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Test Accuracy

New Enthusiasm for End-to-
End NLU Tasks

Recognizing Textual Entailment (RTE)

Performance of Sentence Encoding Models on SNLI Dataset

Models on SNLI Leaderboard

A large annotated corpus for learning natural language inference.
Bowman et al. (2015)



New Enthusiasm for End-to-
End NLU Tasks

Reading Comprehension

What is Southern California often abbreviated as”?

SQUAD: 100,000+ Questions for Machine Comprehension of Text.
Rajpurkar et al. (2016)



New Enthusiasm for End-to-
End NLU Tasks

Reading Comprehension

What is Southern California often abbreviated as”?

_|_
Southern California, often abbreviated SoCal, is a geographic and cultural region that

generally comprises California's southernmost 10 counties. The region is traditionally
described as "eight counties’, based on demographics and economic ties: Imperial,
Los Angeles, Orange, Riverside, San Bernardino, San Diego, Santa Barbara, and
Ventura. The more extensive 10-county definition, including Kern and San Luis
Obispo counties, is also used based on historical political divisions. Southern
California is a major economic center for the state of California and the United States.

SQUAD: 100,000+ Questions for Machine Comprehension of Text.
Rajpurkar et al. (2016)



New Enthusiasm for End-to-
End NLU Tasks

Reading Comprehension

What is Southern California often abbreviated as”?

_|_
Southern California, often abbreviated SoCal, is a geographic and cultural region that

generally comprises California's southernmost 10 counties. The region is traditionally
described as "eight counties’, based on demographics and economic ties: Imperial,
Los Angeles, Orange, Riverside, San Bernardino, San Diego, Santa Barbara, and
Ventura. The more extensive 10-county definition, including Kern and San Luis
Obispo counties, is also used based on historical political divisions. Southern
California is a major economic center for the state of California and the United States.

v
System

SQUAD: 100,000+ Questions for Machine Comprehension of Text.
Rajpurkar et al. (2016)



New Enthusiasm for End-to-
End NLU Tasks

Reading Comprehension

What is Southern California often abbreviated as”?

_|_
Southern California, often abbreviated SoCal, is a geographic and cultural region that

generally comprises California's southernmost 10 counties. The region is traditionally
described as "eight counties’, based on demographics and economic ties: Imperial,
Los Angeles, Orange, Riverside, San Bernardino, San Diego, Santa Barbara, and
Ventura. The more extensive 10-county definition, including Kern and San Luis
Obispo counties, is also used based on historical political divisions. Southern
California is a major economic center for the state of California and the United States.

v
System

'
SC ions for Machine Comprehension of Text.
Soca‘ Rajpurkar et al. (2016)



Accuracy

New Enthusiasm for End-to-
End NLU Tasks

Reading Comprehension

Performance on SQUAD Reading Comprehension Dataset
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SQUAD: 100,000+ Questions for Machine Comprehension of Text.
Rajpurkar et al. (2016)



Should we care about
Inguistics’



Language Sentiment Dependency Machine

Modeling Analysis Parsing Translation
320 B 2 46 o AL
290
260
230
200
Perplexity Accuracy Unlabelled Attachment Score BLEU (Ar-En)
& Best N-gram ™ Naive Bayes “ Graph-Based Model ! Best Phrase-Based
= Best MLP = RNN “ Nueral Model @ Best Nueral
Natural Language Inference Reading Comprehension
(SNLI) (SQUAD)
83
%) o 81
T T
> > /9
3 3

\l
~



Language Sentiment Dependency Machine

Modeling Analysis Parsing Translation
320 - BF 2 4G e B QuedoQF 53
290 [ A4S e B 92,28 918 51
260 - . 19
AS IS, we are .

200 45

Perplexity d Ol n g ‘Ots Of Score  BLEU (Ar-En)

= Best N-gram ! Best Phrase-Based

M Best MLP taS KS Very We‘ ‘ M BestNuera

Natural Le _omprehension

(SNLI) (SQUAD)

83
%) 5 81
© ©
> >S5 79
S S
I I /6

\l
~



What are our systems
learning”?

A man inspects the uniform of a
figure in some East Asian country.

The man Is sleeping.

SNLI dataset (Bowman, 2015)



What are our systems
learning”?

A man inspects the uniform of a
figure in some East Asian country.

The man is sleeping.

SNLI dataset (Bowman, 2015)



What are our systems
learning”?

sleeping

SNLI dataset (Bowman, 2015)



What are our systems
learning”?

sleeping

©® Contradiction
© Entailment
Neutral

SNLI dataset (Bowman, 2015)



What are our systems
learning”?

Current SOTA Is 86%

Tao Shen et al. 2018
300D Reinforced Self-Attention
Network
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SNLI dataset (Bowman, 2015)
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Knowledge Representation and Grounding

Learning Structured Embeddings of Knowledge Bases (Bordes et al. 2011)
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Ontologies (Li et al 2017)



This workshop deals with the evaluation of general-purpose
vector representations for linguistic units (morphemes, words,
phrases, sentences, etc). What distinguishes these
representations (or embeddings) is that they are not trained with a
specific application in mind, but rather to capture broadly useful
features of the represented units. Another way to view their usage
s through the lens of transfer learning: The embeddings are
trained with one objective, but applied on others.

Evaluating general-purpose representation learning systems is
fundamentally difficult. They can be trained on a variety of
objectives, making simple intrinsic evaluations useless as a
means of comparing methods. They are also meant to be applied
to a variety of downstream tasks, which will place ditferent
demands on them...

Repkval 2017
(Bowman, Goldberg, Hill, Lazaridou, Levy, Reichart, and Sggaard)
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“There Is In my opinion no important theoretical difference
between natural languages and the artificial languages of
logicians; indeed | consider it possible to comprehend the
syntax and semantics of both kinds of languages with a
single natural and mathematically precise theory.”

—Richard Montague
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Because we have to form anad
test hypotheses about what
our word representations
should capture.
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o, >

o T A o A little boy doing a hand
.d\‘f"’;@\m stand on the sandy beach.

lge”:
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Pavlick and Callison-Burch (2016)
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Set-Theoretic Semantics?

Images News Literature Debate Forums

Model-Theoretic
Prediction IS
Incorrect

In the worst case, Model-Theoretic
represen&a&i;am malees thcorrect
lems” are “huge”:

Pfﬁdiﬁ&ﬁﬁhs 47% O“f the Eime! 1 Adjective-Nouns
Paviick and Callison-Burch (2016)



Human Inferences

P entails H P contradicts H

Somehow, | feel there will be a lack of | Bush travels Monday to Michigan to
evidence forthcoming make remarks on the economy.
evidence -> credible evidence economy -/-> Japanese economy

Pentield Evans grasped his hand and |Government is the only thing holding

shook it warmly. back large corporations.
hand -> outstretched hand government -/-> small government
His body is found a week later. A child rides on a man's shoulders.
body -> dead body man -/~> homeless man

Pavlick and Callison-Burch (2016)



What “belongs’ In the
representation of a word?

evidence -> credible evidence economy -/-> Japanese economy

hand -> outstretched hand government -/-> small government

body -> dead body man -/-> homeless man



What “belongs’ In the
representation of a word?

evidence -> Is credible?

body -> is dead?”
government -> isn't small?
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representation of a word?
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body -> is dead?”
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evidence -> is credible?

Semantics

body -> is dead?

government -> isn’'t small?

man -> isn’t homeless?

hand -> is outstretched?

Pragmaticd

economy -> isn’t Japanese?




Should we care about
Inguistics”

n
O
= | |
g evidence -> is credible?
QJ .
n body -> is dead?
government -> isn’'t small?
2 B
2 man -> isn’'t homeless?
@®©
g hand -> is outstretched?
©
ol economy -> isn’t Japanese?
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Recognizing lextual
Entallment lask

A group of hikers walk a path that leads
from a sandy beach towards a hill

_|_
The hikers are walking outside

|
RTE System

|

True

Most “babies” are “little” and most “problems”™ are “huge”:
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Simplified RTE Task

A hiker walking on a path at the foot of
snow capped mountains

_|_
A hiker walking on a sandy path at the

foot of snow capped mountains

|
RTE System

\4

False

Most “babies” are “little” and most “problems”™ are “huge”:
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Simplified RTE Task

¢ 5,3/8 add-one pairs
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Simplified RTE Task

¢ 5,3/8 add-one pairs
* 4,991 for training (4,481 training, 510 dev)

e 387 test (removed pairs with low human
agreement)
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Simplified RTE Task

5,378 add-one pairs
4,991 for training (4,481 training, 510 dev)

387 test (removed pairs with low human
agreement)

500K general RTE pairs from SNLI

Most “babies” are “little” and most “problems”™ are “huge”:
Compositional Entailment in Adjective-Nouns
Pavlick and Callison-Burch (2016)
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Accuracy

100

92

84

/0

63

60

Simplified RTE Task

92.2

895.3

Most Frequent Class
by Adjective

Always Predict
“Non-Entaillment”

Compositional Entailment in Adjective—Novuns
Pavlick and Callison-Burch (2016)
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Accuracy

Simplitied RTE Task
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Accuracy

Simplitied RTE Task
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Accuracy

Simplitied RTE Task

Add-One Adjective SICK
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lakeaways

e Should we care about linguistics? Yes!

 Because we want to learn task-independent representations
of language, which requires asking and answering:

1. What components of linguistic meaning are “intrinsic”, and
what is derived in context/at “runtime”™?

2. If these representation can't be trained in end-to-end tasks:
now to we know what is the “right” representation” Which
tasks should be viewed as “fundamental” and trained/test
explicitly, and which ones should come along “for free”?




Thank you!



