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45.7
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Naive Bayes
RNN
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A man inspects the uniform of a 
figure in some East Asian country. 

The man is sleeping.

7%
10%

83%

Contradiction
Entailment
Neutral

Current SOTA is 86% 

Tao Shen et al. 2018 
300D Reinforced Self-Attention 

Network
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Pre-Trained Word Embeddings

 Learning Semantic Word Embeddings based on 
Ordinal Knowledge Constraints (Liu et al  2015) Identifying and Exploiting Hearst Patterns in Distributional Vectors for 

Lexical Entailment (Roller and Erk 2016)

Integrating Distributional Lexical Contrast into Word Embeddings 
for Antonym-Synonym Distinction (Nguyen et al. 2016) 

Word Embedding-based Antonym Detection using Thesauri 
and Distributional Information (Ono et al. 2015)

Counter-fitting Word Vectors to Linguistic Constraints (Mrkšić et al. 2016)

AutoExtend: Extending Word Embeddings…(Rothe and Schutze 2015)
SENSEMBED: Learning Sense Embeddings… (Iacobacci et al 2015)

Low-Dimensional Embeddings of Logic (Rocktaschel et al. 2014)

Retrofitting Word Vectors to Semantic Lexicons (Faruqui et al 2015)
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This workshop deals with the evaluation of general-purpose 
vector representations for linguistic units (morphemes, words, 

phrases, sentences, etc). What distinguishes these 
representations (or embeddings) is that they are not trained with a 
specific application in mind, but rather to capture broadly useful 

features of the represented units. Another way to view their usage 
is through the lens of transfer learning: The embeddings are 

trained with one objective, but applied on others. 

Evaluating general-purpose representation learning systems is 
fundamentally difficult. They can be trained on a variety of 

objectives, making simple intrinsic evaluations useless as a 
means of comparing methods. They are also meant to be applied 

to a variety of downstream tasks, which will place different 
demands on them…

RepEval 2017  
(Bowman, Goldberg, Hill, Lazaridou, Levy, Reichart, and Søgaard)
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Language → ct=ft⚬ct-1+it⚬σc(Wcxt+Ucht-1+bc) 
ht = ot ⚬ σh(ct)
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Representation

Is SkipGram enough?
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representation makes incorrect 
predictions 47% of the time!
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shook it warmly. 
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Government is the only thing holding 
back large corporations.  

government -/-> small government

His body is found a week later.  
body -> dead body

A child rides on a man’s shoulders.  
man -/-> homeless man
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RTE System

A group of hikers walk a path that leads 
from a sandy beach towards a hill

The hikers are walking outside
+

True
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Simplified RTE Task

RTE System

A hiker walking on a path at the foot of 
snow capped mountains

A hiker walking on a sandy path at the 
foot of snow capped mountains

+

False
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• 4,991 for training (4,481 training, 510 dev) 

• 387 test (removed pairs with low human 
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• 500K general RTE pairs from SNLI
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Simplified RTE Task
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• Should we care about linguistics? Yes! 

• Because we want to learn task-independent representations 
of language, which requires asking and answering: 

1. What components of linguistic meaning are “intrinsic”, and 
what is derived in context/at “runtime”? 

2. If these representation can’t be trained in end-to-end tasks: 
how to we know what is the “right” representation? Which 
tasks should be viewed as “fundamental” and trained/test 
explicitly, and which ones should come along “for free”?

Takeaways
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Thank you!


