
New Techniques in Optimization and Their
Applications to Deep Learning and Related

Inverse Problem

Stanley J. Osher

February 8, 2018

0/75



Deep Relaxation: PDE’s for Optimizing Deep
Neural Nets

Joint with: P. Chaudhari, A. Oberman, S. Soatto and G. Carlier

February 8, 2018

Obtain a piecewise convex envelope of a highly nonconvex,
high dimensional function via PDE’s.

1/75



Our first observation: Local Entropy corresponds to regularization
by a viscous Hamilton-Jacobi PDE.

Figure: True solution in one dimension. (Cartoon in high dimensions,
because algorithm only works for shorter times.)

2/75



Started with:

Entropy SGD: Biasing Gradient Descent Into Wide Valleys, by: P.
Chaudhari, P. Choromanska, S. Soatto, Y. LeCun, Y. Baldassi, C.

Borgs, J. Chayes, L. Sagun and R. Zecchina

Minimize highly non convex high dimensional f (x), x ∈ Rn, n
large.

3/75



Replace f (x) by ft(x)

ft(x) = − log(Gt ∗ ef (x))

Gt(x) = Ce−
||x||2

2t∫
Gt(x)dx = 1, determines C

”local entropy”

(1) for small t, we can evaluate ∇ft efficiently.
(2) scoping: vary t

first t small,
later t large

”widens minima”.

4/75



Revaluation!!
ft(x) = u(x , t)

where u satisfies a viscous Hamilton-Jacobi Burgers’ PDE{
ut + 1

2 ||∇xu||2 = 1
2 ∆xu t > 0

u(x , 0) = f (x) ,

Wow!!

This can be shown via the Cole-Hopf transformation.

5/75



Proof:
Let u(x , t) = − log v(x , t)
Can show

vt =
1

2
∆xv

v(x , 0) = e−f (x)

v(x , t) = Gt ∗ e−f

u(x , t) = − log(Gt ∗ e−f )

6/75



Details

u(x , t) = − 1

β
log v(x , t)

v(x , t) = e−βu(x ,t)

vt = −βutv

∇v = −βv(∇u)

∆v = −βv∆u + β2v ||∇u||2

vt −∆
v

2
= −βv [ut + β||∇u

2
||2 − ∆u

2
] = 0 if β = 1.

7/75



This ”widens” local minima regions, ”narrows” local maxima
regions, (but raises minima a bit)
also

−∇ft(x) =
1

t

∫
(x − y)ρ∞(y , x)dx

ρ∞(y , x) =
1

z(x)
e
−
(
f (y)− ||x−y||2

2t

)

Better Procedure:

Viscosity solution to inviscid H-J PDE Burgers’

ut +
||∇u||2

2
= 0

u(x , 0) = f (x)

8/75



Lax-Oleinik formula

u(x , t) = min
y

{
f (y) +

1

2t
|||x − y |2

}
This is 1

t times Moreau Envelope of tf

=
1

t
min

{
tf (y) +

1

2
|||x − y |2

}

= infconvolutionof

(
f (y),

1

2t
||y ||2

)
argmin = y(x , t)

Or: Proximaltf (x) = y(x , t).
Proximal Method:

xk+1 = argmin

{
f (y) +

1

2∆tk
|||y − xk |2

}
, k = 1, 2, · · ·

small ∆tk early, large ∆tk later.
9/75



10/75



11/75



12/75



13/75



14/75



Deep Learning with Data Dependent Implicit
Activation Functions

Stanley J. Osher
Joint with: Bao Wang and professor Zuoqiang Shi

February 8, 2018

15/75



Two Important Types of Deep Neural Networks

(a) (b)
Figure: VGG19 v.s. ResNet34

I VGG: K. Simonyan and A.
Zisserman, ICLR, 2015.
> 8900 citations.

I ResNet: He et al, CVPR, 2016.
> 6000 citations.

Wide applications toward real AI!

I AlphaGo, AlphaGo Zero.

I Autonomous Car.

I Healthcare.

I Many others.

16/75



ResNet v.s. Plain Network

Figure: Residual block.

Figure: Energy landscape of plain Network and
ResNet.

He et al, CVPR, 2016
Li et al, Arxiv1712.09913, 2018.

Figure: Performance on ImageNet: ResNets v.s. Plain Networks. Thin line:
Training; Thick line: Testing.

Deeper is better if the network is appropriately designed!
17/75



ResNet and PDE based Control Problen
Residual Block

Figure: Residual block.

xl+1 = F(xl , {Wi}) + xl .

Residual block: Discrete dynamical system.

Control Problem of the Transport Equation
∂u
∂t + v(x, t) · ∇u(x, t) = 0 x ∈ Rd , t ≥ 0

u(x, 1) = f (x) x ∈ Rd

u(xi , 0) = g(xi ) xi ∈ T,

where T denotes the training set, g(xi ) is the label of instance xi .

18/75



ResNet and PDE based Control Problem

Let f (x) = softmax(x), with softmax(x)i = exp(xi )∑
j exp(xj )

.

And if we choose the velocity field such that

∆t v(x, t) = W(2)(t) · σ
(

W(1)(t) · σ(x)
)
,

where W(1)(t) and W(2)(t) corresponds to the ’weight’ layers in
the residual block, σ = ReLU ◦ BN, ∆t is the time step size in
discretizing the control problem.
ResNet can be considered as a forward Euler solver to the
control problem.

We consider alternative terminal functions!

19/75



Manifold Interpolation-Implicit Activation

Let P = {p1,p2, · · · ,pn} be a set of points on a manifold M⊂ Rd with
the labeled subset S = {s1, s2, · · · , sm}.
How to extend the labels of S to P?
Harmonic extension by minimizing the Dirichlet energy:

E(u) =
1

2

∑
x,y∈P

w(x, y) (u(x)− u(y))2
,

with the boundary condition:

u(x) = g(x), x ∈ S ,

The Euler-Lagrange equation for the above energy minimization problem
is: {∑

y∈P (w(x, y) + w(y, x)) (u(x)− u(y)) = 0 x ∈ P/S

u(x) = g(x) x ∈ S ,

We infer the label implicitly!

20/75



Manifold Interpolation-Implicit Activation

How about only tiny amount of data is labeled?
∑

y∈P (w(x, y) + w(y, x)) (u(x)− u(y)) +(
|P|
|S| − 1

)∑
y∈S w(y, x) (u(x)− u(y)) = 0 x ∈ P/S

u(x) = g(x) x ∈ S ,

we use the weighted nonlocal Laplacian (WNLL) instead of the graph
Laplacian (GL)!

Shi et al, JSC, 2017

How many instances should be labeled at least?

N

(
1 +

1

2
+

1

3
+ · · ·+ 1

N

)
≈ N lnN,

where N is the number of classes in the dataset.

How to find the weight function w?
Approximate nearest neighbor (ANN) searching!

Muja et al, PAMI, 2014.

21/75



Network Structure Design

DNN

X(x;Θ)

Output

Softmax

Figure: Vanilla Deep Neural Network.

22/75



Network Structure Design

DNN

X(x;Θ)

WNLL

Output

Figure: Deep Neural Network with the WNLL Activation.

Error cannot be back propagated, since the WNLL is an
implicit function whose gradient is not explicitly available!

23/75



Network Structure Design

DNN

X(x;Θ)

Buffer Block

FC
(linear approx.)

WNLL

Output

Figure: Deep Neural Network with WNLL Activation.

24/75



Training Algorithm

DNN

X(x;Θ)

Buffer Block

FC
(linear approx.)

WNLL

Output

Figure: Deep Neural
Network with WNLL
Activation.

Alternating between the following three steps:
I Step 1. Train the network with only the

linear activation functions to steady state. For
this purpose, we do not feed the data to the
WNLL activation.

I Step 2. Run a few training epochs on the
network which we freeze the “DNN” and
”Linear Activation” blocks, and only fine tune
the ’Buffer Block’. In order to back-propagate
the error between the ground-truth and the
WNLL interpolated results, we feed the data
into the pre-trained linear activation function,
and use the corresponding computational
graph to perform error back-propagation.

I Step 3. Unfreeze the entire network, and
train the network with data only feeding to
the linear activation to the steady state again.

25/75



Numerical Results

(a) (b)

Figure: CIFAR image recognition tasks.

26/75



Accuracy of Some Simple Classifiers

Table: Accuracy of some simple classifiers over different datasets

Dataset KNN SVM (RBF Kernel) Softmax WNLL

Cifar10 32.77% (k=5) 57.14% 39.91% 40.73%

MNIST 96.40% (k=1) 97.79% 92.65% 97.74%

SVHN 41.47% (k=1) 70.45% 24.66% 56.17%

27/75



Accuracy Evolution

(a) (b)

(c) (d)

Figure: The evolution of the generation accuracy over the training procedure. Charts (a) and (b) are the
accuracy plots for ResNet50 with 1000 number of data for training, where (a) and (b) are plots for the epoch v.s.
accuracy of vanilla and WNLL activated DNN. Panels (c) and (d) corresponding to the case of 10000 training data
for PreActResNet50. All test are done on Cifar10 dataset.

28/75



Degradation of DNN when Lack of Training Data

(a) (b)

Figure: Taming of the degeneration problem of vanilla DNN by WNLL activated DNN. Panels (a) and (b) plot
the generation error for cases when 1000 and 10000 training data is used to train the vanilla and WNLL activated
DNN, respectively. In each plot, we test three different networks: PreActResNet18, PreActResNet34, and
PreActResNet50. It is easy to see that when the vanilla network becomes deeper, the generation error does not
decayed, while WNLL activation resolves this degeneracy. All tests are done on Cifar10 dataset.

29/75



Performance on CIFAR10

Table: Generalization error rate over the whole test set of vanilla DNNs and
WNLL activated ones trained over the entire and first 10000, 5000, and 1000
instances of the training set of CIFAR10. (Median of 5 independent trials)

Network Whole 10000 5000 1000

Vanilla WNLL Vanilla WNLL Vanilla WNLL Vanilla WNLL

ResNet20 9.06% 7.09% 12.83% 9.96% 14.30% 11.24% 34.90% 29.91%

ResNet32 7.99% 5.95% 11.18% 8.15% 12.75% 10.63% 33.41% 28.87%

ResNet44 7.31% 5.70% 10.66% 7.96% 11.84% 10.14% 34.58% 27.94%

ResNet56 7.24% 5.61% 9.83% 7.61% 12.39% 10.17% 37.83% 28.18%

ResNet110 6.41% 4.98% 8.91% 7.13% 13.45% 10.05% 42.94% 28.29%

ResNet18 6.16% 4.65% 8.26% 6.29% 10.38% 8.53% 27.02% 22.48%

ResNet34 5.93% 4.26% 8.31% 6.11% 10.75% 8.65% 26.47% 20.27%

ResNet50 6.24% 4.17% 9.64% 6.49% 12.96% 8.76% 29.69% 20.19%

PreActResNet18 6.21% 4.74% 8.20% 6.61% 10.64% 8.18% 27.36% 21.88%

PreActResNet34 6.08% 4.40% 8.52% 6.34% 10.85% 8.44% 23.56% 19.02%

PreActResNet50 6.05% 4.27% 9.18% 6.05% 10.64% 8.35% 25.05% 18.61%

30/75



Performance on CIFAR100
Table: Error rate of vanilla DNN v.s. WNLL activated DNN over the
whole Cifar100 dataset. (Median of 5 independent trials)

Network Vanilla DNN WNLL DNN

ResNet20 35.79% 31.53%

ResNet32 32.01% 28.04%

ResNet44 31.07% 26.32%

ResNet56 30.03% 25.36%

ResNet110 28.86% 23.74%

ResNet18 27.57% 22.89%

ResNet34 25.55% 20.78%

ResNet50 25.09% 20.45%

PreActResNet18 28.62% 23.45%

PreActResNet34 26.84% 21.97%

PreActResNet50 25.95% 21.51%
31/75



DNN with SVM Classifier

Table: Error rate of SVM classifier on the deep learning features from vanilla
DNN v.s. vanilla DNN over the whole Cifar10 dataset. (Not end-to-end)

Network Vanilla DNN SVM+DNN

VGG11 9.23% 9.70%

VGG13 6.66% 9.66%

VGG16 6.72% 9.70%

VGG19 6.95% 10.11%

ResNet18 6.16% 8.99%

ResNet34 5.93% 8.72%

ResNet50 6.24% 9.17%

PreActResNet18 6.21% 9.16%

PreActResNet34 6.08% 9.00%

PreActResNet50 6.05% 9.02%

Stronger classifier does not improve accuracy of DNN!

32/75



Summary

I DNN with data dependent implicit activation.

I Back propagate the gradient of harmonic function by linear
function.

I Resolve the degradation problem.

I Relatively 20%-30% accuracy improvement on both CIFAR10
and CIFAR100.

I Reduce the model’s size.

I On going: imageNet challenge: random interpolation.

Ref: B. Wang, X. Luo, Z. Li, W. Zhu, Z. Shi, and S. Osher, Deep
Neural Networks with Data Dependent Implicit Activation
Function, Arxiv 1802.00168

33/75



BinaryRelax: A Relaxation Approach For Training
Deep Neural Networks with Quantized Weights

Joint with: P. Yin, S. Zhang, J. Lyu, Y. Qi and J. Xin

February 8, 2018

34/75



35/75



36/75



37/75



38/75



39/75



40/75



41/75



42/75



43/75



44/75



45/75



46/75



47/75



Phase Retrieval
Primal Dual Hybrid Algorithm with Dual

Smoothing

Joint with: M. Pham and P. Yin

February 8, 2018

48/75



49/75



50/75



51/75



52/75



53/75



54/75



55/75



56/75



57/75



58/75



59/75



60/75



61/75



62/75



63/75



64/75



65/75



66/75



67/75



68/75



69/75



70/75



71/75



72/75



73/75



74/75



Thank you!

75/75




