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Deep Relaxation: PDE's for Optimizing Deep
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Obtain a piecewise convex envelope of a highly nonconvex,
high dimensional function via PDE'’s.
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Our first observation: Local Entropy corresponds to regularization
by a viscous Hamilton-Jacobi PDE.
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Figure: True solution in one dimension. (Cartoon in high dimensions,
because algorithm only works for shorter times.)
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Started with:

Entropy SGD: Biasing Gradient Descent Into Wide Valleys, by: P.
Chaudhari, P. Choromanska, S. Soatto, Y. LeCun, Y. Baldassi, C.
Borgs, J. Chayes, L. Sagun and R. Zecchina

Minimize highly non convex high dimensional f(x), x € R", n
large.
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Replace f(x) by f:(x)

fo(x) = — log(Gy % 7))

x 2
Ge(x) = Ce~ 3t

[ Ge(x)dx = 1, determines C
"local entropy”

(1) for small t, we can evaluate Vf; efficiently.
(2) scoping: vary t
first t small,
later t large
"widens minima".
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Revaluation!!
fe(x) = u(x, t)

where u satisfies a viscous Hamilton-Jacobi Burgers’ PDE

U + 3||Veu|? = 30,0 t>0
u(x,0) = f(x) ,

Wow!!

This can be shown via the Cole-Hopf transformation.
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Proof:
Let u(x,t) = —log v(x, t)
Can show )

vi = =QAyv

2
v(x,0) = e fX)
v(x,t) = Grxe "

u(x, t) = —log(G; * e*f)
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Details 1
u(x,t) = 3 log v(x, t)

(x,1) = &Pl
vi = —fBusv
v =—LFv(Vu)
v =—BvAu+ (v||Vu|?

~nY = e+ B B =0 g =1
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This "widens" local minima regions, " narrows” local maxima
regions, (but raises minima a bit)
also

V() = / (x — y)p™(y, x)dx

Better Procedure:
Viscosity solution to inviscid H-J PDE Burgers'

Vul|?
o I

u(x,0) = f(x)
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Lax-Oleinik formula
: 1 5
u(x, t) = min 3 f(y) + o [[x =y
y t

This is % times Moreau Envelope of tf
1 . 1
= min {170 + 3llx - v}

. 1
= infconvolutionof <f()/)7 2tHy|2>

argmin = y(x, t)

Or: Proximaly(x) = y(x, t).
Proximal Method:

. 1
xk+1:argmln{f( )+ PAL, ——Illy — k|2},k:1,2,--~

small Aty early, large Aty later.
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) 2
So flxe+1) 5 ||xk+1 xil|” = ul, Aty) .

f (JCj) 1, but mlght go to a local minimum.

The bigger the Aty, the more convex u(x, Aty ) isin x.

JUSU: x,lc+1 = xk - Athf (X](+1)
Backward Euler!!
And

Vu(xg, Aty) = — % VF(xes1)
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We have

f(xges1) + ||3’Ck+1 - xk” < f(xx)

I

1 2

LRV EOEDY vl FEE
=1

k
= f(xo) = Z% ||Vf(x;')||2

=1

Let, t(n) = X7, At; = Vf(x,) =0 (

)

Converges to a (perhaps) local minimum if t(n) - .

b=

)
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“Widening minima”, “Removing Maxima”

Consider 1 dimension, for simplicity only

(”;‘)2 =0, u(x0)=f(x)

U +

Let w(x,t) = u, (x,t).

Conscrvation Law: Burgcrs’ cquation

Solution: w(x,t) = f'(x —wt)

Classical solution until characteristics intersect. Until the

first t for which 1+¢" f""(x —wt*) =0
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Let f(x) be convex for x5 < x < xq concave elsewhere
f"xe) =" (x1) =0
let p=w=1u,(xt)

Py = f"(x—tp)(1—tpy)

_ M-

Px = 1+t (x—tp)

P >0 f'(x —tp) >0
pr<0if f"(x—tp) <0

P =0 if x —tp=1x4

or X=X, +tp > X, because p=1u, (x,t) >0
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This means  Uyy (x, t) >0 for x; < x,

The convex region has moved to the right, past its original end
pOiIlt, x-l.

Similarly it maoves to the left past its original end point Xg.
) P g P 0
“Widens” minimal regions

“Narrows” (and shrinks) maxima

Intuition: Rarefaction waves in inviscid Burgers spread out and

widen minima.

Shock waves collapse to N waves and maxima disappeared!

1A /7K



Deep Learning with Data Dependent Implicit
Activation Functions

Stanley J. Osher
Joint with: Bao Wang and professor Zuoqiang Shi

February 8, 2018
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Two Important Types of Deep Neural Networks

34ay

(a)

Figure: VGG19 v.s. ResNet34

5]

» VGG: K. Simonyan and A.
Zisserman, ICLR, 2015.
> 8900 citations.

» ResNet: He et al, CVPR, 2016.
> 6000 citations.

Wide applications toward real Al!

» AlphaGo, AlphaGo Zero.
» Autonomous Car.
» Healthcare.

» Many others.
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ResNet v.s. Plain Network
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Figure: Residual block.

Figure: Energy landscape of plain Network and

He et al, CVPR, 2016
Li et al, Arxivl712.09913, 2018.

Figure: Performance on ImageNet: ResNets v.s. Plain Networks. Thin line:

Training; Thick line: Testing.

Deeper is better if the network is appropriately designed!
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ResNet and PDE based Control Problen
Residual Block

x;

Bﬂ( X/41 = f(X/, {W,}) + X;.
M .
el Residual block: Discrete dynamical system.
!
L6

'
Xt

Figure: Residual block.

Control Problem of the Transport Equation

9 1 v(x,t)- Vu(x,t)=0 x€RI t>0
u(x,1) = f(x) x € RY
u(x;,0) = g(xi) x; €T,
where T denotes the training set, g(x;) is the label of instance x;.
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ResNet and PDE based Control Problem

Let f(x) = softmax(x), with softmax(x); = s¥EU)s.
j J

And if we choose the velocity field such that

Atv(x,t) = WO(¢) . o (W(l)(t) : a(x)) ,
where W (t) and W (t) corresponds to the 'weight’ layers in
the residual block, 0 = ReLLU o BN, At is the time step size in
discretizing the control problem.

ResNet can be considered as a forward Euler solver to the
control problem.

We consider alternative terminal functions!
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Manifold Interpolation-Implicit Activation

Let P = {p1,p2,--- ,Pn} be a set of points on a manifold M C R? with
the labeled subset S = {s1,sp, - ,Sm}-

How to extend the labels of S to P?

Harmonic extension by minimizing the Dirichlet energy:

1
&(u) =5 > wixy) (u(x) = u(y))?,
x,yeP
with the boundary condition:
u(x) = g(x), x €S,
The Euler-Lagrange equation for the above energy minimization problem
is:
>oyep (W(x,y) + w(y,x)) (u(x) —u(y)) =0 xeP/S
u(x) = g(x) xes,

We infer the label implicitly!
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Manifold Interpolation-Implicit Activation

How about only tiny amount of data is labeled?

2yer (W(x,y) + w(y, x)) (u(x) — u(y)) +
(||§\‘ 1) yeS w(y,x) (u(x) —u(y)) =0 x€cP/S
( ) (X X € S,'7

we use the weighted nonlocal Laplacian (WNLL) instead of the graph
Laplacian (GL)!
Shi et al, JSC, 2017

How many instances should be labeled at least?

1 1 1

where N is the number of classes in the dataset.

How to find the weight function w?
Approximate nearest neighbor (ANN) searching!

Muja et al, PAMI, 2014.
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Network Structure Design

DNN
X (x;0)

|

Softmax

v

Output

Figure: Vanilla Deep Neural Network.
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Network Structure Design

DNN
X(x;0)

WNLL
v

Output

Figure: Deep Neural Network with the WNLL Activation.

Error cannot be back propagated, since the WNLL is an
implicit function whose gradient is not explicitly available!
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Network Structure Design

o

lmear approx

Output

Figure: Deep Neural Network with WNLL Activation.
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Training Algorithm

Alternating between the following three steps:

» Step 1. Train the network with only the
linear activation functions to steady state. For
this purpose, we do not feed the data to the

l

DNN . .

Y ©) WNLL activation.

t » Step 2. Run a few training epochs on the
network which we freeze the "DNN" and

‘//]. S "Linear Activation” blocks, and only fine tune

[ [ ] the 'Buffer Block'. In order to back-propagate

oo the error between the ground-truth and the
Figure: Deep Neural WNLL interpolated results, we feed the data
Network with WNLL into the pre-trained linear activation function,
Activation. and use the corresponding computational

graph to perform error back-propagation.

» Step 3. Unfreeze the entire network, and
train the network with data only feeding to
the linear activation to the steady state again.
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Numerical Results
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Figure: CIFAR image recognition tasks.
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Accuracy of Some Simple Classifiers

Table: Accuracy of some simple classifiers over different datasets

Dataset KNN SVM (RBF Kernel) Softmax WNLL
Cifarl0  32.77% (k=5) 57.14% 39.91% 40.73%
MNIST  96.40% (k=1) 97.79% 92.65%  97.74%
SVHN  41.47% (k=1) 70.45% 24.66% 56.17%

N7 /7R



Accuracy Evolution
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FIgU €. The evolution of the generation accuracy over the training procedure. Charts (a) and (b) are the
accuracy plots for ResNet50 with 1000 number of data for training, where (a) and (b) are plots for the epoch v.s.
accuracy of vanilla and WNLL activated DNN. Panels (c) and (d) corresponding to the case of 10000 training data
for PreActResNet50. All test are done on Cifar10 dataset.
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Degradation of DNN when Lack of Training Data
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FIgU €. Taming of the degeneration problem of vanilla DNN by WNLL activated DNN. Panels (a) and (b) plot
the generation error for cases when 1000 and 10000 training data is used to train the vanilla and WNLL activated
DNN, respectively. In each plot, we test three different networks: PreActResNet18, PreActResNet34, and
PreActResNet50. It is easy to see that when the vanilla network becomes deeper, the generation error does not
decayed, while WNLL activation resolves this degeneracy. All tests are done on Cifarl0 dataset.
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Performance on CIFAR10

Table: Generalization error rate over the whole test set of vanilla DNNs and
WNLL activated ones trained over the entire and first 10000, 5000, and 1000
instances of the training set of CIFAR10. (Median of 5 independent trials)

Network Whole 10000 5000 1000

Vanilla WNLL Vanilla WNLL Vanilla WNLL Vanilla WNLL

ResNet20 9.06% 7.09% 12.83% 9.96% 14.30% 11.24% 34.90% 29.91%
ResNet32 7.99% 5.95% 11.18% 8.15% 12.75% 10.63% 33.41% 28.87%
ResNet44 7.31% 5.70% 10.66% 7.96% 11.84% 10.14% 34.58% 27.94%
ResNet56 7.24% 5.61% 9.83% 7.61% 12.39% 10.17% 37.83% 28.18%
ResNet110 6.41% 4.98% 8.91% 7.13% 13.45% 10.05% 42.94% 28.29%
ResNet18 6.16% 4.65% 8.26% 6.29% 10.38% 8.53% 27.02% 22.48%
ResNet34 5.93% 4.26% 8.31% 6.11% 10.75% 8.65% 26.47% 20.27%
ResNet50 6.24% 4.17% 9.64% 6.49% 12.96% 8.76% 29.69% 20.19%
PreActResNet18 6.21% 4.74% 8.20% 6.61% 10.64% 8.18% 27.36% 21.88%
PreActResNet34 6.08% 4.40% 8.52% 6.34% 10.85% 8.44% 23.56% 19.02%
PreActResNet50 6.05% 4.27% 9.18% 6.05% 10.64% 8.35% 25.05% 18.61%
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Performance on CIFAR100

Table: Error rate of vanilla DNN v.s. WNLL activated DNN over the

whole Cifar100 dataset. (Median of 5 independent trials)

Network Vanilla DNN WNLL DNN
ResNet20 35.79% 31.53%
ResNet32 32.01% 28.04%
ResNet44 31.07% 26.32%
ResNet56 30.03% 25.36%
ResNet110 28.86% 23.74%
ResNet18 27.57% 22.89%
ResNet34 25.55% 20.78%
ResNet50 25.09% 20.45%
PreActResNet18 28.62% 23.45%
PreActResNet34 26.84% 21.97%
PreActResNet50 25.95% 21.51%
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DNN with SVM Classifier

Table: Error rate of SVM classifier on the deep learning features from vanilla
DNN v.s. vanilla DNN over the whole Cifarl0 dataset. (Not end-to-end)

Network Vanilla DNN SVM+DNN
VGG11 9.23% 9.70%
VGG13 6.66% 9.66%
VGG16 6.72% 9.70%
VGG19 6.95% 10.11%
ResNet18 6.16% 8.99%
ResNet34 5.93% 8.72%
ResNet50 6.24% 9.17%
PreActResNet18 6.21% 9.16%
PreActResNet34 6.08% 9.00%
PreActResNet50 6.05% 9.02%

Stronger classifier does not improve accuracy of DNN!

2 /7K



Summary

» DNN with data dependent implicit activation.

» Back propagate the gradient of harmonic function by linear
function.

> Resolve the degradation problem.

» Relatively 20%-30% accuracy improvement on both CIFAR10
and CIFAR100.

» Reduce the model’s size.
» On going: imageNet challenge: random interpolation.
Ref: B. Wang, X. Luo, Z. Li, W. Zhu, Z. Shi, and S. Osher, Deep

Neural Networks with Data Dependent Implicit Activation
Function, Arxiv 1802.00168
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BinaryRelax: A Relaxation Approach For Training
Deep Neural Networks with Quantized Weights

Joint with: P. Yin, S. Zhang, J. Lyu, Y. Qi and J. Xin

February 8, 2018
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Quantized Deep Neural Networks

» Huge number of floating-point weights (parameters) pose
challenges to the deployment of DNNs on small mobile
devices of limited storage and power.

» Floating-point weights are not essential to achieve good
accuracy.

» Benefits from quantized (low-bit) weights:

» Less storage.
» Faster inference.
» Higher energy efficiency.

» There have been new processors for Al applications featuring
8-bit vector operations.
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Mathematical Formulation

The training of quantized networks can be abstracted as the
constrained optimization problem:

N
Xrgﬁgln f(x N; subject to x € Q. (1)

» (;(x): the loss associated with the i-th training sample.
» Q=R. x{£q1,..., +qm}" : the set of quantized weights
with m quantization levels.
> 1-bit binarization: @ = R, x {£1}"
» 2-bit ternarization: @ =R, x {0,£1}"
» b-bit quantization: @ =R, x {0,+1,..., +(26-1 —1)}n
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Quantization Step

The quantization of a float weight vector y gives rise to the
projection problem

Pro ‘= argmin ||x — ,
projo(y) := argmin |lx — y|
equivalent to the constrained K-means clustering:
(s*. Q") = argmin||s- Q@ — y||°
5,Q
subjectto s >0, Q € {+q1,..., t+qm}"
Then projg(y) = s*- Q*. The standard approach Lloyd’s algorithm

is impractical here. Analytic solutions exist for binarization and
ternarization. Empirical schemes are available for bit-width > 2.
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Moreau Envelope

» The Moreau envelope g of g(x) is defined by

| 1
gi(x) = inf e(z) + o[z = x|

g is locally Lipschitz continuous, and converges pointwise to
gast— 0T,

» Moreau envelope is closely related to the inviscid
Hamilton-Jacobi equation

Uz + % | Vu|> =0, u(x.0) = g(x).

where u(x, t) = g¢(x) is the unique viscosity solution via the
Hopf-Lax formula.
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Relaxation by Moreau Envelope

Training quantized DNNs:

min £(x) + vo(x) 2)

where yo(x) is the characteristic function of Q (discontinuous):

XQ(X){O ifxec O

oo otherwise.

The Moreau envelope of g is given by
in \Q(Z)+£Hzfx|\ = Eub‘(x‘ )<

The (squared) distance function dist(x. Q)? is continuously
differentiable almost everywhere.
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BinaryRelax
» Use %dist(x. Q)? as the approximant of yo(z) and minimize

min £() + gdist(x. )2, (3)

where A =t~ > 0 is the regularization parameter. When
A — 00, %dist(x. Q)? converges pointwise to yo(x).

» Solve (3): hybrid gradient descent + proximal mapping

Yo = yK = i VA(x9)

X1 = argmingern £ [[x — y*TY|? + Sdist(x, Q)2

- )\projg(y‘r+l)+yk+l

- A1 :

{y¥}: auxiliary float weights; {x*}: nearly quantized weights.

» Relaxation helps skip bad local minima in Q.
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BinaryRelax (cont’)

BinaryRelax is a two-phase algorithm

» Phase | with continuation on A:

YR = K = Vh(x¥)

k+1 _ Ak projo(yFti)ys+t
o A +1

Mes1=p-Ag. forp 21

X

» Phase Il with exact quantization (equivalent to BinaryConnect

1):

{y"“ = y* = Vi(x)
X

k+1 _ proj Q(yk+1)_

I[Courbariaux, Bengio, and David, 2015]
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Remarks

» BinaryRelax resembles the linearized Bregman algorithm 2 for
solving the basis pursuit problem

VTl = vk _ AT(Auk — b)
u 1t =4 - shrink(vATL, p)

» The similar idea of relaxing the discrete sparsity constraint
|[x|lo < s into a continuous and possibly non-convex
regularizer such as ¢; norm, has led to great success in the
contexts of statistics and compressed sensing.

2[Yin, Osher, Goldfarb, and Darbon, 2010]
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Experimental Results: CIFAR

We do layer-wise quantization. The two baselines are

BinaryConnect combined with exact binarization scheme (BWN) 3

and heuristic ternarization scheme (TWN) 4, resp..

Binary Ternary

CIFAR-10 | Float gy Gurs | TWN | Ours
VGG-11 01.93 | 88.70 | 80.28 | 90.48 | 91.01
VGG-16 09350 | 91.60 | 91.98 | 92.75 | 93.20
ResNet-20 | 92.68 | 87.44 | 87.82 | 88.65 | 90.07
ResNet-32 | 93.40 | 80.49 | 90.65 | 90.94 | 92.04
ResNet-18 ® | 05.49 | 02.72 | 94.19 | 93.55 | 04.08
ResNet-34 ° | 05.70 | 03.25 | 94.66 | 94.05 | 95.07

Table 1: CIFAR-10 validation accuracies.

®[Rastegari et al., 2016]

41Li et al., 2016)

5Originally for ImageNet classification.
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Binary Ternary
CIFAR-100 | Float 53w Gurs T TWN | Ours
VGG-11 70.43 | 62.35 | 63.82 | 64.16 | 65.87
VGG-16 73.55 | 60.03 | 70.14 | 71.41 | 72.10
ResNet-b6 | 70.86 | 66.73 | 67.65 | 68.26 | 69.83
ResNet-110 | 73.21 | 68.67 | 69.85 | 68.95 | 72.32
ResNet-18 | 76.32 | 72,31 | 74.04 | 73.15 | 75.24
ResNet-34 | 77.23 | 72.02 | 75.62 | 74.43 | 76.16

Table 2: CIFAR-100 validation accuracies.
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VGG-16 Binary

validation accuracy
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Figure 1: Comparisons of validation accuracy curves for CIFAR-100 using

VGG-16 and ResNet-34.
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Experimental Results: ImageNet

BinaryRelax recovers the full-precision (32-bit) accuracy using 4-bit
weights on ImageNet classification.

ImageNet | Bit-width | Top-1 | Top-5
ResNet-18 342 23? 332
ResNet-34 342 ;gi gii
ResNet-50 342 ;22 gg:

Table 3: ImageNet validation accuracies.
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Phase Retrieval
Primal Dual Hybrid Algorithm with Dual
Smoothing

Joint with: M. Pham and P. Yin

February 8, 2018
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Phase Retrieval

Coded Diffraction Pattern

Problem: given Fourier Coefficient Magnitudes (Different Pattern) M = |z| = |Fu|
where F is the Fourier Transform matrix, find the image v

This inverse problem can be formulated as a non-convex optimization with a splitting
form

T,izn f(u) +g(z)

s.t. z= Fu,

where f and g are indicator functions

1. f(u) = Zx(u) is the indicator function of non-negative constraint where:
X ={uv>0in Q,u=01in Q\D} and
€ and D are the domain and the support respectively

2. g(z) = Ij;j=m(2) is the indicator of Fourier Magnitude measurements

Note that {|z| = M} is non-convex set, hence g(u) is also non-convex.
If there is noise in the Fourier Measurement, how do we modify the model?
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Phase Retrieval

Example: Vesicle model

Figure: Top: image. Bottom Fourier coefficients in magnitude. Domain Q is the big square and
support D is the rectangle around the vesicle
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Phase Retrieval

Optimization Method

Methods to solve Phase Retrieval

» Alternating Projection Method, also called Error Reduction Algorithm (ER):
Alternatively project on the physical and Fourier constraint

» Hybrid Input & Output algorithm HIO: Douglas Rachford with relaxation
» Oversample Smoothness OSS: HIO + smoothing u outside the support

Problem: OSS is not formulated correctly, need fixing
Also, find a denoising model
Since Fourier Measurements contain noise, we replace g by go

Lz = M2 for Gaussian and small Poisson noise
go(2) =47 - -
= >oillzil = Mi)log(|zi|) for Poisson noise

Note that, as o — 0, go — g(z)
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Generalized Infimal Convolution: G-smoothing

Experiments show that the non-negative constraint does not work well. Then, it is
replaced by HIO, a relaxed version of Douglas Rachford, which gives better result.
However, this is not enough if there is significant noise in physical space

Our approach: replace f by its infimal convolution with a quadratic g, (v) = %Hv”2

Define:
(W) = min, (V) + @y (w)} = min {F(v) + 5 llv = ulP}

We can use a generalized infimal convolution with a gerneralized quadratic
qe(v) = %VTGflv where G is a (symmetric) positive definite matrix.

felu) = VFWEU {f(v)+ac(w)} = vEV\i/r:]u{f(V)Jr %WTG%W)}

Define the dual function .
fr(y) = sup{u'y — f(u)}

then the infimal convolution gives the separation in dual space.

0) =)+ a50) = () + 5y 6y
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Primal Dual Algorithm

Now, go back to our problem where f; and g5 replace f and g respectively
min  fo(u) +&-(2)
s.t. z=Fu

Since f is convex, we can reformulate the problem using a primal-dual form

min max  go(z) — fE(y) + 2" Fy,
z y
Note that f£(y) = f*(y) + %yTGy‘
. 1 2
Recall:  prox(x) = argmin {f(y) + —|ly — x| }
tf 1% 2t

Solve the problem by Champolle-Pock (or Primal Dual Hybrid Gradient) algorithm
Kt = prox {zk — tFyk}
g
yk+ = prox {yk + 5F71(22kJrl — zk)}
sfx
G

Since f¢ is convex, one can use Moreau decomposition to solve the proximal in either
primal or dual space.
When s = t = 1, Primal Dual is equivalent to Douglas Rachford (DR)
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Primal Dual Algorithm

continue

We have f(u) =Z(z > 0 in Q,z = 0 in Q\D), the dual function of f is given by
f*(y) =Z(Re(y) <0in D)

which is also indicator function of a convex set, Let X'* be this set

Let d**+1 = yk + sF—1(2z%*1 — zK), we can rewrite the update of y as followed

o 1 1
y**1 = argmin {£*(y) + EyTGy + oy - d 1|12}
y

1 1
= argmin {7yT Gy + —|ly — dk+1H2}
yexs 2 2s

If G =~1 or G = ~diag[r?(x)] where r(x) = |x| is the radius, we have a close form
solution.

AT



Primal Dual Algorithm

Choices of G

If G =1L, then fg(u) = %Hu — Px(u)]|?: Least square L2 regularizer
- * v
min - max  go(2) = () = S llvl* + xTFy

If G = ~diag[r?(x)], we have L2 (weighted) regularizer (note that
| DFul[;2¢qy = [Ir - ully2(q) by Parseval identity)

min max  go(2) = () = Sl yIP +xTFy
If G =~+DT D, we have L? gradient regularizer
min max  go(2) = F(y) = JIIDyI? +xTFy

In this case, we approximate the solution by
y¥* % (I + syDT D) " Proj d*™! & G x Proj d* 1
X* X+

i.e. projection followed by smoothing. G is Gaussian kernel and * is the convolution
Recall X* ={y : Re(y) <0 in D}
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Meaning of dual variable y

1. With original function f: y is the subgradient of f
y € 9f(u)
When s =t = 1, we interpret y as the orthogonal component of projection of u on A

yk =uvf - Proj uk
X

i.e. y lies in the orthogonal suspace (or dual space) of A’
2. With infimal convolution fg: y is the smoothing of gradient of f
vy € dfg(u)

i.e. we smooth the gradient. This technique is very helpful in non-smooth optimization
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Comparison HIO v.s. Primal Dual Hybrid

1. OSS algorithm

= M exp (iarg(Fu))

k4 — ok — BFIZ for HIO, (444 = Proj (F712%41) for BR)
e

1
WKL g it

Cons: Forget magnitude of Fu, only take its phase to compute Fourier space.
The smoothing can be only applied to the outside of support. Mathematically

incorrect algorithm
2. Primal Dual Hybrid with smoothing on real space (or Fourier space)

1
s S Y

1 1

M - exp (iargszr?) +ozf 2
1+o0
U = L (0gk oK)

Zk+1 —

yk+% = Proj (yk - suk+1)
X

1 1
YA =G yk a0 (ar yF T = G yihD)
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Experiments

Tuning algoerithm variables
» step size t, s: default t =s =1
» quadratic penalty parameter o: depends on noise level , o € (0, c0)

» smoothing type: method DR1: G = vDT D, method DR2: G = 'ydiag[rg], and
method DR3: combining both

» smoothing parameter . as in OSS: increasing {fyk}iozl
Experiments parameters

» models: Vesicle, Nanorice, Yeast Spore

» noise: Gaussian and Poisson noise

» flux: in range (10%,10%) (which causes Poisson noise)
Measurements

» Ratio factor R (relative error of Fourier Magnitude)

» Fourier Shell Correlation FRC
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Vesicle Model

Relative Error, flux = 1e7

Histogram: OSS, 1000 iter, flux=1e7

Histogram: DR, 1000 iter, flux=1e7

8
6
4
2
o
€165 017 0175 .18 0.185 a1s

0163 07 0175 [Er) 018s 018

Figure: Relative error of 100 reconstruction using OSS (left), and DR(right)

flux = 107 0SS | DRo =0.1
min 16.85% 16.80%
max 19% 17.67%
mean 17.62% 17.08%
good minimums (< 17.1%) 52% 71%
< 16.85% 0% 21%

i.e. instead of computing 100 OSS reconstructions, we only need to do 5 DR
reconstructions. Primal Dual saves computational costs by a factor of 21
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Vesicle Model

Relative Error, flux=1e8

Histogram: 0SS, 1000 iterations, flux=1e8 - Histogram: DR1, 1000 iterations, flux=1e8

o a
0045 005 0055 006 0085 007 0075 008 OS5 009 0045 005 0055 006 0066 007 0075 005 0DBS 009

Figure: Relative error of 100 reconstruction using OSS (left), and DR(right)

flux = 10° 0SS | DRo =01
min 4.63% 4.62%
max 8.90% 6.26%
mean 6.08% 4.84%
good minimums (< 5.0%) | 54% 83%
< 4.63% 0% 70%

Primal Dual converges to global minimum with probability 29% higher than OSS. 70%
reconstruction of DR gives better result than the best of OSS. Primal Dual save
computational costs by a factor of 70.
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Vesicle Model

Convergence

Vesicle model: flux=1e8

Vesicle model: flux=1eT

014

e
5l

Relstve Error
e

Relative Eror

=
2

=
3
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°
B

M0 200 300 400 500 60D 700 800 900 1000
Iterations

0 100 200 300 400 SO0 600 70D BOO 900 1000 3
lterations:

Figure: Convergence of OSS and Primal Dual DR3 (combine 2 smoothing). Left: flux = 107,
Right: flux = 10°. DR converges faster and converges to a deeper minimum than 0SS




Vesicle Model

Fourier Shell Correlation
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Figure: Fourier Shell Correlation of OSS and DR with different weight o. Left: flux = 108, Right:

flux = 10°
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Coherent Diffraction with X-ray free-electron lasers

Figure: TEM images of (a) PBCV-1, (b) baceriophase T4, and (¢): nanorice (250 x 50 nm)
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Nanoricel

0SS, error = 18.1% DR2, error = 17.41%

Figure: Nanoricel different pattern (left), and reconstruction using OSS, error = 18.1%(middle),
and Primal Dual, error = 17.41% (right)
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Nanoricel

Convergence

Nanoricet histogram

Relative Error

Nanorice1

[)
0174 0176 0178 018 0182 D184 0186 0188 018 07182

035

Reiative Eror
e
5

100 200 300 400 500 60D 70D BOO 800 1000

lterations.

Nanoricet histogram

g 2 3 38

B 8 & 3

o
0174 0178 0478 018 0182 0184 0188 0183 019 0482
Relative Error

Figure: Top: Relative Error histogram of
OSS(left) and DR(right). Bottom: convergence
of OSS and DR.

Primal dual is faster, more stable, and
converges to a deeper minimum than
OSS consistently




Nanorice2

0SS: error = 16.4% DR1, error = 15.86%

A

V

5 10 15 0

Figure: Nanorice2 different pattern (left), and reconstruction using OSS, error = 16.4%(middle),
and Primal Dual, error = 15.86% (right)
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Nanorice2

Convergence
” Nanorice2 histogram . Nanorice2 histogram
Wethod 072 =1
25 40,
50
2
P
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Relatve Error Relative Error
Nanorice2 . R R
= Figure: Top: Relative Error histogram of
OSS(left) and DR(right). Bottom: convergence
of OSS and DR2. For DR2, 0 = 0.1 where
- iteration < 600 and o = 1 otherwise
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Mean and STD for 100 independent

reconstructions each

Vesicle flux level

(O]

DR(best weight and
smoothing method)

1e9

0.034 +/- 0.022

0.020 +/- 0.009

1e8

0.061 +/- 0.016

0.050 +/- 0.006

1e7

0.175 +/- 0.007

0.171 +/- 0.003
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vesicle flux=1e9 0SS

vesicle flux=1e9 DR
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vesicle flux=1e8 0SS vesicle flux=1e8 DR
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vesicle flux=1e7 0SS
T :

0
0.165

017

vesicle flux=1e7 DR

0175 018
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0SS

DR

nanorice1

0.180 +/- 0.001

0.174 +/- 0.000

nanorice2

0.165 +/- 0.002

0.159 +/- 0.000
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obj=nanorice1 0SS obj=nanorice1 DR
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obj=nanorice2 0SS

obj=nanorice2 DR

0
017 0.158

016

0.162

0164

0166

0.168

017

A /7K



Thank you!





