms of reconstruc-
tion error and perceptual quality, especially for aggressive
undersampling rates. Moreover, owing to GPU-accelerated
libraries, images can be reconstructed efficiently using the
approach. In particular, for 2D reconstruction, each image can
be reconstructed in about 23ms, which is fast enough to enable
real-time applications. For the dynamic case, sequences can be
reconstructed within 10s, which is reasonably fast for off-line
reconstruction methods.

II. PROBLEM FORMULATION

Let x ∈ CN represent a sequence of 2D complex-valued
MR images stacked as a column vector, where N = Nx Ny Nt .

1Code available at https://github.com/js3611/
Deep-MRI-Reconstruction

Our problem is to reconstruct x from y ∈ CM (M ≪ N),
undersampled measurements in k-space, such that:

y = Fux + e (1)

Here Fu ∈ CM×N is an undersampled Fourier encoding
matrix and e ∈ CM is acquisition noise modelled as addi-
tive white Gaussian (AWG) noise. In the case of Cartesian
acquisition, we have Fu = MF, where F ∈ CN×N applies
two-dimensional Discrete Fourier Transform (DFT) to each
frame in the sequence and M ∈ CM×N is an undersam-
pling mask selecting lines in k-space to be sampled for
each frame. The corresponding subset of indices sampled in
k-space is indicated by !. For the fully-sampled case, M = N ,
the sequence is reconstructed by applying the 2D inverse DFT
(IDFT) to each frame. However, Eq. (1) is underdetermined
even in the absence of noise, and hence the inversion is ill-
posed; in particular, applying IDFT, which in this case is
also called zero-filled reconstruction, results in a sequence of
aliased images xu = FH

u y due to sub-Nyquist sampling. Note
that FH

u is the Hermitian of the encoding matrix, which first
maps y ∈ CM to the k-t coordinate and then applies the 2D
IDFT frame-wise. Examples of the aliased images are shown
in Fig. 1. Therefore, in order to reconstruct x, one must exploit
a-priori knowledge of its properties, which can be done by
formulating an unconstrained optimisation problem:

min.
x

R(x) + λ∥y − Fux∥2
2 (2)

R expresses regularisation terms on x and λ ∈ R allows
the adjustment of data fidelity based on the noise level
of the acquired measurements y. For CS-based methods,
the regularisation terms R typically involve ℓ0 or ℓ1 norms
in the sparsifying domain of x. Our formulation is inspired by
DL-based reconstruction approaches [2], in which the problem
is formulated as:

min.
x,D,{γ i }

∑

i

(
∥Ri x− Dγ i∥2

2+ν∥γ i∥0

)
+ λ∥y− Fux∥2

2 (3)

Here Ri is an operator which extracts a spatio-temporal
image patch at i , γ i is the corresponding sparse code with
respect to a dictionary D. In this approach, the regularisation
terms force x to be approximated by the reconstructions from
the sparse code of patches. By taking the same approach, for
our CNN formulation, we force x to be well-approximated by
the CNN reconstruction:

min.
x

∥x − fcnn(xu |θ)∥2
2 + λ∥Fux − y∥2

2 (4)

Here fcnn is the forward mapping of the CNN parameterised
by θ , possibly containing millions of adjustable network
weights, which takes in the zero-filled reconstruction xu and
directly produces a reconstruction as an output. Since xu
is heavily affected by aliasing from sub-Nyquist sampling,
the CNN reconstruction can therefore be seen as solving
a de-aliasing problem in the image domain. The approach
of Eq. (4), however, is limited in the sense that the CNN
reconstruction and the data fidelity are two independent terms.
In particular, since the CNN operates in the image domain,
it is trained to reconstruct the sequence without a-priori
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Data consistency layer

• To ensure data fidelity, we add a data consistency layer. For 
fixed network parameters we can write:
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Fig. 1. An example of the image acquisition with Cartesian undersampling for a sequence of cardiac cine images. (a) A ground truth sequence that
is fully-sampled in k-space, shown along x-y and y-t for the image frame and the temporal profile respectively. (b) A Cartesian undersampling mask
that only acquires 1/12 of samples in k-space, where white indicates the sampled lines. Each image frame is undersampled with the mask shown
along kx-ky. The undersampling pattern along the temporal dimension is shown in ky-t. (c) The zero-filled reconstruction of the image acquired
using the 12-fold undersampling mask. (d, e) 4-fold Cartesian undersampling mask and the resulting zero-filled image. Note that the aliasing artefact
becomes more prominent as the undersampling factor is increased.

information of the acquired data in k-space. However, if we
already know some of the k-space values, then the CNN
should be discouraged from modifying them, up to the level of
acquisition noise. Therefore, by incorporating the data fidelity
in the learning stage, the CNN should be able to achieve better
reconstruction. This means that the output of the CNN is now
conditioned on ! and λ. Then, our final reconstruction is given
simply by the output, x cnn = fcnn(x u |θ ,λ,!). Given training
data D of input-target pairs (x u , x gnd) where x gnd is a fully-
sampled ground-truth data, we can train the CNN to produce
an output that attempts to accurately reconstruct the data by
minimising an objective function:

L(θ) =
∑

(x u ,x gnd)∈D
ℓ
(
x gnd, x cnn

)
(5)

where ℓ is a loss function. In this work, we consider an
element-wise squared loss, which is given by ℓ

(
x gnd, x cnn

)
=

∥x gnd − x cnn∥2
2.

III. DATA CONSISTENCY LAYER

Denote the Fourier encoding of the image reconstructed
by CNN as scnn = Fx cnn = F fcnn(x u |θ). scnn( j) represents
an entry at index j in k-space. The undersampled data y ∈
CM can be mapped onto the vectorised representation of k-t
coordinate (CN ) by s0 = FFH

u y , which fills the non-acquired
indices in k-space with zeros. In order to incorporate the data
fidelity in the network architecture, we first note the following:
for fixed network parameters θ , Eq. (4) has a closed-form
solution srec in k-space, given as in [2] element-wise:

srec( j) =

⎧
⎨

⎩

scnn( j) if j ̸∈ !
scnn( j) + λs0( j)

1 + λ
if j ∈ !

(6)

The final reconstruction in the image domain is
then obtained by applying the inverse Fourier encoding
x rec = FH srec. The solution yields a simple interpretation:
if the k-space coefficient srec( j) is initially unknown (i.e.
j ̸∈ !), then we use the predicted value from the CNN.
For the entries that have already been sampled ( j ∈ !),
we take a linear combination between the CNN prediction
and the original measurement, weighted by the level of noise
present in s0. In the limit λ → ∞ we simply replace the

j -th predicted coefficient in ! by the original coefficient. For
this reason, this operation is called a data consistency step in
k-space (DC). In the case of where there is non-neglegible
noise present in the acquisition, λ = q /σ must be adjusted
accordingly, where q is a hyper-parameter and σ 2 is the power
of AWG noise in k-space (i.e. ℜ(ei ),ℑ(ei ) ∼ N(0, σ/

√
2)).

In [3], it is empirically shown that p ∈ [5 × 10− 5, 5 × 10− 6]
for σ 2 ∈ [4 × 10− 8, 10− 9] works sufficiently well.

Since the DC step has a simple expression, we can in fact
treat it as a layer operation of the network, which we denote
as a DC layer. When defining a layer of a network, the rules
for forward and backward passes must be specified in order
for the network to be end-to-end trainable. This is because
CNN training can effectively be performed through stochastic
gradient descent, where one updates the network parameters θ
to minimise the objective function L by descending along
the direction given by the derivative ∂L/∂θT . Therefore,
it is necessary to define the gradients of each network layer
relative to the network’s output. In practice, one uses an
efficient algorithm called backpropagation [22], where the
final gradient is given by the product of all the Jacobians
of the layers contributing to the output. Hence, in general,
it suffices to specify a layer operation fL for the forward pass
and derive the Jacobian of the layer with respect to the layer
input ∂ fL/∂x T for the backward pass.

A. Forward Pass

The data consistency in k-space can be simply decomposed
into three operations: Fourier transform F, data consistency
fdc and inverse Fourier transform FH . The data consistency
fdc performs the element-wise operation defined in Eq. (6),
which, assuming s0( j) = 0 ∀ j ̸∈ !, can be written in matrix
form as:

fdc(s, s0; λ) = "s + λ

1 + λ
s0 (7)

Here " is a diagonal matrix of the form:

"kk =

⎧
⎨

⎩

1 if j ̸∈ !
1

1 + λ
if j ∈ !

(8)

Zero-filled k-space
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Fig. 1. An example of the image acquisition with Cartesian undersampling for a sequence of cardiac cine images. (a) A ground truth sequence that
is fully-sampled in k-space, shown along x-y and y-t for the image frame and the temporal profile respectively. (b) A Cartesian undersampling mask
that only acquires 1/12 of samples in k-space, where white indicates the sampled lines. Each image frame is undersampled with the mask shown
along kx-ky. The undersampling pattern along the temporal dimension is shown in ky-t. (c) The zero-filled reconstruction of the image acquired
using the 12-fold undersampling mask. (d, e) 4-fold Cartesian undersampling mask and the resulting zero-filled image. Note that the aliasing artefact
becomes more prominent as the undersampling factor is increased.

information of the acquired data in k-space. However, if we
already know some of the k-space values, then the CNN
should be discouraged from modifying them, up to the level of
acquisition noise. Therefore, by incorporating the data fidelity
in the learning stage, the CNN should be able to achieve better
reconstruction. This means that the output of the CNN is now
conditioned on ! and λ. Then, our final reconstruction is given
simply by the output, x cnn = fcnn(x u |θ ,λ,!). Given training
data D of input-target pairs (x u , x gnd) where x gnd is a fully-
sampled ground-truth data, we can train the CNN to produce
an output that attempts to accurately reconstruct the data by
minimising an objective function:

L(θ) =
∑

(x u ,x gnd)∈D
ℓ
(
x gnd, x cnn

)
(5)

where ℓ is a loss function. In this work, we consider an
element-wise squared loss, which is given by ℓ

(
x gnd, x cnn

)
=

∥x gnd − x cnn∥2
2.

III. DATA CONSISTENCY LAYER

Denote the Fourier encoding of the image reconstructed
by CNN as scnn = Fx cnn = F fcnn(x u |θ). scnn( j) represents
an entry at index j in k-space. The undersampled data y ∈
CM can be mapped onto the vectorised representation of k-t
coordinate (CN ) by s0 = FFH

u y , which fills the non-acquired
indices in k-space with zeros. In order to incorporate the data
fidelity in the network architecture, we first note the following:
for fixed network parameters θ , Eq. (4) has a closed-form
solution srec in k-space, given as in [2] element-wise:

srec( j) =

⎧
⎨

⎩

scnn( j) if j ̸∈ !
scnn( j) + λs0( j)

1 + λ
if j ∈ !

(6)

The final reconstruction in the image domain is
then obtained by applying the inverse Fourier encoding
x rec = FH srec. The solution yields a simple interpretation:
if the k-space coefficient srec( j) is initially unknown (i.e.
j ̸∈ !), then we use the predicted value from the CNN.
For the entries that have already been sampled ( j ∈ !),
we take a linear combination between the CNN prediction
and the original measurement, weighted by the level of noise
present in s0. In the limit λ → ∞ we simply replace the

j -th predicted coefficient in ! by the original coefficient. For
this reason, this operation is called a data consistency step in
k-space (DC). In the case of where there is non-neglegible
noise present in the acquisition, λ = q /σ must be adjusted
accordingly, where q is a hyper-parameter and σ 2 is the power
of AWG noise in k-space (i.e. ℜ(ei ),ℑ(ei ) ∼ N(0, σ/

√
2)).

In [3], it is empirically shown that p ∈ [5 × 10− 5, 5 × 10− 6]
for σ 2 ∈ [4 × 10− 8, 10− 9] works sufficiently well.

Since the DC step has a simple expression, we can in fact
treat it as a layer operation of the network, which we denote
as a DC layer. When defining a layer of a network, the rules
for forward and backward passes must be specified in order
for the network to be end-to-end trainable. This is because
CNN training can effectively be performed through stochastic
gradient descent, where one updates the network parameters θ
to minimise the objective function L by descending along
the direction given by the derivative ∂L/∂θT . Therefore,
it is necessary to define the gradients of each network layer
relative to the network’s output. In practice, one uses an
efficient algorithm called backpropagation [22], where the
final gradient is given by the product of all the Jacobians
of the layers contributing to the output. Hence, in general,
it suffices to specify a layer operation fL for the forward pass
and derive the Jacobian of the layer with respect to the layer
input ∂ fL/∂x T for the backward pass.

A. Forward Pass

The data consistency in k-space can be simply decomposed
into three operations: Fourier transform F, data consistency
fdc and inverse Fourier transform FH . The data consistency
fdc performs the element-wise operation defined in Eq. (6),
which, assuming s0( j) = 0 ∀ j ̸∈ !, can be written in matrix
form as:

fdc(s, s0; λ) = "s + λ

1 + λ
s0 (7)

Here " is a diagonal matrix of the form:

"kk =

⎧
⎨

⎩

1 if j ̸∈ !
1

1 + λ
if j ∈ !
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Fourier-encoding of 
reconstructed image

Acquired part of k-space

Missing part of k-space



Data consistency layer

• End-to-end training requires specification of forward and 
backward passes

• Forward pass:

• Backward pass:
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Combining the three operations defined above, we can
obtain the forward pass of the layer performing data consis-
tency in k-space:

fL (x , y ; λ) = FH"Fx + λ

1 + λ
FH

u y (9)

B. Backward Pass
In general, one requires Wirtinger calculus to derive a

gradient in complex domain [23]. However, in our case,
the derivation greatly simplifies due to the linearity of the
DFT matrix and the data consistency operation. The Jacobian
of the DC layer with respect to the layer input x is therefore
given by:

∂ fL

∂x T = FH "F (10)

Note that unlike many other applications where CNNs process
real-valued data, MR images are complex-valued and the
network needs to account for this. One possibility would be
to design the network to perform complex-valued operations.
A simpler approach, however, is to accommodate the complex
nature of the data with real-valued operations in a dimensional
space twice as large (i.e. we replace CN by R2N ). In the latter
case, the derivations above still hold due to the fundamental
assumption in Wirtinger calculus.

The DC layer has one hyperparameter λ ∈ R. This value
can be fixed or made trainable. In the latter case, the derivative
∂ fdc
∂λ (a column vector here) is given by:

[
∂ fdc(s, s0; λ)

∂λ

]

j
=

⎧
⎨

⎩

0 if j ̸∈ $
s0( j) − scnn( j)

(1 + λ)2 if j ∈ $
(11)

and the update is %λ = Je
∂ fdc
∂λ where Je is the

error backpropagated via the Jacobians of the layers
proceeding fdc.

IV. CASCADING NETWORK

For CS-based methods, in particular for DL-based methods,
the optimisation problem such as in Eq. (3) is solved using a
coordinate-descent type algorithm, alternating between the de-
aliasing step and the data consistency step until convergence.
In contrast, with CNNs, we are performing one step de-aliasing
and the same network cannot be used to de-alias iteratively.
While CNNs may be powerful enough to learn one step
reconstruction, such a network could show signs of overfitting,
unless there is vast amounts of training data. In addition,
training such networks may require a long time as well as
careful fine-tuning steps. It is therefore best to be able to use
CNNs for iterative reconstruction approaches.

A simple solution is to train a second CNN which learns to
reconstruct from the output of the first CNN. In fact, we can
concatenate a new CNN on the output of the previous CNN
to build extremely deep networks which iterate between inter-
mediate de-aliasing and the data consistency reconstruction.
We term this a cascading network. In fact, one can essentially
view this as unfolding the optimisation process of DLMRI.
If each CNN expresses the dictionary learning reconstruction

step, then the cascading CNN can be seen as a direct extension
of DLMRI, where the whole reconstruction pipeline can be
optimised from training, as seen in Fig. 4. In particular, owing
to the forward and back-backpropagation rules defined for the
DC layer, all subnetworks can be trained jointly in an end-to-
end manner, defining yielding one large network.

V. DATA SHARING LAYER

For the case of reconstructing dynamic sequences, the tem-
poral correlation between frames can be exploited as an addi-
tional regulariser to further de-alias the undersampled images.
For this, we use 3D convolution to learn spatio-temporal
features of the input sequence. In addition, we propose incor-
porating features that could benefit the CNN reconstruction,
inspired by data sharing approaches [24]–[26]: if the change
in image content is relatively small for any adjacent frames,
then the neighbouring k-space samples along the temporal-
axis often capture similar information. In fact, as long as this
assumption is valid, for each frame, we can fill the entries
using the samples from the adjacent frames to approximate
missing k-space samples. Specifically, for each frame t , all
frames from t − nad j to t + nad j are considered, filling the
missing k-space samples at frame t . If more than one frame
within the range contains a sample at the same location,
we take the weighted average of the samples. The idea is
demonstrated in Fig. 2.

An example of data sharing with nad j = 2 applied to
the Cartesian undersampling is shown in Fig. 3(a). As data
sharing aggregates the lines in k-space, the resulting images
can be seen as a zero-filled reconstruction from a measure-
ment with lower undersampling factor. In practice, however,
cardiac sequences contain highly dynamic content around the
heart and hence combining the adjacent frames results in
data inconsistency around the dynamic region, as illustrated
in Fig. 3(b,c,d). However, for CNN reconstruction, we can
incorporate these images as an extra input to train the network
rather than treating them as the final reconstructions. Note
that the reduction in the apparent acceleration factor is non-
trivial to calculate: if each frame samples 10% of k-space,
combining 5 adjacent frames in theory should cover 50%.
However, one often relies on variable density sampling, which
samples low-frequency terms more often, yielding overlapped
lines between the adjacent frames. Therefore, the apparent
acceleration factor is often much less. As a remedy, regular
sampling can be considered. However, regular sampling results
in coherent artifact in the image domain, the removal of which
is a different problem from the one we address here, which
attempts to resolve incoherent aliasing patterns. Alternatively,
one can perform a sampling trajectory optimisation to reduce
the overlapping factor, however, this is out-of-scope for this
work and will be investigated in future.

For our network, we implement data sharing (DS) layers
which take an input image and generate multiple “data-
shared” images for a range of nad j . The resulting images
are concatenated along the channel-axis and treated as a
new input fed into the first convolution layer of the CNNs.
Therefore, using the images obtained from data sharing can be
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aliasing step and the data consistency step until convergence.
In contrast, with CNNs, we are performing one step de-aliasing
and the same network cannot be used to de-alias iteratively.
While CNNs may be powerful enough to learn one step
reconstruction, such a network could show signs of overfitting,
unless there is vast amounts of training data. In addition,
training such networks may require a long time as well as
careful fine-tuning steps. It is therefore best to be able to use
CNNs for iterative reconstruction approaches.

A simple solution is to train a second CNN which learns to
reconstruct from the output of the first CNN. In fact, we can
concatenate a new CNN on the output of the previous CNN
to build extremely deep networks which iterate between inter-
mediate de-aliasing and the data consistency reconstruction.
We term this a cascading network. In fact, one can essentially
view this as unfolding the optimisation process of DLMRI.
If each CNN expresses the dictionary learning reconstruction

step, then the cascading CNN can be seen as a direct extension
of DLMRI, where the whole reconstruction pipeline can be
optimised from training, as seen in Fig. 4. In particular, owing
to the forward and back-backpropagation rules defined for the
DC layer, all subnetworks can be trained jointly in an end-to-
end manner, defining yielding one large network.

V. DATA SHARING LAYER

For the case of reconstructing dynamic sequences, the tem-
poral correlation between frames can be exploited as an addi-
tional regulariser to further de-alias the undersampled images.
For this, we use 3D convolution to learn spatio-temporal
features of the input sequence. In addition, we propose incor-
porating features that could benefit the CNN reconstruction,
inspired by data sharing approaches [24]–[26]: if the change
in image content is relatively small for any adjacent frames,
then the neighbouring k-space samples along the temporal-
axis often capture similar information. In fact, as long as this
assumption is valid, for each frame, we can fill the entries
using the samples from the adjacent frames to approximate
missing k-space samples. Specifically, for each frame t , all
frames from t − nad j to t + nad j are considered, filling the
missing k-space samples at frame t . If more than one frame
within the range contains a sample at the same location,
we take the weighted average of the samples. The idea is
demonstrated in Fig. 2.

An example of data sharing with nad j = 2 applied to
the Cartesian undersampling is shown in Fig. 3(a). As data
sharing aggregates the lines in k-space, the resulting images
can be seen as a zero-filled reconstruction from a measure-
ment with lower undersampling factor. In practice, however,
cardiac sequences contain highly dynamic content around the
heart and hence combining the adjacent frames results in
data inconsistency around the dynamic region, as illustrated
in Fig. 3(b,c,d). However, for CNN reconstruction, we can
incorporate these images as an extra input to train the network
rather than treating them as the final reconstructions. Note
that the reduction in the apparent acceleration factor is non-
trivial to calculate: if each frame samples 10% of k-space,
combining 5 adjacent frames in theory should cover 50%.
However, one often relies on variable density sampling, which
samples low-frequency terms more often, yielding overlapped
lines between the adjacent frames. Therefore, the apparent
acceleration factor is often much less. As a remedy, regular
sampling can be considered. However, regular sampling results
in coherent artifact in the image domain, the removal of which
is a different problem from the one we address here, which
attempts to resolve incoherent aliasing patterns. Alternatively,
one can perform a sampling trajectory optimisation to reduce
the overlapping factor, however, this is out-of-scope for this
work and will be investigated in future.
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which take an input image and generate multiple “data-
shared” images for a range of nad j . The resulting images
are concatenated along the channel-axis and treated as a
new input fed into the first convolution layer of the CNNs.
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In contrast, with CNNs, we are performing one step de-aliasing
and the same network cannot be used to de-alias iteratively.
While CNNs may be powerful enough to learn one step
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step, then the cascading CNN can be seen as a direct extension
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end manner, defining yielding one large network.

V. DATA SHARING LAYER
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tional regulariser to further de-alias the undersampled images.
For this, we use 3D convolution to learn spatio-temporal
features of the input sequence. In addition, we propose incor-
porating features that could benefit the CNN reconstruction,
inspired by data sharing approaches [24]–[26]: if the change
in image content is relatively small for any adjacent frames,
then the neighbouring k-space samples along the temporal-
axis often capture similar information. In fact, as long as this
assumption is valid, for each frame, we can fill the entries
using the samples from the adjacent frames to approximate
missing k-space samples. Specifically, for each frame t , all
frames from t − nad j to t + nad j are considered, filling the
missing k-space samples at frame t . If more than one frame
within the range contains a sample at the same location,
we take the weighted average of the samples. The idea is
demonstrated in Fig. 2.

An example of data sharing with nad j = 2 applied to
the Cartesian undersampling is shown in Fig. 3(a). As data
sharing aggregates the lines in k-space, the resulting images
can be seen as a zero-filled reconstruction from a measure-
ment with lower undersampling factor. In practice, however,
cardiac sequences contain highly dynamic content around the
heart and hence combining the adjacent frames results in
data inconsistency around the dynamic region, as illustrated
in Fig. 3(b,c,d). However, for CNN reconstruction, we can
incorporate these images as an extra input to train the network
rather than treating them as the final reconstructions. Note
that the reduction in the apparent acceleration factor is non-
trivial to calculate: if each frame samples 10% of k-space,
combining 5 adjacent frames in theory should cover 50%.
However, one often relies on variable density sampling, which
samples low-frequency terms more often, yielding overlapped
lines between the adjacent frames. Therefore, the apparent
acceleration factor is often much less. As a remedy, regular
sampling can be considered. However, regular sampling results
in coherent artifact in the image domain, the removal of which
is a different problem from the one we address here, which
attempts to resolve incoherent aliasing patterns. Alternatively,
one can perform a sampling trajectory optimisation to reduce
the overlapping factor, however, this is out-of-scope for this
work and will be investigated in future.

For our network, we implement data sharing (DS) layers
which take an input image and generate multiple “data-
shared” images for a range of nad j . The resulting images
are concatenated along the channel-axis and treated as a
new input fed into the first convolution layer of the CNNs.
Therefore, using the images obtained from data sharing can be

Jacobian of the DC layer with 
respect to the layer input x  If made trainable 



Deep Cascade of CNNs for MRI Reconstruction

!-space

Input Output

…

… 521

Conv. Net

3x3 Convolution Layer

Rectified Linear Unit

Pooling Layer

Residual Layer

Data Consistency Layer
⨁

Conv. Net

3x3 Convolution Layer

Rectified Linear Unit

Pooling Layer

Residual Layer

Data Consistency Layer
⨁

 Schlemper et al. IEEE TMI 2017



Deep Cascade of CNNs for MRI Reconstruction

!-space

Input Output

…

… 521

C
on

v
R

eL
U

C
on

v
R

eL
U

C
on

v
R

eL
U

C
on

v
R

eL
U

C
on

v

⨁

nf=64 nf=64 nf=64 nf=64 nf=2

Denoise (via CNN)

Conv. Net

3x3 Convolution Layer

Rectified Linear Unit

Pooling Layer

Residual Layer

Data Consistency Layer
⨁

Conv. Net

3x3 Convolution Layer

Rectified Linear Unit

Pooling Layer

Residual Layer

Data Consistency Layer
⨁

 Schlemper et al. IEEE TMI 2017



Deep Cascade of CNNs for MRI Reconstruction

!-space

Input Output

…

… 521

Conv. Net

3x3 Convolution Layer

Rectified Linear Unit

Pooling Layer

Residual Layer

Data Consistency Layer
⨁

Conv. Net

3x3 Convolution Layer

Rectified Linear Unit

Pooling Layer

Residual Layer

Data Consistency Layer
⨁

SCHLEMPER et al.: DEEP CASCADE OF CNNs FOR DYNAMIC MR IMAGE RECONSTRUCTION 493

Fig. 1. An example of the image acquisition with Cartesian undersampling for a sequence of cardiac cine images. (a) A ground truth sequence that
is fully-sampled in k-space, shown along x-y and y-t for the image frame and the temporal profile respectively. (b) A Cartesian undersampling mask
that only acquires 1/12 of samples in k-space, where white indicates the sampled lines. Each image frame is undersampled with the mask shown
along kx-ky. The undersampling pattern along the temporal dimension is shown in ky-t. (c) The zero-filled reconstruction of the image acquired
using the 12-fold undersampling mask. (d, e) 4-fold Cartesian undersampling mask and the resulting zero-filled image. Note that the aliasing artefact
becomes more prominent as the undersampling factor is increased.

information of the acquired data in k-space. However, if we
already know some of the k-space values, then the CNN
should be discouraged from modifying them, up to the level of
acquisition noise. Therefore, by incorporating the data fidelity
in the learning stage, the CNN should be able to achieve better
reconstruction. This means that the output of the CNN is now
conditioned on ! and λ. Then, our final reconstruction is given
simply by the output, x cnn = fcnn(x u |θ ,λ,!). Given training
data D of input-target pairs (x u , x gnd) where x gnd is a fully-
sampled ground-truth data, we can train the CNN to produce
an output that attempts to accurately reconstruct the data by
minimising an objective function:

L(θ) =
∑

(x u ,x gnd)∈D
ℓ
(
x gnd, x cnn

)
(5)

where ℓ is a loss function. In this work, we consider an
element-wise squared loss, which is given by ℓ

(
x gnd, x cnn

)
=

∥x gnd − x cnn∥2
2.

III. DATA CONSISTENCY LAYER

Denote the Fourier encoding of the image reconstructed
by CNN as scnn = Fx cnn = F fcnn(x u |θ). scnn( j) represents
an entry at index j in k-space. The undersampled data y ∈
CM can be mapped onto the vectorised representation of k-t
coordinate (CN ) by s0 = FFH

u y , which fills the non-acquired
indices in k-space with zeros. In order to incorporate the data
fidelity in the network architecture, we first note the following:
for fixed network parameters θ , Eq. (4) has a closed-form
solution srec in k-space, given as in [2] element-wise:

srec( j) =

⎧
⎨

⎩

scnn( j) if j ̸∈ !
scnn( j) + λs0( j)

1 + λ
if j ∈ !

(6)

The final reconstruction in the image domain is
then obtained by applying the inverse Fourier encoding
x rec = FH srec. The solution yields a simple interpretation:
if the k-space coefficient srec( j) is initially unknown (i.e.
j ̸∈ !), then we use the predicted value from the CNN.
For the entries that have already been sampled ( j ∈ !),
we take a linear combination between the CNN prediction
and the original measurement, weighted by the level of noise
present in s0. In the limit λ → ∞ we simply replace the

j -th predicted coefficient in ! by the original coefficient. For
this reason, this operation is called a data consistency step in
k-space (DC). In the case of where there is non-neglegible
noise present in the acquisition, λ = q /σ must be adjusted
accordingly, where q is a hyper-parameter and σ 2 is the power
of AWG noise in k-space (i.e. ℜ(ei ),ℑ(ei ) ∼ N(0, σ/

√
2)).

In [3], it is empirically shown that p ∈ [5 × 10− 5, 5 × 10− 6]
for σ 2 ∈ [4 × 10− 8, 10− 9] works sufficiently well.

Since the DC step has a simple expression, we can in fact
treat it as a layer operation of the network, which we denote
as a DC layer. When defining a layer of a network, the rules
for forward and backward passes must be specified in order
for the network to be end-to-end trainable. This is because
CNN training can effectively be performed through stochastic
gradient descent, where one updates the network parameters θ
to minimise the objective function L by descending along
the direction given by the derivative ∂L/∂θT . Therefore,
it is necessary to define the gradients of each network layer
relative to the network’s output. In practice, one uses an
efficient algorithm called backpropagation [22], where the
final gradient is given by the product of all the Jacobians
of the layers contributing to the output. Hence, in general,
it suffices to specify a layer operation fL for the forward pass
and derive the Jacobian of the layer with respect to the layer
input ∂ fL/∂x T for the backward pass.

A. Forward Pass

The data consistency in k-space can be simply decomposed
into three operations: Fourier transform F, data consistency
fdc and inverse Fourier transform FH . The data consistency
fdc performs the element-wise operation defined in Eq. (6),
which, assuming s0( j) = 0 ∀ j ̸∈ !, can be written in matrix
form as:

fdc(s, s0; λ) = "s + λ

1 + λ
s0 (7)

Here " is a diagonal matrix of the form:

"kk =

⎧
⎨

⎩

1 if j ̸∈ !
1

1 + λ
if j ∈ !

(8)
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Magnitude reconstruction (6-fold)

(a) 6x Undersampled                               (b) DLTG                                                  (c) CNN                                 (d) Ground Truth
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Magnitude reconstruction (11-fold)
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(a) 11x Undersampled                               (b) DLTG                                                  (c) CNN                                 (d) Ground Truth



Deep Cascade of CNNs for MRI Reconstruction: 
Results

• Test error across 10 subjects:

Model R=4 (dB) R=8 (dB)

DLTG 27.5 (1.31) 22.6 (0.95)

CNN 31.0 (1.08) 25.2 (1.00)

Model Time

DLMRI/DLTG ~6 hr (CPU)

CNN (2D) 0.69 s (GPU)

CNN (2D+t) 10 s (GPU)

PSNR

Speed

2D+t (vs. DLTG)
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Overview

Image reconstruction Image super-resolution

Image registrationImage segmentation

Figure 13: Examples of segmentations performed by our system on the train-
ing datasets of (SISS) ISLES 2015. (top and middle) The system is capable of
satisfying segmentation of both large and smaller lesions. (bottom) Common
mistakes are performed due to the challenge of di↵erentiating stroke lesions
from White Matter lesions.

not found necessary in the scope of this work.

5. Discussion and Conclusion

We have presented DeepMedic, a 3D CNN architecture for automatic le-
sion segmentation that surpasses state-of-the-art on challenging data. The
proposed novel training scheme is not only computationally e�cient but also
o↵ers an adaptive way of partially alleviating the inherent class-imbalance
of segmentation problems. We analyzed the benefits of using small convolu-
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Convolutional Neural Networks 
for Medical Image Segmentation
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Image segmentation as a 
machine learning problem

• Manual annotations of 4,872 subjects (QMUL/Oxford) with 93,128 
pixelwise annotated 2D images slices

• Divided into training/validation/test: 3,972/300/600
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Reference ranges for cardiac structure and
function using cardiovascular magnetic
resonance (CMR) in Caucasians from the UK
Biobank population cohort
Steffen E. Petersen1*, Nay Aung1, Mihir M. Sanghvi1, Filip Zemrak1, Kenneth Fung1, Jose Miguel Paiva1,
Jane M. Francis2, Mohammed Y. Khanji1, Elena Lukaschuk2, Aaron M. Lee1, Valentina Carapella2, Young Jin Kim2,3,
Paul Leeson2, Stefan K. Piechnik2 and Stefan Neubauer2

Abstract

Background: Cardiovascular magnetic resonance (CMR) is the gold standard method for the assessment of cardiac
structure and function. Reference ranges permit differentiation between normal and pathological states. To date,
this study is the largest to provide CMR specific reference ranges for left ventricular, right ventricular, left atrial and
right atrial structure and function derived from truly healthy Caucasian adults aged 45–74.

Methods: Five thousand sixty-five UK Biobank participants underwent CMR using steady-state free precession
imaging at 1.5 Tesla. Manual analysis was performed for all four cardiac chambers. Participants with non-Caucasian
ethnicity, known cardiovascular disease and other conditions known to affect cardiac chamber size and function
were excluded. Remaining participants formed the healthy reference cohort; reference ranges were calculated and
were stratified by gender and age (45–54, 55–64, 65–74).

Results: After applying exclusion criteria, 804 (16.2%) participants were available for analysis. Left ventricular (LV)
volumes were larger in males compared to females for absolute and indexed values. With advancing age, LV
volumes were mostly smaller in both sexes. LV ejection fraction was significantly greater in females compared to
males (mean ± standard deviation [SD] of 61 ± 5% vs 58 ± 5%) and remained static with age for both genders. In
older age groups, LV mass was lower in men, but remained virtually unchanged in women. LV mass was
significantly higher in males compared to females (mean ± SD of 53 ± 9 g/m2 vs 42 ± 7 g/m2). Right ventricular (RV)
volumes were significantly larger in males compared to females for absolute and indexed values and were smaller
with advancing age. RV ejection fraction was higher with increasing age in females only. Left atrial (LA) maximal
volume and stroke volume were significantly larger in males compared to females for absolute values but not for
indexed values. LA ejection fraction was similar for both sexes. Right atrial (RA) maximal volume was significantly
larger in males for both absolute and indexed values, while RA ejection fraction was significantly higher in females.

Conclusions: We describe age- and sex-specific reference ranges for the left ventricle, right ventricle and atria in
the largest validated normal Caucasian population.

Keywords: Cardiovascular magnetic resonance, Reference values, Ventricular function, Atrial function
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Evaluation of segmentation accuracy
Comparison to expert observers

Extended Data Table 4: The di↵erence in clinical measures between automated segmentation and manual

segmentation, as well between segmentations by di↵erent human observers. The first column shows the
di↵erence between automated and manual segmentations on a test set of 600 subjects. The second to fourth columns
show the inter-observer variability, which is evaluated on a randomly selected set of 50 subjects, each being analysed
by three di↵erent human observers (O1, O2, O3) independently. The mean and standard deviation of the absolute
di↵erence and relative di↵erence are reported.

(a) Absolute di↵erence

Auto vs Man O1 vs O2 O2 vs O3 O3 vs O1

(n = 600) (n = 50) (n = 50) (n = 50)

LVEDV (mL) 6.1±5.3 6.1±4.4 8.8±4.8 4.8±3.1

LVESV (mL) 5.3±4.9 4.1±4.2 6.7±4.2 7.1±3.8

LVM (gram) 6.9±5.5 4.2±3.2 6.6±4.9 6.5±4.8

RVEDV (mL) 8.5±7.1 11.1±7.2 6.2±4.6 8.7±5.8

RVESV (mL) 7.2±6.8 15.6±7.8 6.6±5.5 11.7±6.9

(b) Relative di↵erence

Auto vs Man O1 vs O2 O2 vs O3 O3 vs O1

(n = 600) (n = 50) (n = 50) (n = 50)

LVEDV (%) 4.1±3.5 4.2±3.1 6.3±3.3 3.4±2.2

LVESV (%) 9.5±9.5 6.8±7.5 12.5±8.5 11.7±5.1

LVM (%) 8.3±7.6 4.4±3.3 6.0±3.7 6.7±4.6

RVEDV (%) 5.6±4.6 8.0±5.0 4.2±3.1 5.7±3.6

RVESV (%) 11.8±12.2 30.6±15.5 10.9±8.3 16.9±9.2

Extended Data Table 5: The Dice metric, mean contour distance (MCD) and Hausdor↵ distance (HD)

between automated segmentation and manual segmentation for long-axis images. The mean and standard
deviation are reported on a test set of 600 subjects.

Dice MCD (mm) HD (mm)

LA cavity (2Ch) 0.93±0.05 1.46±1.06 5.76±5.85

LA cavity (4Ch) 0.95±0.02 1.04±0.38 4.03±2.26

RA cavity (4Ch) 0.96±0.02 0.99±0.43 3.89±2.39
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But: Cardiac imaging is still challenging

• Acquisition of cardiac MRI typically 
consists of 2D multi-slice data due to
– constraints on SNR
– breath-hold time
– total acquisition time

• This leads to thick slice data 
(thickness 8-10 mm per slice)
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Conventional CNNs: What we want
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Conventional CNNs: No explicit use of prior knowledge

• Standard Loss for segmentation: Cross-Entropy loss

• Standard loss for super-resolution: L2 or L1 loss
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Fig. 2. Block diagram of the baseline segmentation (Seg) and super-resolution (SR) models which are combined with the proposed T-L regularisation
block (shown in Fig. 3) to build the ACNN-Seg/SR frameworks. In SR, the illustrated model extracts SR features in low-resolution (LR) space, which
increases computational efficiency. In segmentation, the model achieves sub-pixel accuracy for given LR input image. The skip connections between
the layers are shown in red.

classification benchmark was used. In that regard, the proposed
method is not only useful for image enhancement and segmen-
tation but also for the study of anatomical shape variations in
population studies and their associations with cardiac related
pathologies.

B. Contributions
In this study, we propose a generic and novel technique to

incorporate priors on shape and label structure into NNs for
medical image analysis tasks. In this way, we can constrain the
NN training process and guide the NN to make anatomically
more meaningful predictions, in particular in cases where
the input image data is not informative or consistent enough
(e.g. missing object boundaries). More importantly, to the
best of our knowledge, this is one of the earliest studies
demonstrating the use of convolutional autoencoder networks
to learn anatomical shape variations from medical images.

The proposed ACNN model is evaluated on multi-modal
cardiac datasets from MR and US. Our evaluation shows:
(I) A sub-pixel cardiac MR image segmentation approach
that, in contrast to previous CNN approaches [2], [44],
is robust against slice misalignment and coverage problems;
(II) An implicit statistical parametrisation of the left ventricu-
lar shape via NNs for pathology classification; (III) An image
SR technique that extends previous work [34] and that is robust
against slice misalignments; our approach is computationally
more efficient than the state-of-the-art SR-CNN model [34]
as the feature extraction is performed in the low-dimensional
image space. (IV) Last, we demonstrate state-of-the-art 3D-US
cardiac segmentation results on the CETUS’14 Benchmark.

II. METHODOLOGY

In the next section, we briefly summarise the state-of-the-
art methodology for image segmentation (SEG) and super-
resolution (SR), which is based on convolutional neural net-
works (CNNs). We then present a novel methodology that
extends these CNN models with a global training objec-
tive to constrain the output space by imposing anatomical
shape priors. For this, we propose a new regularisation network

that is based on the T-L architecture which was used in
computer graphics [19] to 3D render objects from natural
images.

A. Medical Image Segmentation With CNN Models

Let ys = {yi }i∈S be an image of class labels representing
different tissue types with yi ∈ L = {1, 2, . . . C}. Furthermore
let x = {xi ∈ R, i ∈ S} be the observed intensity
image. The aim of image segmentation is to estimate ys
having observed x. In CNN based segmentation models [22],
[29], [38], this task is performed by learning a discriminative
function that models the underlying conditional probability
distribution P(ys |x).

The estimation of class densities P(ys |x) consists in assign-
ing to each xi the probability of belonging to each of the
C classes, yielding C sets of class feature maps fc that
are extracted through learnt non-linear functions. The final
decision for class labels is then made by applying softmax
to the extracted class feature maps, in the case of cross-

entropy Lx = − ∑C
c=1

∑
i∈S log

(
e f(c,i)

∑
j e f( j,i)

)
these feature

maps correspond to log likelihood values.
As in the U-Net [38] and DeepMedic [22] models, we learn

the mapping between intensities and labels φ (x) : X → L by
optimising the average cross-entropy loss of each class Lx =∑C

c=1 L(x,c) using stochastic gradient descent. As shown
in Fig. 2, the mapping function φ is computed by passing
the input image through a series of convolution layers and
rectified linear units across different image scales to enlarge
the model’s receptive field. The presented model is com-
posed of two parts: feature extraction (analysis) similar to a
VGG-Net [42] and reconstruction (synthesis) as in the case of
a 3D U-Net [38]. However, in contrast to existing approaches,
we aim for sub-pixel segmentation accuracy by training
up-sampling layers with high-resolution ground-truth maps.
This enables 3D analysis of the underlying anatomy in case of
thick slice 2D image stack acquisitions such as cine cardiac
MR imaging. In this way, it is possible to perform analysis
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Fig. 3. Block diagram of the stacked convolutional autoencoder (AE) net-
work (in grey), which is trained with segmentation labels. The AE model
is coupled with a predictor network (in blue) to obtain a compact non-
linear representation that can be extracted from both intensity and
segmentation images. The whole model is named as T-L network.

on the high-resolution image grid without any preceding
upsampling operation with a SR model [34].

Similar segmentation frameworks (cf. [28]) have been stud-
ied in medical imaging. However, in most of the existing
methods, the models are supervised purely through a local
loss function at pixel level (e.g. cross-entropy, Dice) without
exploiting the global dependencies and structure in the output
space. For this reason, the global description of predictions is
usually not adhering to shape, label, or atlas priors. In con-
trast to this we propose a model that can incorporate the
aforementioned priors in segmentation models. The proposed
framework relies on autoencoder and T-L network models to
obtain a non-linear compact representation of the underlying
anatomy, which are used as priors in segmentation.

B. Convolutional Autoencoder Model and ACNN-Seg
An autoencoder (AE) [46] is a neural network that aims to

learn an intermediate representation from which the original
input can be reconstructed. Internally, it has a hidden layer
h whose activations represent the input image, often referred
as codes. To avoid the AE to directly copy its output, the
AE are often designed to be undercomplete so that the size of
the code is less than the input dimension as shown in Fig. 3.
Learning an AE forces the network to capture the most salient
features of the training data. The learning procedure minimises
a loss function Lx (ys, g( f (ys))), where Lx is penalising
g( f (ys)) being dissimilar from ys . The functions g and f are
defined as the decoder and encoder components of the AE.

In the proposed method, the AE is integrated into the stan-
dard segmentation network, described in Sec. II-A, as a regu-
larisation model to constrain class label predictions y towards
anatomically meaningful and accurate outputs. The cross-
entropy loss function operates on individual pixel level class
predictions, which does not guarantee global consistency and
plausible anatomical shapes even though the segmentation
network has a receptive field larger than the size of structures
to be segmented. This is due to the fact that back-propagated
gradients are parametrised only by pixel-wise individual prob-
ability divergence terms and thus provide little global context.

Fig. 4. Training scheme of the proposed anatomically constrained
convolutional neural network (ACNN) for image segmentation and super-
resolution tasks. The proposed T-L network is used as a regularisation
model to enforce the model predictions to follow the distribution of the
learnt low dimensional representations or priors.

To overcome this limitation, class prediction label maps
are passed through the AE to obtain a lower dimensional
(e.g. 64 dimensions) parametrisation of the segmentation and
its underlying structure [40]. By performing AE-based non-
linear lower dimensional projections on both predictions and
ground-truth labels, as shown in Fig. 4, we can build our
ACNN-Seg training objective function though a linear combi-
nation of cross-entropy (Lx ), shape regularisation loss (Lh e ),
and weight decay terms as follows:

Lh e =
∥∥ f (φ(x ); θ f ) − f (y; θ f )

∥∥2
2

min
θ s

(
Lx (φ(x ; θ s), y) + λ1 · Lh e + λ2

2
||w||22

)
(1)

Here w corresponds to weights of the convolution filters,
and θs denotes all trainable parameters of the segmentation
model and only these parameters are updated during training.
The coupling parameters λ1 and λ2 determine the weights of
shape regularisation loss and weight decay terms used in the
training. In this equation, the second term Lh e ensures that
the generated segmentations are in a similar low dimensional
space (e.g. shape manifold) as the ground-truth labels. In addi-
tion to imposing shape regularisation, this parametrisation
encourages label consistency in model predictions, and reduces
false-positive detections as they can influence the predicted
codes in the hidden layer. The third term corresponds to
weight decay to limit the number of free parameters in
the model to avoid over-fitting. The proposed AE model is
composed of convolutional layers and a fully connected layer
in the middle as shown in Fig. 3, which is similar to the
stacked convolutional autoencoder model proposed in [31].
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are passed through the AE to obtain a lower dimensional
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its underlying structure [40]. By performing AE-based non-
linear lower dimensional projections on both predictions and
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Here w corresponds to weights of the convolution filters,
and θs denotes all trainable parameters of the segmentation
model and only these parameters are updated during training.
The coupling parameters λ1 and λ2 determine the weights of
shape regularisation loss and weight decay terms used in the
training. In this equation, the second term Lh e ensures that
the generated segmentations are in a similar low dimensional
space (e.g. shape manifold) as the ground-truth labels. In addi-
tion to imposing shape regularisation, this parametrisation
encourages label consistency in model predictions, and reduces
false-positive detections as they can influence the predicted
codes in the hidden layer. The third term corresponds to
weight decay to limit the number of free parameters in
the model to avoid over-fitting. The proposed AE model is
composed of convolutional layers and a fully connected layer
in the middle as shown in Fig. 3, which is similar to the
stacked convolutional autoencoder model proposed in [31].
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To overcome this limitation, class prediction label maps
are passed through the AE to obtain a lower dimensional
(e.g. 64 dimensions) parametrisation of the segmentation and
its underlying structure [40]. By performing AE-based non-
linear lower dimensional projections on both predictions and
ground-truth labels, as shown in Fig. 4, we can build our
ACNN-Seg training objective function though a linear combi-
nation of cross-entropy (Lx ), shape regularisation loss (Lh e ),
and weight decay terms as follows:

Lh e =
∥∥ f (φ(x ); θ f ) − f (y; θ f )
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(
Lx (φ(x ; θ s), y) + λ1 · Lh e + λ2
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Here w corresponds to weights of the convolution filters,
and θs denotes all trainable parameters of the segmentation
model and only these parameters are updated during training.
The coupling parameters λ1 and λ2 determine the weights of
shape regularisation loss and weight decay terms used in the
training. In this equation, the second term Lh e ensures that
the generated segmentations are in a similar low dimensional
space (e.g. shape manifold) as the ground-truth labels. In addi-
tion to imposing shape regularisation, this parametrisation
encourages label consistency in model predictions, and reduces
false-positive detections as they can influence the predicted
codes in the hidden layer. The third term corresponds to
weight decay to limit the number of free parameters in
the model to avoid over-fitting. The proposed AE model is
composed of convolutional layers and a fully connected layer
in the middle as shown in Fig. 3, which is similar to the
stacked convolutional autoencoder model proposed in [31].
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Figure 6.3: Block diagram of the stacked convolutional autoencoder (AE) network (in grey),
which is trained with segmentation labels. The AE model is coupled with a predictor network (in
blue) to obtain a compact non-linear representation that can be extracted from both intensity
and segmentation images. The whole model is named as T-L network.

structure in the output space. For this reason, the global description of predictions is usually

not adhering to shape, label, or atlas priors. In contrast to this we propose a model that can

incorporate the aforementioned priors in segmentation models. The proposed framework relies

on autoencoder and T-L network models to obtain a non-linear compact representation of the

underlying anatomy, which are used as priors in segmentation.

6.2.2 Convolutional Autoencoder Model and ACNN-Seg

An autoencoder (AE) [267] is a neural network that aims to learn an intermediate representation

from which the original input can be reconstructed. Internally, it has a hidden layer h whose

activations represent the input image, often referred as codes. To avoid the AE to directly copy

its output, the AE are often designed to be undercomplete so that the size of the code is less

than the input dimension as shown in Fig. 6.3. Learning an AE forces the network to capture

the most salient features of the training data. The learning procedure minimises a loss function

Lx(ys
, g(f(y

s
))), where Lx is penalising g(f(y

s
)) being dissimilar from y

s
. The functions g
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Figure 6.4: Training scheme of the proposed anatomically constrained convolutional neural
network (ACNN) for image segmentation task. The encoder part of the proposed T-L network
is used as a regularisation model to enforce the model predictions to follow the distribution of
the learned low dimensional representations or priors.

and f are defined as the decoder and encoder components of the AE.

In the proposed method, the AE is integrated into the standard segmentation network, de-

scribed in Sec. 6.2.1, as a regularisation model to constrain class label predictions y towards

anatomically meaningful and accurate outputs. The cross-entropy loss function operates on in-

dividual pixel level class predictions, which does not guarantee global consistency and plausible

anatomical shapes even though the segmentation network has a receptive field larger than the

size of structures to be segmented. This is due to the fact that back-propagated gradients are

parametrised only by pixel-wise individual probability divergence terms and thus provide little

global context.

To overcome this limitation, class prediction label maps are passed through the AE to obtain a

lower dimensional (e.g. 64 dimensions) parametrisation of the segmentation and its underlying

structure [240]. By performing AE-based non-linear lower dimensional projections on both

predictions and ground-truth labels, as shown in Fig. 6.4, we can build our ACNN-Seg training

objective function though a linear combination of cross-entropy (Lx), shape regularisation loss
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2D-FCN ACNN-Seg 3D-GT

3D-Seg-MAug ACNN-Seg 3D-GT

Figure 6.7: Segmentation results on two di↵erent 2D stack cardiac MR images. The proposed
ACNN model is insensitive to slice misalignments as it is anatomically constrained and it makes
less errors in basal and apical slices compared to the 2D-FCN approach. The results generated
from low resolution image is better correlated with the HR ground-truth annotations (green).

performance in basal and apical parts of the heart as shown in Fig. 6.7. Previous slice by slice

segmentation approaches validated their methods on LR annotations; however, we see that the

produced label maps are far o↵ from the true underlying ventricular geometry and it can be a

limiting factor for the analysis of ventricle morphology. Similar results were obtained in clinical

studies [66], which however required HR image acquisition techniques. (II) The results also

show that introduction of shape priors in segmentation models can be useful to tackle false-

positive detections and motion-artefacts. As can be seen in the bottom row of Fig. 6.7, without

the learnt shape priors, label map predictions are more prone to imaging artefacts. Indeed, it

is the main reason why we observe such a large di↵erence in terms of Hausdor↵ distance. For

endocardium labels, on the other hand, the di↵erence in dice score metric is observed to be less

due to the larger size of the LV blood pool compared to the myocardium.

Lastly (III), we observe a performance di↵erence between the cascaded AE based segmenta-

tion (AE-Seg [217]) and the proposed ACNN-Seg models: the segmentations generated with

the former model are strongly regularised due to the second stage AE. It results in reduced

Hausdor↵ distance with marginal statistical significance, but the model overlooks fine details

of the myocardium surface since the segmentations are generated only from the coarse level

feature-maps. More importantly, cascaded approaches add additional computational complex-
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Figure 6.5: Training scheme of the proposed anatomically constrained convolutional neural net-
work (ACNN) for image super-resolution task. The predictor part of the proposed T-L network
is used as a regularisation model to enforce the model predictions to follow the distribution of
the learned low dimensional representations or priors.

both the AE and the predictor converge, the two models are trained jointly in the second stage.

The encoder f is updated using two separate back-propagated gradients (@Lx
@✓f

,
@Lh
@✓f

) and the

two loss functions are scaled to match their range. The first gradient encourages the encoder

to generate codes that could be easily extracted by the predictor while the second gradient

making sure that a good segmentation-reconstruction can be obtained at the output of the

decoder. Training details are further discussed in Section 6.3.2. It is important to note that the

T-L regulariser model is used only at training time but not during inference; in other words,

the fully convolutional (FCN) segmentation and super-resolution models can still be used for

applications using di↵erent image sizes. In this paper, the proposed SR model is referred to as

ACNN-SR and its training scheme is shown in Figure 6.5.

Lhp = k p (�(x);✓p) � p (y
r
;✓p) k

2
2

min
✓r

✓
 `1 (�(x ;✓r) � y

r
) + �1 · Lhp +

�2

2
||w||

2
2

◆ (6.2)

The training objective shown above is composed of weight decay, pixel-wise and global loss

terms. Here �1 and �2 determine the weight of shape priors and weight decay terms while

the smooth `1 norm loss function  quantifies the reconstruction error. The global loss Lhp
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Table 6.3: Average inference time (Inf-T) of the SR models per input LR image (120x120x12)
using a GPU (GTX-1080). ACNN-SR and SR-CNN [192] models are given the same number of
filters and capacity. MOS [143] results, received from the clinicians (R1 and R2), are reported
separately.

SSIM [269] MOS-R1 MOS-R2 Inf-T

Linear .777±.043 2.71±0.82 2.60±.91 -
B-Spline .779±.053 2.77±0.89 2.64±.84 -
SR-CNN [192] .783±.046 3.59±1.05 3.85±.70 .29 s
3D-UNet [50] .784±.045 3.55±0.92 3.99±.71 .07 s
ACNN-SR .796±.041 4.36±0.62 4.25±.68 .06 s
p-values p ⌧ 0.001 p < 0.001 p < 0.01 -

experiments since small misalignments between LR-HR image pairs could introduce large errors

in the evaluation due to pixel by pixel comparisons. More importantly, intensity statistics of

the images are observed to be di↵erent for this reason PSNR measurements would not be

accurate. In addition to the SSIM metric, we used the mean opinion score (MOS) testing

[143] to quantify the quality and similarity of the synthesised and real HR cardiac images.

Two expert cardiologists were asked to rate the upsampled images from 1 (very poor) to 5

(excellent) based on the accuracy of the reconstructed LV boundary and geometry. To serve

as a reference, the corresponding clinical LR and HR images are displayed together with the

upsampled images that are anonymised for a fair comparison.

Figure 6.9: Image super-resolution (SR) results. From left to right, input low resolution MR
image, baseline SR approach [192] (no global loss), the proposed anatomically constrained SR
model, and the ground-truth high resolution acquisition.

In Table 6.3, SSIM and MOS scores for the standard interpolation techniques, SR-CNN, and

the proposed ACNN-SR models are provided. In addition to the increased image quality, the

ACNN-SR model is computationally more e�cient in terms of run-time in comparison to the

SR-CNN model [192] by a factor of 5. This is due to the fact that ACNN-SR performs feature

Baseline SR 
approachOriginal LR image Anatomically constrained 

SR model
Ground-truth  

HR image
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Challenges for medical image segmentation:
Deployment in the clinic

• ML-based segmentation often degrades 
when deployed in clinical scenarios

• This is caused by differences between 
training and test data, e.g. due to 
variations in 

• scanner hardware
• scanner protocols and sequences

• Manually annotating new data for each 
test domain is not a feasible solution

Unsupervised domain adaptation using adversarial 
neural networks can be used to train a CNN-based 
segmentation 
– which is more invariant to differences in the input data
– which does not require any annotations on the test domain



Deploying machine learning into 
clinical practice: What is the problem?

Domain: 
Task: 
Given: 

Learn:                                     

Source (S)

Domain: 
Task:
Here: 
Domain Shift:

Target (T)

Source (S)Target (T)

Domain Shift !



Solution: Unsupervised domain 
adaptation with adversarial networks

• Learn a domain classifier 

• Minimize accuracy of domain-classifier      via back-propagation
– Learn an adapted domain invariant classifier 

Ganin et al. JMLR 2016

Scalable solution !



DeepMedic: Overview

Figure 5: Multi-scale 3D CNN with two convolutional pathways. The kernels
of the two pathways are here of size 53 (for illustration only to reduce the
number of layers in the figure). The neurons of the last layers of the two
pathways thus have receptive fields of size 173 voxels. The inputs of the two
pathways are centered at the same image location, but the second segment
is extracted from a down-sampled version of the image by a factor of 3.
The second pathway processes context in an actual area of size 513 voxels.
DeepMedic, our proposed 11-layers architecture, results by replacing each
layer of the depicted pathways with two that use 33 kernels (see Sec. 2.3).
Number of FMs and their size depicted as (Number ⇥ Size).

�{x,y,z}
L2 � 1 and similar is the relation between �in1 and �L1. These establish

the relation between the required dimensions of the input segments from the
two resolutions, which can then be extracted centered on the same image
location. The FMs of L2 are up-sampled to match the dimensions of L1’s
FMs and are then concatenated together. We add two more hidden layers for
combining the multi-scale features before the final classification, as shown in
Fig. 5. Integration of the multi-scale parallel pathways in architectures with
non-unary strides is discussed in Appendix A.

Combining multi-scale features has been found beneficial in other recent
works (Long et al. (2015); Ronneberger et al. (2015)), in which whole 2D im-
ages are processed in the network by applying a few number of convolutions
and then down-sampling the FMs for further processing at various scales.
Our decoupled pathways allow arbitrarily large context to be provided while
avoiding the need to load large parts of the 3D volume into memory. Ad-
ditionally, our architecture extracts features completely independently from
the multiple resolutions. This way, the features learned by the first pathway
retain finest details, as they are not involved in processing low resolution

15

K. Kamnitsas et al. Medical Image Analysis, 2016

Full resolution

Low resolution



DeepMedic in Action
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DeepMedic: Unsupervised domain 
adaptation with adversarial networks
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Fig. 1: Proposed multi-connected adversarial networks. Segmenter: we use the 3D CNN
architecture presented in [10]. Dashed lines denote low resolution features. Input sam-
ples are multi-modal, although not depicted. Discriminator: We use a second 3D CNN
for classifying the domain of input x, by processing activations at multiple layers of
the segmenter. Red lines show the path of the adversarial gradients, from Ladv back
to the segmenter. See text for details on architecture.

2.1 Segmentation system with domain discriminator

Segmenter: At the core of our system is a fully convolutional neural network
(CNN) for image segmentation [12]. Given an input x of arbitrary size, which
can be a whole image or a sub-segment, this type of network predicts labels
for multiple voxels in x, one for each stride of the network’s receptive field
over the input. The parameters of the network ✓seg are learnt by iteratively
minimizing a segmentation loss Lseg using stochastic gradient descent (SGD).
The loss is commonly the cross-entropy of the predictions on a training batch
Bseg =

�
(x1, y1), ..., (xNseg , yNseg )

 
of Nseg samples. In our settings, (xi, yi)

are sampled from the source database S = (XS , YS), for which labels YS are
available. We borrowed the 3D multi-scale CNN architecture from [10], depicted
in Fig 1 and adopt the same configuration for all meta-parameters.

Domain discriminator: When processing an input x, the activations of
any feature map (FM) in the segmenter encode a hidden representation h(x). If
samples come from di↵erent distributions P (XS) 6= P (XT ), e.g. due to di↵erent
domains, and the filters of the segmenter are not invariant to the domain-specific
variations, the distributions of the corresponding activations will di↵er as well,
P (h(XS)) 6= P (h(XT )). This is expected when the segmenter is trained only
on samples from S where learnt features will be specific to the source domain.
Similar to [5], we choose a certain representation ha(x) from the segmenter and
use a second network as a domain-classifier that takes ha(x) as input and tries to
classify whether it comes from P (ha(XS)) or P (ha(XT )). This is equivalent to
classifying the domain of x. Classification accuracy serves as an indication of how
source-specific the representation ha(·) is. The architecture we use for a domain
classifier is a 3D CNN with five layers. The first four have 100 kernels of size
33. The last classification layer uses 13 kernels. This architecture has a receptive
field of 93 with respect to its input ha(·) and was chosen for compatibility with
the size of feature maps in the 3 last layers of the segmenter.

We train this domain-discriminator simultaneously with the segmenter. For
this, we form a second training batch Badv =

�
(x1, yd1), ..., (xNadv , y

d
Nadv

)
 
. Equal

number of samples xi are extracted from XS and XT , so there is no bias towards

K. Kamnitsas et al. IPMI 2017,  arXiv:1612.08894
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for classifying the domain of input x, by processing activations at multiple layers of
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2.1 Segmentation system with domain discriminator

Segmenter: At the core of our system is a fully convolutional neural network
(CNN) for image segmentation [12]. Given an input x of arbitrary size, which
can be a whole image or a sub-segment, this type of network predicts labels
for multiple voxels in x, one for each stride of the network’s receptive field
over the input. The parameters of the network ✓seg are learnt by iteratively
minimizing a segmentation loss Lseg using stochastic gradient descent (SGD).
The loss is commonly the cross-entropy of the predictions on a training batch
Bseg =
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(x1, y1), ..., (xNseg , yNseg )

 
of Nseg samples. In our settings, (xi, yi)

are sampled from the source database S = (XS , YS), for which labels YS are
available. We borrowed the 3D multi-scale CNN architecture from [10], depicted
in Fig 1 and adopt the same configuration for all meta-parameters.

Domain discriminator: When processing an input x, the activations of
any feature map (FM) in the segmenter encode a hidden representation h(x). If
samples come from di↵erent distributions P (XS) 6= P (XT ), e.g. due to di↵erent
domains, and the filters of the segmenter are not invariant to the domain-specific
variations, the distributions of the corresponding activations will di↵er as well,
P (h(XS)) 6= P (h(XT )). This is expected when the segmenter is trained only
on samples from S where learnt features will be specific to the source domain.
Similar to [5], we choose a certain representation ha(x) from the segmenter and
use a second network as a domain-classifier that takes ha(x) as input and tries to
classify whether it comes from P (ha(XS)) or P (ha(XT )). This is equivalent to
classifying the domain of x. Classification accuracy serves as an indication of how
source-specific the representation ha(·) is. The architecture we use for a domain
classifier is a 3D CNN with five layers. The first four have 100 kernels of size
33. The last classification layer uses 13 kernels. This architecture has a receptive
field of 93 with respect to its input ha(·) and was chosen for compatibility with
the size of feature maps in the 3 last layers of the segmenter.

We train this domain-discriminator simultaneously with the segmenter. For
this, we form a second training batch Badv =

�
(x1, yd1), ..., (xNadv , y

d
Nadv

)
 
. Equal

number of samples xi are extracted from XS and XT , so there is no bias towards

Domain Discr.:

Segmenter:
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Unsupervised domain adaptation with adversarial networks 9

quence is not available, which corresponds to a very low value after our intensity
normalization. From this the CNN learns when the sequence is missing and we
found this to behave better than common zero-filling. The segmenter performs
better than supervised training on T only. This indicates that information from
both domains is used. However, knowledge transfer is not as strong as when GE
and SWI, which share much information, are used in the same channel.

Proposed unsupervised domain adaptation: We train the segmenter on
all data of S and adapt the domains using half the subjects of T , but no labels.
GE and SWI share the same input channel. We test segmentation accuracy on
the other half of T . The experiment is repeated for the other fold. Our method
learns filters invariant to the two imaging protocols and transfers knowledge
from S to T , allowing the system to segment haemorrhages only visible on SWI
without ever seeing a manual annotation from T (Fig. 2). This improves by 3%
DSC over the non-adapted segmenter that uses only information from S and the
common sequences, covering 44% of the di↵erence between the practical lower
bound and the upper bound achieved by supervised domain adaptation using
labels from both domains.

Fig. 2: (top row) Example case from S. (middle/bottom row) Visual results for two
examples. A model trained on S fails on T when GE is simply replaced by SWI (3rd
col.). A model trained on S using only the four common sequences misses micro-
bleeds visible only on SWI (4th col.). Our method mitigates these problems by learning
features invariant to the imaging protocol (5th col.). (T2, MPRAGE and PD of T are
used but not depicted.)

K. Kamnitsas et al. IPMI 2017,  arXiv:1612.08894



Challenges for medical image segmentation:
DeepMedic, FCN & U-Net

• The good:
– There are some good/promising CNN-based segmentation approaches 

(DeepMedic, FCN & U-Net)

• The bad:
– A lot of meta-parameters
– Architecture & config influence performance
– Architecture & config influence behavior 

• The ugly:
– Chosen model & config may be suboptimal for other data/task
– Results and conclusions of analysis are strongly biased

Ensemble of Multiple Models & Architectures (EMMA) 

Performance insensitive to suboptimal configuration 

Behaviour unbiased by architecture & configuration



Challenges for medical image segmentation:
Behaviour and performance is variable

2 Kamnitsas, Bai, Ferrante, McDonagh, Sinclair, et al.

Fig. 1: Left to right: FLAIR; manual annotation of a BRATS’17 subject, where
yellow depicts oedema surrounding tumour core; confidence of a CNN predicting
oedema, trained with cross-entropy or IoU loss. Although overall performance is
similar, training with IoU (or Dice, not shown) loss alters the CNN’s behaviour,
which tends to output only highly confident predictions, even when false.

Automatic segmentation systems aim at providing an objective and scalable
solution. Representative early works are the atlas-based outlier detection method
[5] and the joint segmentation-registration framework, often guided by a tumour
growth model [6,7,8]. The past few years saw rapid developments of machine
learning methods, with Random Forests being among the most successful [9,10].
More recently, convolutional neural networks (CNN) have gained popularity by
exhibiting very promising results for segmentation of brain tumours [11,12,13].

A variety of CNN architectures have been proposed, each presenting di↵erent
strengths and weaknesses. Additionally, networks have a vast number of meta
parameters. The multiple configuration choices for a system influence not only
performance but also its behaviour (Fig. 1). For instance, di↵erent models may
perform better with di↵erent types of pre-processing. Consequently, when in-
vestigating their behaviour on a given task, findings can be biased. Finally, a
configuration highly optimized on a given database may be an over-fit, and not
generalise to other data or tasks.

In this work we push towards constructing a more reliable and objective deep
learning model. We bring together a variety of CNN architectures, configured
and trained in diverse ways in order to introduce high variance between them. By
combining them, we construct an Ensemble of Multiple Models and Architectures
(EMMA), with the aim of averaging away the variance and with it model- and
configuration-specific behaviours. Our approach leads to: (1) a system robust to
unpredictable failures of independent components, (2) enables objective analysis
with a generic deep learning model of unbiased behaviour, (3) introduces the
new perspective of ensembling for objectiveness. This is in contrast to common
ensembles, where a single model is trained with small variations such as initial
seeds, which renders the ensemble biased by the main architectural choices. As
a first milestone in this endeavour, we evaluated EMMA in the Brain Tumour
Segmentation (BRATS) challenge 2017. Our method won the first position in
the final testing stage among 50+ competing teams. This indicates the reliability
of the approach and paves the way for its use in further analysis.

Model trained with  
cross-entropy loss Model trained with  

IoU (Dice) loss



Ensemble of Multiple Models 
 and Architectures (EMMA)

Need to learn:

Approximate it by model:

Model is defined by chosen meta-parameters m.

with learnt parameters 

Commonly m is neglected, but it biases the results! 

, d the loss.

We define stochastic random variable M, over configurations of interest.

Need to marginalise out influence of M:

EMMA approximate the joint by ensembling individual models:



M: Network architectures

DeepMedic [Kamnitsas 2015, 2016, 2017]

FCN [Long 2015]:

U-Net [Ronneberger 2015]:



M: Network configurations

• Architecture configuration: 
– depth, width, scales, residuals, etc.

• Training Loss: 
– Cross-Entropy, IoU, DSC, etc.

• Sampling strategy: 
– equally per class, foreground/background, etc.

• Optimisation: 
– optimizer, learning rate, momentum, regulariser…

• Data normalisation: 
– z-score, bias field correction, histogram matching





BRATS’17 Challenge:  
Quantitative validation

• EMMA: 2 x DeepMedic, 3 x FCNs, 1 x U-Net
– Different training losses, sampling strategies, widths, depths, configurations
– No config was heavily optimised for the task (3/6 nets were quite suboptimal)

• Robustness:
– EMMA of all 6 was better than individuals.
– Ensemble of 3 best nets was only marginally better than EMMA of all 6 nets.



Summary and Conclusions

• Deep learning already plays a crucial role 
in medical imaging for 
– Image acquisition and reconstruction
– Image quantification and analysis

• Applications of deep learning in 
computer-aided decision support have 
been limited so far
– But there is some (unjustified) hype

• There is great potential for deep learning 
for truly intelligent computer-aided 
diagnosis
– Learning from unlabelled, large-scale population data
– Integration of imaging and non-imaging information, 

e.g. clinical records and genetics 

Validation is challenging

Optimisation of imaging pipeline with respect to 
clinically useful information

Requires collaboration between computer 
scientists, engineers and clinicians



Current state-of-the-art

Acquisition Reconstruction Analysis

Define relevant 
information



Future: End-to-end optimisation of 
entire imaging pipeline via deep learning

Acquisition Reconstruction Analysis

Define relevant 
information

End-to-end optimisation of acquisition, reconstruction, 
analysis & interpretation via deep learning



Future: End-to-end optimisation of 
entire imaging pipeline via deep learning

End-to-end optimisation of acquisition, reconstruction, 
analysis & interpretation via deep learning

Big data (population data) Multi-modal data
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