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THE “"DEEP LEARNING SLIDE”
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Economic  growih  has  slewed down  in recent  years
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Das Winschaftswachstum hat sich in den letzten Jahren verlangsamt .
Economic  growth  nas  slowed down in recenl years
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La croissance économique s' est ralentie ces demiéres années .
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THE “"DEEP LEARNING SLIDE”
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Economic  growth has  slowed down in recent years .
‘\- 5" l\ | J

S N
v | . P
- - e \ ., s
p . \ )
/

il ] 3 i
La croissance économique s' est ralentie ces demiéres années .

» Despite mathematical mysteries, proven ability to extract
robust information out of high-dimensional data, across
different domains and tasks.

» Most domains have regular spatial, temporal or sequential
structure.



THE “"DEEP LEARNING SLIDE”
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> Despite mathematical mysteries, proven ability to extract
robust information out of high-dimensional data, across
different domains and tasks.

» Most domains have regular spatial, temporal or sequential
structure.

> At the core of this success, there is an inductive bias captured
in particular by convolutional (or auto-regressive) models.

» How to formalize this inductive bias?

» and extend it to more general domains and tasks?



OUTLINE

» Geometric Stability

» In Euclidean Domains: Convolutional Neural Networks.

» In Non-Euclidean Domains: Graph Neural Networks.

» Applications to Inverse Problems on Graphs
» Community Detection and statistical-to-computational gaps.
» Quadratic Assignment Problem

» Givens Factorization of Unitary Operators.



GEOMETRIC STABILITY IN EUCLIDEAN DOMAINS

» Consider data defined as functions over an Euclidean domain:

d = 1: time series
d = 2: 1mages ..

Ww y

> Computer Vision Task: ¥y = f (CE) e 'Z;Q(Q) Y
{ {c1,...,cx} Classification
Y = O

Localization .

r=x(u), uecCR”

> Goal: estimate f from samples {(z1, 5 = f(x) i<z © guk




GEOMETRIC STABILITY IN EUCLIDEAN DOMAINS

» Consider data defined as functions over an Euclidean domain:

d = 1: time series
d = 2: 1mages ..

Ww y

> Computer Vision Task: ¥y = f (CE) e 'Z;Q(Q) Y
{ {c1,...,cx} Classification
Y = O

Localization .

r=x(u), uecCR”

> Goal: estimate f from samples {(z1, 5 = f(x) i<z © guk

> Q: What assumptions on J ?




GEOMETRIC STABILITY IN EUCLIDEAN DOMAINS

Video of Philipp Scott Joh

» Deformation cost:
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»Models change in point of view in images
»Models frequency transpositions in sounds

»Consistent with local translation invariance

IVT|| = sup [V7(u)|



GEOMETRIC STABILITY IN EUCLIDEAN DOMAINS
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> Most Computer vision and speech tasks/ also satisfy:
f(x) — f(x;)| ~ ||VT|| , (Geometric Invariance)

e.g. image classification

f(x)]r — flx)] ~||VT|, (Geometric Equivariance)

e.g. image localization

» In particular, these tasks are translation invariant/equivariant:
Translation operator: x,(u) = xz(u — v), v € €.

f(z) = f(x,) for all . (Translation Invariance)
f(x)], = f(x,) for all z. (Translation Equivariance)



GEOMETRIC STABILITY IN EUCLIDEAN DOMAINS
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» Most Computer vision and speech tasks f also satisfy:

f(x) — f(z:)| ~ ||[VT] , (Geometric Invariance)
e.g. image classification
f(x)]r — flx)] ~||VT|, (Geometric Equivariance)

e.g. image localization

» In particular, these tasks are translation invariant/equivariant:
Translation operator: x,(u) = xz(u — v), v € €.

f(z) = f(x,) for all . (Translation Invariance)

f(x)], = f(x,) for all z. (Translation Equivariance)

» Whereas translation and other symmetry groups are low-
dimensional, deformation stability is a high-dimensional prior.

» Q: How to leverage this stability prior?



CONVOLUTIONAL NEURAL NETWORKS [LeCun, 80s,90s]
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» Stack multiple layers of localized convolutional operators and
point-wise contractive non-linearities:

Airedale terrier (
Fox terrier (5.7)

Pomeranzian (2.

Siberian husky (

Output T € L?(Q,RP).
p(2): point-wise nonlinearity
(e.g. max(0, z)).

O = (0, 5): localized
convolutional kernel.

» Down-sampling via pooling (can be either linear with average,
or nonlinear with max) in invariant tasks:

75 (u) = || 25N (u))] N (u): Neighborhood of wu.

J



CONVOLUTIONAL NEURAL NETWORKS




CONVOLUTIONAL NEURAL NETWORKS

z(u) T, (u) T, ()

> A non-rigid deformation locally looks like a translation if ||V 7|| small:

= o, x0(u) = [z % 0], (u)

> A point-wise nonlinearity commutes with deformations:

= p(zr x0(u)) = p([z 0] (u) = |p(xx0)] (u)
> Pooling progressively creates invariance to geometric deformations:

|27 (N (u))|| = ||o(N(w))]| if [7|small



CONVOLUTIONAL NEURAL NETWORKS

> Convolutions to exploit translation invariance/equivariance.

» Localized to exploit geometric stability: leads to multi scale architecture.
» These two properties lead to models with O(log N) trainable parameters.

» Provable stability guarantees by fixing filters to be complex wavelets in
Scattering Networks [Mallat’12] and generalizations [Boelcksei et al’16].

» Stability is only part of the story. Discriminability via learning/optimization
is another major component for success.



TOWARDS NON-EUCLIDEAN GEOMETRIES

Correspondence Similarity

Graphics



NON-EUCLIDEAN GEOMETRIC STABILITY

» We replace the Euclidean domain €2 by a general graph G = (V, E).
r(u) € L*(Q) — z(u) € L*(G) , G =(V,E) .
> In some applications, the input is the graph itself: T <> G
» We focus on undirected, possibly weighted graphs:

W e RIVIXIVI: similarity matrix



NON-EUCLIDEAN GEOMETRIC STABILITY

» We replace the Euclidean domain €2 by a general graph G = (V, E).
r(u) € L*(Q) — z(u) € L*(G) , G = (V,E) .
> In some applications, the input is the graph itself: T <> G
» We focus on undirected, possibly weighted graphs:

W e RIVIXIVI: similarity matrix

» Suppose first that (G admits a low-dimensional embedding, ie,
if?,"i? )

©(+,-): psd kernel (e.g. RBF, dot-product).

particle collisions measured in LHC calorimeter



NON-EUCLIDEAN EXTRINSIC GEOMETRIC STABILITY

» A deformation field 7 in €2 induces a deformation on G5

Wi = (wr)ij » (wr)ij = @(7(2:),7(x5)) -

G=(V,W)



NON-EUCLIDEAN EXTRINSIC GEOMETRIC STABILITY

» A deformation field 7 in €2 induces a deformation on GG:
W, = (wT)i,j v (wT)i,j — W(T(xi)aT(xj)) :

G, = (V,W,)

» Similarly as before, many tasks satisty geometric stability:
> particle physics / chemistry. f(G) = f(G;) if ||VT|| small.
» 3D surfaces.

» Can we define geometric deformation/stability intrinsically?



DEFORMATIONS AND METRICS
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» A deformation in an Euclidean domain () induces a change of
metric in {):

(Xr, 2l )2 = /x(u —7(u))z (v — 7(u))du = /:z:(fu)a:’(v)\l — V7 (v)"tdv
— [ 2 @)dglo) = (2.5,

» A small deformation cost corresponds to a small change of the
metric.

(1 = o([|7]]))dv < dg(v) < (1 4 of|[7]]))dv



DEFORMATIONS AND METRICS

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» A deformation in an Euclidean domain () induces a change of
metric in {):

(Xr, 2l )2 = /x(u —7(u))z (v — 7(u))du = /:z:(fu)a:’(v)\l — V7 (v)"tdv
— [ 2 @)dglo) = (2.5,

» A small deformation cost corresponds to a small change of the
metric.

(1 = o([|7]]))dv < dg(v) < (1 4 of|[7]]))dv

» Can we generalize this notion of distance between metric
spaces? ie on metrics associated with an arbitrary graph?



GROMOV-HAUSDORFF DISTANCE

» An undirected graph GG = (V, E'; W) generates a metric given
by shortest-paths:

da (i, j) = shortest path between nodes i and j.



GROMOV-HAUSDORFF DISTANCE
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» An undirected graph GG = (V, E'; W) generates a metric given
by shortest-paths:

da (i, 7) = shortest path between nodes i and j.

» One can measure similarity between metric spaces using e.g.

Gromov—Hausdolrff distance:

deu(M, Q) = 2 Ai;llfHQmaX{HsOH,H@bH,H(so,zb)H}-
Y Q— M
[, )| = sup  |dm(m,(q)) — dalg, o(m))| llell = sup [dpm(m,m') —do(p(m), ¢(m'))|

meM,qgeQ m,m
> Introduced on surfaces/point-clouds in [Meemoh & Sapiro’05],

|[Bronstein et al’06].

> Corresponds to a permutation distance when  |V| = |V']:

dp(G.G') = % min max |de(i, ) — der (w(i), 7(5)]

well, <,



INTRINSIC GEOMETRIC STABILITY PRIORS

'with F. Gama and A. Ribeiro (U Penn) |

» Many inference problems on graphs are stable to intrinsic
geometric deformations, in the sense that

F(G) = F(G)] S (G, G)
» Community Detection.

» Planning, Routing.

» How to leverage geometric stability on graphs?



LINEAR STABLE GENERATORS

» In Euclidean domains {2, we have seen that localized,
multiscale filters provide the key to geometric stability.

> These can be expressed as linear operators A of L*(Q)that nearly
commute with deformations 17 :

|AT, — T, Al ~ ||VT]| Tro(u) = o(u = 7(u))

—1 ]

Al AQ Ag A4



LINEAR STABLE GENERATORS

» In Euclidean domains {2, we have seen that localized,
multiscale filters provide the key to geometric stability.

> These can be expressed as linear operators A of L*(Q)that nearly
commute with deformations 17 :

|AT, — T, Al ~ ||VT]| Tro(u) = o(u = 7(u))
—1 —1
1 1 11 1 o o
=
Al AQ Ag A4

» We can write a CNN layer as a linear combination of such operators:

i=p (D (Ax)h | - 61,00, € RPXP
k

» What about general graphs?



LINEAR STABLE GENERATORS

> Linear diffusion on graphs is given by its adjacency matrix A(G)
AG);;, =11iff (¢,5) € E. W,;  in weighted graphs.

» By definition, this is a localized operator. Local smoothing.



LINEAR STABLE GENERATORS
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> Linear diffusion on graphs is given by its adjacency matrix A(G)
AG);;, =11iff (¢,5) € E. W,;  in weighted graphs.
» By definition, this is a localized operator. Local smoothing.

» Q: Stable to deformations? By definition,

Jinf W —PW'P'|| =dp(G,G") <deu(G,G")

» Up to rigid (isometric) transformation, local diffusion is continuous
with respect to metric deformations.



LINEAR STABLE GENERATORS
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> Linear diffusion on graphs is given by its adjacency matrix A(G)
AG);;, =11iff (¢,5) € E. W,;  in weighted graphs.
» By definition, this is a localized operator. Local smoothing.

» Q: Stable to deformations? By definition,

Jinf W —PW'P'|| =dp(G,G") <deu(G,G")

» Up to rigid (isometric) transformation, local diffusion is continuous
with respect to metric deformations.

> Together with the degree matrix D = diag(W1), it defines a
high-pass filter, the Graph Laplacian: A = D — W .

» It is also localized and stable to deformations in the sense of GH.



GRAPH NEURAL NETWORKS [Scarselli et al.,’09], [Gori et al. 05|

» Given a signal € RY %P , a Graph Neural Network (GNN) layer
considers generators|D, W| and trainable coefficients © = (61, 65) :

T =p(Dxb + Waxby) . 0,0, € RP*P |
» Flexible model: does not require fixed input graphs.

» Initial version was inspired from the Message-Passing algorithm.
Fixed point of a trainable, non-linear diffusion.

» Modernized in [Li et al.’15], [Duvenaud et al.’15], [Subkhaatar et
al.’16],

» Authors also explored other forms of nonlinearity, e.g. gating.

» Similarly as in CNNs, we can also consider pooling layers, (provided
we have a graph coarsening scheme).



LAPLACIAN INTERPRETATION
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> Since we are learning a linear combination of A(G) and D(G) , we can
reparametrize the generator in terms of the Graph Laplacian:

A(G) = D(G) — A(G)
> If we consider generators of the form [1, A, A%, ...], the resulting
GNN layer is expressed as a polynomial in A:

S
T=p(0(A)x) , 0(A) =D 0,A° .

» In Spectral Networks [B. et al’14], we train directly on the spectrum
of the Laplacian:

~ T 1. ,
L= p (V dlag(a)Vx) , a=[K(0), K :spline kernel
» Computationally expensive and unstable to deformations for varying graph.

> Issues addressed in subsequent Chebyshev model [Defferrard et al’16], and
GCN [Kipf & Welling’16].



EXTENSIONS/LIMITATIONS

> As opposed to Euclidean domains, in general graphs we only
have an isotropic high-pass filter (A ), but no oriented filters.



EXTENSIONS/LIMITATIONS

» As opposed to Euclidean domains, in general graphs we only have
an isotropic high-pass filter (A), but no oriented filters.

> Inspired by Message-Passing algorithms, we can generalize GNNs to
alternate between vertex and edge representations:

$1 6 RVXpl > 332 E RVXPQ >

\y1 c REX%/ S

y'(e) =vo(x' (i), 27 (j)) , e = (i,§) € E .
z*(i) = ¢o({y" (€)}iee) i€V .

y2 c REXQQ

» Used for example in [Battaglia et al.”16] for N-body prediction
dynamics and [Gilmer et al.”17] for quantum chemistry.



SURFACE REPRESENTATIONS

joint work with I. Kostrikov, D.Panozzo, D.Zorin (NYU)]
> In the particular case where GG represents a 3D surface, we

have a mesh representation: 9 f
M= ((V.E,F), F={(,3,k)} triangulation

credit: jonathanpuckey



SURFACE REPRESENTATIONS

joint work with I. Kostrikov, D.Panozzo, D.Zorin (NYU)]
> In the particular case whet€¢ represents a 3D surface, 4

have a mesh representation:

M= (V.,E,F), F=1{(,3,k)} triangulation

> In that case, we can compute a “proper” square roQi
Laplacian, the Dirac operator:

A=D*D, DeH"*F

» Defined over quaternion space.

credit: jonathanpuckey

» Captures principal curvature directions (ie orientation).



SURFACE REPRESENTATIONS

> In the particular case where (G represents a 3D surface, we haﬁa ’
mesh representation: 4

M= (V.E,F), F=1{(,73,k)} triangulation

> In that case, we can compute a “proper” square root of t]
Laplacian, the Dirac operator:

A=D*D ., DeH"*F

» Defined over quatermon space. credit: jonathanpuckey

O



LAPLACE NETWORK STABILITY

» Stable graph generators result in stable GNN representations:

Theorem: [B, K, P, Z’17] Let G = (V, E) and suppose V C Q € R?.
Let ®(xz; A) be a R-layer Laplace GNN with generators {I, A},
and 7 a deformation field on (). Then

L [|@(z;4) — (23 A)l| < C(O) ] — /||,

2. (@ (x5 A) — (a:7(A))]| < ()] VM),

where h(8) =], <5 BB 7“__1}2 measures smoothness (Sobolev)
of feature maps.

» In Euclidean graphs, the Laplacian is geometrically stable.

> Caveat: We currently require explicit smoothness decay of feature
maps.

» Future work: Extension to intrinsic deformations.



INVERSE PROBLEMS ON GRAPHS

» Consider the problem of inferring communities within a
network: Y S
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» Consider the problem of inferring communities within a




INVERSE PROBLEMS ON GRAPHS

network:

Adjacency matrix associative 2 communities
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INVERSE PROBLEMS ON GRAPHS




INVERSE PROBLEMS ON GRAPHS
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» Community Detection in graphs.

» Studied in the Stochastic Block Model.

» Hardness of estimation is controlled by a Signal-to-Noise Ratio:

Y
SNR = (@ —0) a: inner connection probability.
k (CL + (k — 1)[?) b: outer connection probability.




INVERSE PROBLEMS ON GRAPHS
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» Community Detection in graphs.

» Studied in the Stochastic Block Model.

» Hardness of estimation is controlled by a Signal-to-Noise Ratio:

Y
SNR = (@ —0) a: inner connection probability.
k (CL + (k — 1)[?) b: outer connection probability.

» Two major algorithmic frameworks:

» Graph conductance/min-cut approach, leading to spectral clustering

algorithms. .
min  y A(G)y
y,=x1;y=0

» Probabilistic Graphical Models, leading to Belief Propagation.

(y|G H P(i,5) yzay] H % yz

(4,5)eE veV



INVERSE PROBLEMS ON GRAPHS

» Community Detection in graphs.

» Studied in the Stochastic Block Model.

» Hardness of estimation is controlled by a Signal-to-Noise Ratio.

» Recent research program has unified both approaches using
tools from statistical physics, and identified computational
and information theoretic thresholds:

» When is the detection statistically possible?

» When is the detection feasible with polynomial-time algorithms?



» Community Detection in graphs.

» Studied in the Stochastic Block Model.

» Hardness of estimation is controlled by a Signal-to-Noise Ratio.

» Recent research program has unified both approaches using
tools from statistical physics, and identified computational
and information theoretic thresholds:

» When is the detection statistically possible?

» When is the detection feasible with polynomial-time algorithms?

» Q: Can we learn those algorithms from the data using graph
neural networks? reaching detection thresholds?



DATA-DRIVEN COMMUNITY DETECTION

.................................................... (ot work Wwith Tisha Li (UC Berkeldy) |
> A(G): linear operator defined on G, eg Laplacian A = D — A.

» Spectral Clustering estimators (2-community case):

y = sign (Fiedler(A(G))) ,

Fiedler(M): eigenvector corresponding to 2nd smallest eigenvalue

» Iterative algorithm: projected power iterations on
shifted A(G) -
M = [A(G)[1 - A(G)



DATA-DRIVEN COMMUNITY DETECTION

.................................................... (ot work Wwith Tisha Li (UC Berkeldy) |
> We consider a GNN generated by operators{1, A, D}

»They generate the so-called Bethe Hessian:
BH(r)=(r*-1)1—-rA+D

< Second-order approximation of Bethe Free energy at
critical points of BP.

< In that case, Laplacian generator does not work: its
spectrum is dominated by few nodes with dominant degree.

» We train it by back propagation using a loss that is globally
invariant to label permutations.



REACHING DETECTION THRESHOLD ON SBM
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> we reach the detection threshold, matching the specifically designed
spectral method.

» Real-world community detection results on SNAP data

| Leskovec et al]
Table 1: Snap Dataset Performance Comparison between GNN and AGM

Subgraph Instances Overlap Comparison
Dataset (train/test) Avg Vertices Avg Edges GNN AGMFit
Amazon 315 / 35 60 346 0.74+0.13 0.76 £0.08
DBLP 2831 / 510 26 164 0.78 £0.03 0.64 +=0.01

Youtube 48402 / 7794 61 274 0.9+0.02 0.57+£0.01




BELIEF PROPAGATION

» For small number of communities, the IT detection threshold
is provably matched by (loopy) BP.

» BP performs message-passing updates of the form
mz’j(l‘j) < Z (Qgi(ivi;y)%j(%,fj) H mkz(ﬂfz)) :

1 - e
bj(zj) = —i(xj9) [ mij(ay) . O—=
% i€ N (j) Lo

> exact inference on simply connected graphs.

» on general graphs, fixed points of BP correspond to critical points of
the Bethe Free Energy.

> Messages are defined and propagated over edges of (7, and
account for non-backtracking paths.



BELIEF PROPAGATION

» For small number of communities, the IT detection threshold
is provably matched by (loopy) BP.

» BP performs message-passing updates of the form
mz’j(l‘j) < Z (Qgi(ivi;y)%j(%,fj) H mkz(ﬂfz)) :

1 - e
bj(zj) = —i(xj9) [ mij(ay) . O—=
% i€ N (j) Lo

> exact inference on simply connected graphs.

» on general graphs, fixed points of BP correspond to critical points of
the Bethe Free Energy.

> Messages are defined and propagated over edges of (7, and
account for non-backtracking paths. GNN version?



GRAPH NEURAL NETWORKS ON GRAPH HIERARCHIES

> The line graph of G = (V, E)is a new graph L(G) = (V', E')
that models the adjacency of the edges: V' =~ F

(source:wikipedia)

> We augment the GNN with analogous operations on L(G).

» Related to Covariant Compositional Networks [Kondor et
al’18], and neural message-passing [Gilmer et al.’17].



COMPUTATIONAL-TO-STATISTICAL GAPS

» When # of communities > 4, there is a gap between the
information theoretical threshold and current known

polynomial-time algorithms:
[Decelle, Krzakala, Moore, Zdeborova,’13]

! ' * VR VR —— ¥ 02
0.8 | 404
06 overlap, planted init -+ , 103 4
o overlap, random init -3 . o
g factorize dafep ” 3
g 04 _ 1 0.2 'g
Cq ' G =
0.2} : 1 0.1
g R 0
12 13 c 14 15 16 7 18
> Preliminary results for 5 commiunities, deg = 14.5:
N =103 G {(G,L(G)} | BP
Overlap 29.5 £ 0.9 30.1 =0.5 304+ 3




lwith S. Villar (NYU), A. Nowak (NYU) and A. Bandeira (NYU)]

QUADRATIC ASSIGNMENT PROBLEM

» Find an assignment that optimizes the transportation cost
between two graphs:

The quadratic assignment problem (QAP)

T\ ave &
)'\3.:‘ "4 VN
" 3
1 !

b’v > -‘ < ) -\0 A
.:ﬁ-——ﬂ'e v UOma

/’_«.
lﬂ/ ~
/—7'4;_\&\-4.

/ 4,_‘ 6 D= d:. T
{ L

L 3 i) f f((f Tv , , _'_,,.
P 'Q"'\ / \. :
sﬁ/ \’* r‘ -

.u e ‘7. = 876253417
G ﬂ/ =~ = ‘\ i " .", 3 - ‘.:’ :“‘ |
- d_/"{ T “* ) '; ’xf . ;:A' pae i B

. Y S Y
. o ,"“4\} Y |
= b
" - “3 ,w_},,“ sy -~ 3
o 4

min Tr(AlXAQXT) .

Xell, II,,: space of n X n permutation matrices.

» NP-hard
» Contains the TSP as a particular instance.

» Relaxations using SDP and Spectral Approaches.



'with S. Villar (NYU), A. Nowak (NYU) and A. Bandeira (NYU)]

QUADRATIC ASSIGNMENT PROBLEM
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» We learn approximate solutions using siamese graph neural
networks:

G > >
1 ¢
Sinkhorn-Knoppl—— A/
onn
G2 > >
¢

M = softmax|[®(G1)P®(G2)")]
» We train the model to predict the correct permutation matrix
on a dataset of planted solutions:

G1 = PGy + N N ~ Erdos-Renyi

G2 ~ Erdos-Renyi
(G2 ~ Random Regular



'with S. Villar (NYU), A. Nowak (NYU) and A. Bandeira (NYU)]

QUADRATIC ASSIGNMENT PROBLEM

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

ErdosRenyi Graph Model Random Reqular Graph Model
1.0 -
1.0 A
0.8 A 0.8 -
0.6 - % 0.6
0.4 | g 0.4
0.2 - + <Op 0.2 A
—— LowRankAlign(k=4) W i\
0.0 A —4— GNN o
O.bO O.bl O.I02 O.IO3 O.IO4 O.I05 O.bO 0.I01 0.I02 O.I03 O.IO4 0.65
Noise Noise

> Our model runs in o(n?), LowRankAlign is o(n3) SDP in o(n?)
» Current: What is the model learning? Link to friendly Graphs.

> Current: Applications to Shape Correspondence, Unaligned
language translation



GIVENS FACTORIZATION OF UNITARY MATRICES

[with D. Folque (NYU)|
» Suppose we have a unitary matrix U (e.g. an eigenbasis) that

we want to use extensively.
> Complexity of Matrix-vector multiplication: ©(n?) [Winograd]

» But structure on U can yield massive gains: FFT ©O(nlogn) [Tukey]



GIVENS FACTORIZATION OF UNITARY MATRICES

[with D. Folque (NYU)|
» Suppose we have a unitary matrix U (e.g. an eigenbasis) that

we want to use extensively.
> Complexity of Matrix-vector multiplication: ©(n?) [Winograd]
» But structure on U can yield massive gains: FFT ©O(nlogn) [Tukey]

» General case?



» We consider Sparse Matrix Transforms given by Givens plane
rotations:

K
U = H O(Zkvjka CVk)
k=1

n(n— 1) O(ig, Jr, ax): Rotation of ay in the plane {ig, jg }

K = ‘
> > sufficient for any U FFT : K = nlogn

» NP-complete, non-commutative manifold-optimization problem.
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» Use GNN model to learn such factors.



GIVENS FACTORIZATION OF UNITARY MATRICES

[with D. Folque (NYU)]
» We consider a simple inverse-problem setup with planted

solution: , * ) (1)
—1 <L

| |

input labels

» Model: a GNN on the fully-connected graph, where we learn
both edge and node features.

» Uses multiset loss to account for partial permutation invariance.

» Preliminary results: matching greedy algorithm.



OPEN PROBLEMS

» Theory
» Quantify how smoothness is created in GNN layers.
» Intrinsic geometric stability. Alternatives to Gromov-Hausorff?
» Learnability thresholds in statistical inference.

» Useful to study computational-to-statistical gaps?

> Vast areas of application
» Algorithms: Learning approximations to combinatorial optimization.
> Biostatistics
» Social Networks: ranking, large-scale community detection.

» Physics: Numerical Methods for more complex PDEs?



THANKS!



