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THE “DEEP LEARNING SLIDE”
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Figure 3. Images that combine the content of a photograph with the style of several well-known artworks. The images were created by
finding an image that simultaneously matches the content representation of the photograph and the style representation of the artwork.
The original photograph depicting the Neckarfront in Tübingen, Germany, is shown in A (Photo: Andreas Praefcke). The painting that
provided the style for the respective generated image is shown in the bottom left corner of each panel. B The Shipwreck of the Minotaur
by J.M.W. Turner, 1805. C The Starry Night by Vincent van Gogh, 1889. D Der Schrei by Edvard Munch, 1893. E Femme nue assise by
Pablo Picasso, 1910. F Composition VII by Wassily Kandinsky, 1913.

5

Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks
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Figure 1: Given any two unordered image collections X and Y , our algorithm learns to automatically “translate” an image
from one into the other and vice versa: (left) 1074 Monet paintings and 6753 landscape photos from Flickr; (center) 1177 ze-
bras and 939 horses from ImageNet; (right) 1273 summer and 854 winter Yosemite photos from Flickr. Example application
(bottom): using a collection of paintings of a famous artist, learn to render a user’s photograph into their style.

Abstract
Image-to-image translation is a class of vision and

graphics problems where the goal is to learn the mapping
between an input image and an output image using a train-
ing set of aligned image pairs. However, for many tasks,
paired training data will not be available. We present an
approach for learning to translate an image from a source
domain X to a target domain Y in the absence of paired
examples. Our goal is to learn a mapping G : X ! Y
such that the distribution of images from G(X) is indistin-
guishable from the distribution Y using an adversarial loss.
Because this mapping is highly under-constrained, we cou-
ple it with an inverse mapping F : Y ! X and introduce
a cycle consistency loss to push F (G(X)) ⇡ X (and vice
versa). Qualitative results are presented on several tasks
where paired training data does not exist, including col-
lection style transfer, object transfiguration, season trans-
fer, and photo enhancement, etc. Quantitative comparisons
against several prior methods demonstrate the superiority
of our approach.

1. Introduction

What did Claude Monet see as he placed his easel by the
bank of the Seine near Argenteuil on a lovely spring day
in 1873 (Figure 1, top-left)? A color photograph, had it
been invented, may have documented a crisp blue sky and
a glassy river reflecting it. Monet conveyed his impression
of this same scene through wispy brush strokes and a bright
palette.

What if Monet had happened upon the little harbor in
Cassis on a cool summer evening (Figure 1, bottom-left)?
A brief stroll through a gallery of Monet paintings makes
it easy to imagine how he would have rendered the scene:
perhaps in pastel shades, with abrupt dabs of paint, and a
somewhat flattened dynamic range.

We can imagine all this despite never having seen a side
by side example of a Monet painting next to a photo of the
scene he painted. Instead we have knowledge of the set of
Monet paintings and of the set of landscape photographs.
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THE “DEEP LEARNING SLIDE”

➤ Despite mathematical mysteries, proven ability to extract 
robust information out of high-dimensional data, across 
different domains and tasks. 

➤ Most domains have regular spatial, temporal or sequential 
structure.
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Image-to-image translation is a class of vision and

graphics problems where the goal is to learn the mapping
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approach for learning to translate an image from a source
domain X to a target domain Y in the absence of paired
examples. Our goal is to learn a mapping G : X ! Y
such that the distribution of images from G(X) is indistin-
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Because this mapping is highly under-constrained, we cou-
ple it with an inverse mapping F : Y ! X and introduce
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versa). Qualitative results are presented on several tasks
where paired training data does not exist, including col-
lection style transfer, object transfiguration, season trans-
fer, and photo enhancement, etc. Quantitative comparisons
against several prior methods demonstrate the superiority
of our approach.

1. Introduction

What did Claude Monet see as he placed his easel by the
bank of the Seine near Argenteuil on a lovely spring day
in 1873 (Figure 1, top-left)? A color photograph, had it
been invented, may have documented a crisp blue sky and
a glassy river reflecting it. Monet conveyed his impression
of this same scene through wispy brush strokes and a bright
palette.

What if Monet had happened upon the little harbor in
Cassis on a cool summer evening (Figure 1, bottom-left)?
A brief stroll through a gallery of Monet paintings makes
it easy to imagine how he would have rendered the scene:
perhaps in pastel shades, with abrupt dabs of paint, and a
somewhat flattened dynamic range.

We can imagine all this despite never having seen a side
by side example of a Monet painting next to a photo of the
scene he painted. Instead we have knowledge of the set of
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THE “DEEP LEARNING SLIDE”

➤ Despite mathematical mysteries, proven ability to extract 
robust information out of high-dimensional data, across 
different domains and tasks. 

➤ Most domains have regular spatial, temporal or sequential 
structure. 

➤ At the core of this success, there is an inductive bias captured 
in particular by convolutional (or auto-regressive) models.  

➤ How to formalize this inductive bias?  

➤ and extend it to more general domains and tasks?
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between an input image and an output image using a train-
ing set of aligned image pairs. However, for many tasks,
paired training data will not be available. We present an
approach for learning to translate an image from a source
domain X to a target domain Y in the absence of paired
examples. Our goal is to learn a mapping G : X ! Y
such that the distribution of images from G(X) is indistin-
guishable from the distribution Y using an adversarial loss.
Because this mapping is highly under-constrained, we cou-
ple it with an inverse mapping F : Y ! X and introduce
a cycle consistency loss to push F (G(X)) ⇡ X (and vice
versa). Qualitative results are presented on several tasks
where paired training data does not exist, including col-
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fer, and photo enhancement, etc. Quantitative comparisons
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of our approach.
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What did Claude Monet see as he placed his easel by the
bank of the Seine near Argenteuil on a lovely spring day
in 1873 (Figure 1, top-left)? A color photograph, had it
been invented, may have documented a crisp blue sky and
a glassy river reflecting it. Monet conveyed his impression
of this same scene through wispy brush strokes and a bright
palette.

What if Monet had happened upon the little harbor in
Cassis on a cool summer evening (Figure 1, bottom-left)?
A brief stroll through a gallery of Monet paintings makes
it easy to imagine how he would have rendered the scene:
perhaps in pastel shades, with abrupt dabs of paint, and a
somewhat flattened dynamic range.

We can imagine all this despite never having seen a side
by side example of a Monet painting next to a photo of the
scene he painted. Instead we have knowledge of the set of
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OUTLINE

➤ Geometric Stability 
➤ In Euclidean Domains: Convolutional Neural Networks. 

➤ In Non-Euclidean Domains: Graph Neural Networks. 

➤ Applications to Inverse Problems on Graphs 
➤ Community Detection and statistical-to-computational gaps. 

➤ Quadratic Assignment Problem 

➤ Givens Factorization of Unitary Operators.



GEOMETRIC STABILITY IN EUCLIDEAN DOMAINS
➤ Consider data defined as functions over an Euclidean domain: 

➤ Computer Vision Task:  

➤ Goal: estimate    from samples  

x = x(u) , u 2 ⌦ ⇢ Rd d = 1: time series
d = 2: images ..

y = f(x) f : L2(⌦) ! Y

Y =

⇢
{c1, . . . , cK} Classification
⌦ Localization .

f {(xl, yl = f(xl)}lL



GEOMETRIC STABILITY IN EUCLIDEAN DOMAINS
➤ Consider data defined as functions over an Euclidean domain: 

➤ Computer Vision Task:  

➤ Goal: estimate    from samples   

➤ Q: What assumptions on    ? 

x = x(u) , u 2 ⌦ ⇢ Rd d = 1: time series
d = 2: images ..

y = f(x) f : L2(⌦) ! Y

Y =

⇢
{c1, . . . , cK} Classification
⌦ Localization .

f {(xl, yl = f(xl)}lL

f



GEOMETRIC STABILITY IN EUCLIDEAN DOMAINS

➤Deformation cost:  
➤Models change in point of view in images 

➤Models frequency transpositions in sounds 

➤Consistent with local translation invariance

x(u) , u : pixels, time samples, etc. ⌧(u) , : deformation field

Video of Philipp Scott Johnson

x⌧ (u) := x(u� ⌧(u)) : warping

kr⌧k = sup
u

|r⌧(u)|



GEOMETRIC STABILITY IN EUCLIDEAN DOMAINS
➤ Most Computer vision and speech tasks   also satisfy:  

➤ In particular, these tasks are translation invariant/equivariant: 

f

e.g. image classification

e.g. image localization 

Translation operator: xv(u) = x(u� v), v 2 ⌦.

f(x) = f(xv) for all x. (Translation Invariance)

[f(x)]v = f(xv) for all x. (Translation Equivariance)

|f(x)� f(x⌧ )| ⇠ kr⌧k , (Geometric Invariance)

|[f(x)]⌧ � f(x⌧ )| ⇠ kr⌧k , (Geometric Equivariance)



GEOMETRIC STABILITY IN EUCLIDEAN DOMAINS
➤ Most Computer vision and speech tasks   also satisfy:  

➤ In particular, these tasks are translation invariant/equivariant:  

➤ Whereas translation and other symmetry groups are low-
dimensional, deformation stability is a high-dimensional prior. 

➤ Q: How to leverage this stability prior? 

f

Translation operator: xv(u) = x(u� v), v 2 ⌦.

f(x) = f(xv) for all x. (Translation Invariance)

[f(x)]v = f(xv) for all x. (Translation Equivariance)

|f(x)� f(x⌧ )| ⇠ kr⌧k , (Geometric Invariance)

|[f(x)]⌧ � f(x⌧ )| ⇠ kr⌧k , (Geometric Equivariance)
e.g. image classification

e.g. image localization 



CONVOLUTIONAL NEURAL NETWORKS

➤ Stack multiple layers of localized convolutional operators and 
point-wise contractive non-linearities: 

➤ Down-sampling via pooling (can be either linear with average, 
or nonlinear with max) in invariant tasks:  

Input image Convolutions 
+ ReLU

Convolutions 
+ ReLU

Max
pooling ...

Airedale terrier (16)

Fox terrier (5.7)

Pomeranzian (2.7)

Arctic fox (1.0)

Eskimo dog (0.6)

Wolf (0.4)

Siberian husky (0.4)

Convolutions 
+ ReLU

Max
pooling

[LeCun, 80s,90s]

Input: x 2 L2(⌦,Rp).

x̃j̃(u) = ⇢

0

@
pX

j=1

xj ? ✓j,j̃(u)

1

A , j̃  p̃ .

Output: x̃ 2 L2
(⌦,Rp̃

).
⇢(z): point-wise nonlinearity
(e.g. max(0, z)).

⇥ = (✓j,j̃): localized
convolutional kernel.

N (u): Neighborhood of u.x̄j̃(ū) = kx̃j̃(N (u))k



CONVOLUTIONAL NEURAL NETWORKS
➤ Why are CNNs geometrically stable?

x(u) x⌧ (u) x⌧ 0(u)



CONVOLUTIONAL NEURAL NETWORKS
➤ Why are CNNs geometrically stable? 

➤ A non-rigid deformation locally looks like a translation if            small: 

➤ A point-wise nonlinearity commutes with deformations: 

➤ Pooling progressively creates invariance to geometric deformations:

x(u) x⌧ (u) x⌧ 0(u)
kr⌧k

) x⌧ ? ✓(u) ⇡ [x ? ✓]⌧ (u)

) ⇢ (x⌧ ? ✓(u)) ⇡ ⇢ ([x ? ✓]⌧ (u)) = [⇢ (x ? ✓)]⌧ (u)

kx⌧ (N (u))k ⇡ kx(N (u))k if |⌧ |small



CONVOLUTIONAL NEURAL NETWORKS

➤ Convolutions to exploit translation invariance/equivariance. 

➤ Localized to exploit geometric stability: leads to multi scale architecture. 

➤ These two properties lead to models with                  trainable parameters.  

➤ Provable stability guarantees by fixing filters to be complex wavelets in 
Scattering Networks [Mallat’12] and generalizations [Boelcksei et al’16]. 

➤ Stability is only part of the story. Discriminability via learning/optimization 
is another major component for success.

O(logN)



TOWARDS NON-EUCLIDEAN GEOMETRIES

➤ How about problems/tasks defined over more general 
domains?

High Energy Physics

IEEE SIG PROC MAG 16

Correspondence Similarity

Fig. 4. Left: features used for shape correspondence should ideally
manifest invariance across the shape class (e.g., the “knee feature”
shown here should not depend on the specific person). Right: on
the contrary, features used for shape retrieval should be specific to
a shape within the class to allow distinguishing between different
people. Similar features are marked with same color. Hand-crafting
the right feature for each application is a very challenging task.

graphics may require completely different features: for in-
stance, in order to establish feature-based correspondence
between a collection of human shapes, one would desire the
descriptors of corresponding anatomical parts (noses, mouths,
etc.) to be as similar as possible across the collection. In other
words, such descriptors should be invariant to the collection
variability. Conversely, for shape classification, one would like
descriptors that emphasize the subject-specific characteristics,
and for example, distinguish between two different nose
shapes (see Figure VIII). Deciding a priori which structures
should be used and which should be ignored is often hard or
sometimes even impossible. Moreover, axiomatic modeling of
geometric noise such as 3D scanning artifacts turns out to be
extremely hard.

Put in a somewhat oversimplified manner, the computer
vision community works with real-world 3D data, but uses
Euclidean techniques originally developed for images that
are not suitable for geometric data. At the same time, the
mathematically rigorous models used in computer graphics to
describe geometric objects can hardly deal with noisy data,
leading to a tendency to work with idealized synthetic shapes.
We believe that the gap between the two communities can
be bridged with the development of geometric deep learning
methods. By resorting to intrinsic deep neural networks, the
invariance to isometric deformations is automatically built into
the model, thus vastly reducing the number of degrees of
freedom required to describe the invariance class. Roughly
speaking, the intrinsic deep model will try to learn ‘residual’
deformations that deviate from the isometric model.

Intrinsic deep learning can be applied to several problems
in 3D shape analysis, which can be divided in two classes.
First, problems such as local descriptor learning [26], [77] or
correspondence learning [28] (see example in the insert IN5),
in which the output of the network is point-wise. The inputs
to the network are some point-wise features, for example,
color texture or simple geometric features. Using a CNN
architecture with multiple intrinsic convolutional layers, it is
possible to produce non-local features that capture the context
around each point. The second type of problems such as shape

recognition require the network to produce a global shape
descriptor, aggregating all the local information into a single
vector using e.g. the covariance pooling.

IX. OPEN PROBLEMS AND FUTURE DIRECTIONS

The recent emergence of geometric deep learning methods
in various communities and application domains, which we
tried to overview in this paper, allow us to proclaim, perhaps
with some caution, that we might be witnessing a new field
being born. We expect the following years to bring exciting
new approaches and results, and conclude our review with
a few observations of current key difficulties and potential
directions of future research.

Many disciplines dealing with geometric data employ some
empirical models or “handcrafted” features. This is a typical
situation in computational sociology, where it is common
to first come up with a hypothesis and then test it on the
data [1], or geometry processing and computer graphics,
where axiomatically-constructed features are used to analyze
3D shapes. Yet, such models assume some prior knowledge
(e.g. isometric shape deformation model), and often fail to
correctly capture the full complexity and richness of the data.
In computer vision, departing from “handcrafted” features
towards generic models learnable from the data in a task-
specific manner has brought a breakthrough in performance
and led to an overwhelming trend in the community to favor
deep learning methods. Such a shift has not occurred yet in the
fields dealing with geometric data due to the lack of adequate
methods, but there are first indications of a coming paradigm
shift.

In some applications, geometric data can also be han-
dled as a Euclidean structure, allowing to resort to classical
deep learning techniques. In deformation-invariant 3D shape
correspondence application we mentioned in the context of
computer graphics, 3D shapes can be considered both as 2D
manifolds and as subsets of the 3D Euclidean space. The latter
representation fails to correctly capture the geometric structure
of the data, as it is extrinsic and not invariant under non-
rigid deformations. While in principle it is possible to apply
classical deep learning to Euclidean representations of non-
rigid shapes, such models tend to be very complex and require
large amounts of training data [91]. The main contribution of
intrinsic deep learning in these settings is using a more suitable
model with guaranteed invariance properties that appear to be
much simpler than the Euclidean ones.

Another important aspect is generalization capabilities and
transfer learning. Generalizing deep learning models to geo-
metric data requires not only finding non-Euclidean counter-
parts of basic building blocks (such as convolutional and pool-
ing layers), but also generalization across different domains.
Generalization capability is a key requirement in many appli-
cations, including computer graphics, where a model is learned
on a training set of non-Euclidean domains (3D shapes) and
then applied to previously unseen ones. Recalling the ap-
proaches we mentioned in this review, spectral formulation of
convolution allows designing CNNs on a graph, but the model
learned this way on one graph cannot be straightforwardly

Graphics

IEEE SIG PROC MAG 15

convolution-like construction (53). An additional degree of
freedom is the definition of the window, which can also be
learned [27].

Wavelet methods: Replacing the notion of frequency
in time-frequency representations by that of scale leads to
wavelet decompositions. Wavelets have been extensively stud-
ied in general graph domains [84]. Their objective is to define
stable linear decompositions with atoms well localized both in
space and frequency that can efficiently approximate signals
with isolated singularities. Similarly to the Euclidean setting,
wavelet families can be constructed either from its spectral
constraints or from its spatial constraints.

The simplest of such families are Haar wavelets. Several
bottom-up wavelet constructions on graphs were studied in
[85] and [86]. In [87], the authors developed an unsupervised
method that learns wavelet decompositions on graphs by opti-
mizing a sparse reconstruction objective. In [88], ensembles of
Haar wavelet decompositions are used to define deep wavelet
scattering transforms on general domains, obtaining excellent
numerical performance. Learning amounts to finding optimal
pairings of nodes at each scale, which can be efficiently solved
in polynomial time.

VIII. APPLICATIONS

Network analysis: One of the classical examples used
in many works on network analysis are citation networks. Ci-
tation network is a graph where vertices represent papers and
there is a directed edge (i, j) if paper i cites paper j. Typically,
vertex-wise features representing the content of the paper (e.g.
histogram of frequent terms in the paper) are available. A
prototypical classification application is to attribute each paper
to a field. Traditional approaches work vertex-wise, performing
classification of each vertex’s feature vector individually. More
recently, it was shown that classification can be considerably
improved using information from neighbor vertices, e.g. with
a CNN on graphs [53], [75]. Insert IN4 shows an example of
application of Spectral CNN on a citation network.

Computer vision and graphics: The computer vision
community has recently shown an increasing interest in work-
ing with 3D geometric data, mainly due to the emergence
of affordable range sensing technology such as Microsoft
Kinect or Intel RealSense. Many machine learning techniques
successfully working on images were tried “as is” on 3D
geometric data, represented for this purpose in some way
“digestible” by standard frameworks, e.g. as range images
[90], [91] or rasterized volumes [92], [93]. The main drawback
of such approaches is their treatment of geometric data as
Euclidean structures. First, for complex 3D objects, Euclidean
representations such as depth images or voxels may lose
significant parts of the object or its fine details, or even break
its topological structure. Second, Euclidean representations
are not intrinsic, and vary when changing pose or deforming
the object. Achieving invariance to shape deformations, a
common requirement in many vision applications, demands
very complex models and huge training sets due to the large
number of degrees of freedom involved in describing non-rigid
deformations.

[IN4] Citation network analysis example: The
CORA citation network [89] is a graph containing
2708 vertices representing papers and 5429 edges
representing citations. Each paper is described by a
1433-dimensional bag-of-words feature vector and
belongs to seven classes. For simplicity, the network
is treated as an undirected graph. Applying the
spectral CNN with two spectral convolutional layers
parametrized according to (51), the authors of [75]
obtain classification accuracy of 81.5% (compared to
75.7% previous best result).

[FIGS4a] Classifying research papers in the CORA dataset
with Spectral CNN. Shown is the citation graph, where each
node is a paper, and an edge represents a citation. Vertex
fill color represents the predicted label; vertex outline color
represents the groundtruth label (ideally, the two colors
should coincide).

In the domain of computer graphics, on the other hand,
working intrinsically with geometric shapes is a standard
practice. In this field, 3D shapes are typically modeled as Rie-
mannian manifolds and are discretized as meshes. Numerous
studies (see, e.g. [94], [95], [96], [97], [3]) have been devoted
to designing local and global features e.g. for establishing
similarity or correspondence between deformable shapes with
guaranteed invariance properties. Two well-studied classes
of deformations are isometries (metric-preserving transforma-
tions, consequently also preserving local areas and angles) and
conformal (angle-preserving) deformations. The former model
suits well inelastic and articulated motions, such as different
poses of the human body, but is unable to capture significant
shape variability (e.g. matching people of different stature or
complexion). The class of conformal maps, on the other hand,
is way too large: a classical result in differential geometry
known as the Uniformization Theorem states that any closed
simply-connected surface can be conformally mapped to a
sphere [98]. Apparently, there are no other deformation classes
that are larger than isometries but smaller than conformal.

Furthermore, different applications in computer vision and

Citation Networks

Community Detection

Quantum Chemistry



NON-EUCLIDEAN GEOMETRIC STABILITY

➤ We replace the Euclidean domain     by a general graph   

➤ In some applications, the input is the graph itself:  

➤ We focus on undirected, possibly weighted graphs:  

x(u) 2 L2(⌦) ! x(u) 2 L2(G) , G = (V,E) .

⌦ G = (V,E).

W 2 R|V |⇥|V |: similarity matrix

x $ G



NON-EUCLIDEAN GEOMETRIC STABILITY

➤ We replace the Euclidean domain     by a general graph   

➤ In some applications, the input is the graph itself:  

➤ We focus on undirected, possibly weighted graphs:   

➤ Suppose first that     admits a low-dimensional embedding, ie,  

x(u) 2 L2(⌦) ! x(u) 2 L2(G) , G = (V,E) .

⌦ G = (V,E).

G

W 2 R|V |⇥|V |: similarity matrix

'(·, ·): psd kernel (e.g. RBF, dot-product).

particle collisions measured in LHC calorimeter

wi,j = '(xi, xj) , xi 2 ⌦ ⇢ Rd , i, j  |V |.

x $ G



NON-EUCLIDEAN EXTRINSIC GEOMETRIC STABILITY

➤ A deformation field     in     induces a deformation on    :⌦⌧ G

G = (V,W )

W⌧ = (w⌧ )i,j , (w⌧ )i,j = '(⌧(xi), ⌧(xj)) .



NON-EUCLIDEAN EXTRINSIC GEOMETRIC STABILITY

➤ A deformation field     in     induces a deformation on    : 

➤ Similarly as before, many tasks satisfy geometric stability: 
➤ particle physics / chemistry.  

➤ 3D surfaces.  

➤ Can we define geometric deformation/stability intrinsically?

G⌧ = (V,W⌧ )

f(G) ⇡ f(G⌧ ) if kr⌧k small.

⌦⌧ G
W⌧ = (w⌧ )i,j , (w⌧ )i,j = '(⌧(xi), ⌧(xj)) .



DEFORMATIONS AND METRICS 

➤ A deformation in an Euclidean domain     induces a change of 
metric in    : 

➤ A small deformation cost corresponds to a small change of the 
metric.

hx⌧ , x
0
⌧ iL2 =

Z
x(u� ⌧(u))x0(u� ⌧(u))du =

Z
x(v)x0(v)|1�r⌧(v)�1|dv

=

Z
x(v)x0(v)dg(v) = hx, x0i⌧

(1� o(k⌧k))dv  dg(v)  (1 + o(k⌧k))dv

⌦
⌦

[with F. Gama and A. Ribeiro (U Penn) ]



DEFORMATIONS AND METRICS 

➤ A deformation in an Euclidean domain     induces a change of 
metric in    : 

➤ A small deformation cost corresponds to a small change of the 
metric. 

➤ Can we generalize this notion of distance between metric 
spaces? ie on metrics associated with an arbitrary graph?

hx⌧ , x
0
⌧ iL2 =

Z
x(u� ⌧(u))x0(u� ⌧(u))du =

Z
x(v)x0(v)|1�r⌧(v)�1|dv

=

Z
x(v)x0(v)dg(v) = hx, x0i⌧

(1� o(k⌧k))dv  dg(v)  (1 + o(k⌧k))dv

⌦
⌦

[with F. Gama and A. Ribeiro (U Penn) ]



GROMOV-HAUSDORFF DISTANCE

➤ An undirected graph                           generates a metric given 
by shortest-paths:

G = (V,E;W )

dG(i, j) = shortest path between nodes i and j.

[with F. Gama and A. Ribeiro (U Penn) ]



GROMOV-HAUSDORFF DISTANCE

➤ An undirected graph                           generates a metric given 
by shortest-paths: 

➤ One can measure similarity between metric spaces using e.g. 
Gromov-Hausdorff distance:  

➤ Introduced on surfaces/point-clouds in [Memoli & Sapiro’05], 
[Bronstein et al’06].  

➤ Corresponds to a permutation distance when 

G = (V,E;W )

dG(i, j) = shortest path between nodes i and j.

dGH(M,Q) =
1

2
inf

' : M 7! Q
 : Q 7! M

max{k'k, k k, k(', )k} .

k(', )k = sup
m2M,q2Q

|dM(m, (q))� dQ(q,'(m))| ,k'k = sup
m,m02M

|dM(m,m0)� dQ('(m),'(m0))| .

dP(G,G0) =
1

2
min
⇡2⇧n

max
i,j

|dG(i, j)� dG0(⇡(i),⇡(j))| .

|V | = |V 0| :

[with F. Gama and A. Ribeiro (U Penn) ]



INTRINSIC GEOMETRIC STABILITY PRIORS

➤ Many inference problems on graphs are stable to intrinsic 
geometric deformations, in the sense that  

➤ Community Detection.  

➤ Planning, Routing.  

➤ How to leverage geometric stability on graphs?

|f(G)� f(G0)| . d(G,G0)

[with F. Gama and A. Ribeiro (U Penn) ]



LINEAR STABLE GENERATORS
➤ In Euclidean domains    , we have seen that localized, 

multiscale filters provide the key to geometric stability. 
➤ These can be expressed as linear operators     of            that nearly 

commute with deformations      : 

⌦

L2(⌦)A
T⌧

kAT⌧ � T⌧Ak ⇠ kr⌧k
�1
1

�1
1 1�1

�1
1

A1 A2 A3 A4

T⌧x(u) = x(u� ⌧(u))

[with F. Gama and A. Ribeiro (U Penn) ]



LINEAR STABLE GENERATORS
➤ In Euclidean domains    , we have seen that localized, 

multiscale filters provide the key to geometric stability. 
➤ These can be expressed as linear operators     of            that nearly 

commute with deformations      :  

➤ We can write a CNN layer as a linear combination of such operators:  

➤ What about general graphs?

⌦

L2(⌦)A
T⌧

kAT⌧ � T⌧Ak ⇠ kr⌧k

x̃ = ⇢

 
X

k

(Akx)✓k

!
. ✓1, . . . , ✓k,2 Rp⇥p̃ .

�1
1

�1
1 1�1

�1
1

A1 A2 A3 A4

T⌧x(u) = x(u� ⌧(u))

[with F. Gama and A. Ribeiro (U Penn) ]



LINEAR STABLE GENERATORS

➤ Linear diffusion on graphs is given by its adjacency matrix            

➤ By definition, this is a localized operator. Local smoothing.

Wi,j in weighted graphs.A(G)i,j = 1 i↵ (i, j) 2 E .

A(G)

[with F. Gama and A. Ribeiro (U Penn) ]



LINEAR STABLE GENERATORS

➤ Linear diffusion on graphs is given by its adjacency matrix            

➤ By definition, this is a localized operator. Local smoothing.  

➤ Q: Stable to deformations? By definition,  

➤ Up to rigid (isometric) transformation, local diffusion is continuous 
with respect to metric deformations. 

Wi,j in weighted graphs.A(G)i,j = 1 i↵ (i, j) 2 E .

A(G)

[with F. Gama and A. Ribeiro (U Penn) ]

inf
P2⇧n

kW � PW 0P>k = dP(G,G0) . dGH(G,G0)



LINEAR STABLE GENERATORS

➤ Linear diffusion on graphs is given by its adjacency matrix            

➤ By definition, this is a localized operator. Local smoothing.  

➤ Q: Stable to deformations? By definition,  

➤ Up to rigid (isometric) transformation, local diffusion is continuous 
with respect to metric deformations.   

➤ Together with the degree matrix                           , it defines a 
high-pass filter, the Graph Laplacian:                          
➤ It is also localized and stable to deformations in the sense of GH.                   

Wi,j in weighted graphs.A(G)i,j = 1 i↵ (i, j) 2 E .

A(G)

[with F. Gama and A. Ribeiro (U Penn) ]

D = diag(W1)
� = D �W .

inf
P2⇧n

kW � PW 0P>k = dP(G,G0) . dGH(G,G0)



GRAPH NEURAL NETWORKS
➤ Given a signal                     , a Graph Neural Network (GNN) layer 

considers generators            and trainable coefficients  

➤ Flexible model: does not require fixed input graphs.  

➤ Initial version was inspired from the Message-Passing algorithm. 
Fixed point of a trainable, non-linear diffusion.  

➤ Modernized in [Li et al.’15], [Duvenaud et al.’15], [Subkhaatar et 
al.’16], 

➤ Authors also explored other forms of nonlinearity, e.g. gating. 

➤ Similarly as in CNNs, we can also consider pooling layers, (provided 
we have a graph coarsening scheme).

[Scarselli et al.,’09], [Gori et al. ’05]

[D,W ]
x 2 RV⇥p

x̃ = ⇢ (Dx✓1 +Wx✓2) .

⇥ = (✓1, ✓2) :

✓1, ✓2 2 Rp⇥p̃ .



LAPLACIAN INTERPRETATION
➤ Since we are learning a linear combination of          and          , we can 

reparametrize the generator in terms of the Graph Laplacian:  

➤ If we consider generators of the form                       , the resulting 
GNN layer is expressed as a polynomial in    :  

➤ In Spectral Networks [B. et al’14], we train directly on the spectrum 
of the Laplacian: 

➤ Computationally expensive and unstable to deformations for varying graph. 

➤ Issues addressed in subsequent Chebyshev model [Defferrard et al’16], and 
GCN [Kipf & Welling’16].

A(G) D(G)

�(G) = D(G)�A(G)
[1,�,�2, . . . ]

�

x̃ = ⇢ (✓(�)x) , ✓(�) =
SX

s=0

✓s�
s .

x̃ = ⇢
�
V Tdiag(↵)V x

�
, ↵ = K(✓) , K : spline kernel



EXTENSIONS/LIMITATIONS

➤ As opposed to Euclidean domains, in general graphs we only 
have an isotropic high-pass filter (    ), but no oriented filters. �



EXTENSIONS/LIMITATIONS
➤ As opposed to Euclidean domains, in general graphs we only have 

an isotropic high-pass filter (    ), but no oriented filters.  

➤ Inspired by Message-Passing algorithms, we can generalize GNNs to 
alternate between vertex and edge representations: 

➤ Used for example in [Battaglia et al.’16] for N-body prediction 
dynamics and [Gilmer et al.’17] for quantum chemistry.

�

x1 2 RV⇥p1

y1 2 RE⇥q1 y2 2 RE⇥q2

x2 2 RV⇥p2

y1(e) =  ✓(x
1(i), x1(j)) , e = (i, j) 2 E .

x2(i) = �✓({y1(e)}i2e) , i 2 V .



SURFACE REPRESENTATIONS

➤ In the particular case where     represents a 3D surface, we 
have a mesh representation: 

G

M = (V,E, F ) , F = {(i, j, k)} triangulation

credit: jonathanpuckey

[joint work with I. Kostrikov, D.Panozzo, D.Zorin (NYU)]



SURFACE REPRESENTATIONS

➤ In the particular case where     represents a 3D surface, we 
have a mesh representation:  

➤ In that case, we can compute a “proper” square root of the 
Laplacian, the Dirac operator: 

➤ Defined over quaternion space. 

➤ Captures principal curvature directions (ie orientation). 

G

M = (V,E, F ) , F = {(i, j, k)} triangulation

credit: jonathanpuckey
� = D⇤D , D 2 H

V⇥F

[joint work with I. Kostrikov, D.Panozzo, D.Zorin (NYU)]



SURFACE REPRESENTATIONS
➤ In the particular case where     represents a 3D surface, we have a 

mesh representation:  

➤ In that case, we can compute a “proper” square root of the 
Laplacian, the Dirac operator: 

➤ Defined over quaternion space. 

➤ Captures principal curvature directions (ie orientation).  

➤ Used in [Kostrikov, B., Panozzo, Zorin.’17] for surface 
representation tasks and generative model.

G

M = (V,E, F ) , F = {(i, j, k)} triangulation

credit: jonathanpuckey

� = D⇤D , D 2 H
V⇥F



LAPLACE NETWORK STABILITY
➤ Stable graph generators result in stable GNN representations: 

➤ In Euclidean graphs, the Laplacian is geometrically stable. 

➤ Caveat: We currently require explicit smoothness decay of feature 
maps. 

➤ Future work: Extension to intrinsic deformations. 

Theorem: [B, K, P, Z’17] Let G = (V,E) and suppose V ⇢ ⌦ 2 Rd.
Let �(x;�) be a R-layer Laplace GNN with generators {I,�},
and ⌧ a deformation field on ⌦. Then

1. k�(x;�)� �(x0;�)k  C(⇥)kx� x0kh(�) ,

2. k�(x;�)� �(x; ⌧(�))k  C 0(⇥)kr⌧kh(�) ,

where h(�) =
Q

rR
�r�1

�r�1/2 measures smoothness (Sobolev)
of feature maps.
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➤ Consider the problem of inferring communities within a 
network: 
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INVERSE PROBLEMS ON GRAPHS

➤ Community Detection in graphs.  
➤ Studied in the Stochastic Block Model. 

➤ Hardness of estimation is controlled by a Signal-to-Noise Ratio: 

SNR =
(a� b)2

k(a+ (k � 1)b)
a: inner connection probability.
b: outer connection probability.



INVERSE PROBLEMS ON GRAPHS

➤ Community Detection in graphs.  
➤ Studied in the Stochastic Block Model. 

➤ Hardness of estimation is controlled by a Signal-to-Noise Ratio:  

➤ Two major algorithmic frameworks: 
➤ Graph conductance/min-cut approach, leading to spectral clustering 

algorithms. 

➤ Probabilistic Graphical Models, leading to Belief Propagation.

min
yi=±1;ȳ=0

yTA(G)y .

p(y|G) /
Y

(i,j)2E

'(i,j)(yi, yj)
Y

v2V

 i(yi)

SNR =
(a� b)2

k(a+ (k � 1)b)
a: inner connection probability.
b: outer connection probability.



INVERSE PROBLEMS ON GRAPHS

➤ Community Detection in graphs.  
➤ Studied in the Stochastic Block Model. 

➤ Hardness of estimation is controlled by a Signal-to-Noise Ratio. 

➤ Recent research program has unified both approaches using 
tools from statistical physics, and identified computational 
and information theoretic thresholds:  
➤ When is the detection statistically possible? 

➤ When is the detection feasible with polynomial-time algorithms? 



INVERSE PROBLEMS ON GRAPHS

➤ Community Detection in graphs.  
➤ Studied in the Stochastic Block Model. 

➤ Hardness of estimation is controlled by a Signal-to-Noise Ratio. 

➤ Recent research program has unified both approaches using 
tools from statistical physics, and identified computational 
and information theoretic thresholds:  
➤ When is the detection statistically possible? 

➤ When is the detection feasible with polynomial-time algorithms?  

➤ Q: Can we learn those algorithms from the data using graph 
neural networks? reaching detection thresholds?



2

-4 -2 0 2 4

0.05

0.10

0.15

0.20

0.25

�c

FIG. 1: The spectrum of the adjacency matrix of a sparse network generated by the block model (excluding the zero eigenvalues).
Here n = 4000, cin = 5, and cout = 1, and we average over 20 realizations. Even though the eigenvalue �c = 3.5 given by (2)
satisfies the threshold condition (1) and lies outside the semicircle of radius 2

p
c = 3.46, deviations from the semicircle law cause

it to get lost in the bulk, and the eigenvector of the second largest eigenvalue is uncorrelated with the community structure.
As a result, spectral algorithms based on A are unable to identify the communities in this case.

I. SPECTRAL CLUSTERING AND SPARSE NETWORKS

In order to study the effectiveness of spectral algorithms in a specific ensemble of graphs, suppose that a graph G

is generated by the stochastic block model [1]. There are q groups of vertices, and each vertex v has a group label
gv 2 {1, . . . , q}. Edges are generated independently according to a q ⇥ q matrix p of probabilities, with Pr[Au,v =
1] = pgu,gv . In the sparse case, we have pab = cab/n, where the affinity matrix cab stays constant in the limit n ! 1.

For simplicity we first discuss the commonly-studied case where c has two distinct entries, cab = cin if a = b and cout

if a 6= b. We take q = 2 with two groups of equal size, and assume that the network is assortative, i.e., cin > cout. We
summarize the general case of more groups, arbitrary degree distributions, and so on in subsequent sections below.

The group labels are hidden from us, and our goal is to infer them from the graph. Let c = (cin + cout)/2 denote
the average degree. The detectability threshold [9–11] states that in the limit n ! 1, unless

cin � cout > 2
p

c , (1)

the randomness in the graph washes out the block structure to the extent that no algorithm can label the vertices
better than chance. Moreover, [11] proved that below this threshold, it is impossible to identify the parameters cin

and cout, while above the threshold the parameters cin and cout are easily identifiable.
The adjacency matrix is defined as the n ⇥ n matrix Au,v = 1 if (u, v) 2 E and 0 otherwise. A typical spectral

algorithm assigns each vertex a k-dimensional vector according to its entries in the first k eigenvectors of A for some k,
and clusters these vectors according to a heuristic such as the k-means algorithm (often after normalizing or weighting
them in some way). In the case q = 2, we can simply label the vertices according to the sign of the second eigenvector.

As shown in [8], spectral algorithms succeed all the way down to the threshold (1) if the graph is sufficiently dense.
In that case A’s spectrum has a discrete part and a continuous part in the limit n ! 1. Its first eigenvector essentially
sorts vertices according to their degree, while the second eigenvector is correlated with the communities. The second
eigenvalue is given by

�c =
cin � cout

2
+

cin + cout

cin � cout
. (2)

The question is when this eigenvalue gets lost in the continuous bulk of eigenvalues coming from the randomness in
the graph. This part of the spectrum, like that of a sufficiently dense Erdős-Rényi random graph, is asymptotically
distributed according to Wigner’s semicircle law [21]

P (�) =
1

2⇡c

p
4c � �2 .

DATA-DRIVEN COMMUNITY DETECTION
➤     

➤ Spectral Clustering estimators (2-community case): 

➤ Iterative algorithm: projected power iterations on 
shifted            :

Fiedler(M): eigenvector corresponding to 2nd smallest eigenvalue

ŷ = sign (Fiedler(A(G))) ,

A(G): linear operator defined on G, eg Laplacian � = D �A.

A(G)
M = kA(G)k1�A(G)

[ joint work with Lisha Li (UC Berkeley) ]



DATA-DRIVEN COMMUNITY DETECTION
➤ We consider a GNN generated by operators                 : 

➤They generate the so-called Bethe Hessian: 

❖ Second-order approximation of Bethe Free energy at 
critical points of BP. 

❖ In that case, Laplacian generator does not work: its 
spectrum is dominated by few nodes with dominant degree. 

➤ We train it by back propagation using a loss that is globally 
invariant to label permutations.

{1, A,D}

x̃ = ⇢ (✓1x+ ✓2Dx+ ✓3Ax) .

BH(r) = (r2 � 1)1� rA+D

[ joint work with Lisha Li (UC Berkeley) ]



➤ Stochastic Block Model Results: 

➤ we reach the detection threshold, matching the specifically designed 
spectral method. 

➤ Real-world community detection results on SNAP data 
[Leskovec et al]

REACHING DETECTION THRESHOLD ON SBM

binary, associative binary, disassociative
SNAP collection (Youtube, DBLP and Amazon), and we restrict the largest community
size to 800 nodes, which is a conservative bound, since the average community size on these
graphs is below 30.

We compare GNN’s performance with the Community-A�liation Graph Model (AGM).
The AGM is a generative model defined in [?] that allows for overlapping communities
where overlapping area have higher density. This was a statistical property observed in
many real datasets with ground truth communities, but not present in generative models
before AGM and was shown to outperform algorithms before that. AGM fits the data to
the model parameters in order give community predictions, and we use the recommended
default parameters. Table ?? compares the performance, measured with a 3-class {1, 2, 1+
2} classification accuracy up to global permutation 1 $ 2. We stress however that the
experimental setup is di↵erent from the one in [?], which may impact the performance
of AGM. Nonetheless, this experiment illustrates the benefits of data-driven models that
strike the right balance between expressive power to adapt to model mis-specifications and
structural assumptions of the task at hand.

Table 1: Snap Dataset Performance Comparison between GNN and AGM
Subgraph Instances Overlap Comparison

Dataset (train/test) Avg Vertices Avg Edges GNN AGMFit
Amazon 315 / 35 60 346 0.74± 0.13 0.76± 0.08
DBLP 2831 / 510 26 164 0.78± 0.03 0.64± 0.01
Youtube 48402 / 7794 61 274 0.9± 0.02 0.57± 0.01

7 Conclusion

In this work we have studied data-driven approaches to clustering with graph neural net-
works. Our results confirm that, even when the signal-to-noise ratio is at the lowest de-
tectable regime, it is possible to backpropagate detection errors through a graph neural
network that can ‘learn’ to extract the spectrum of an appropriate operator. This is made
possible by considering generators that span the appropriate family of graph operators that
can operate in sparsely connected graphs.

One word of caution is that obviously our results are inherently non-asymptotic, and
further work is needed in order to confirm that learning is still possible as |V | grows.
Nevertheless, our results open up interesting questions, namely understanding the energy
landscape that our model traverses as a function of signal-to-noise ratio; or whether the
network parameters can be interpreted mathematically. This could be useful in the study
of computational-to-statistical gaps, where our model could be used to inquire about the
form of computationally tractable approximations.
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[ joint work with Lisha Li (UC Berkeley) ]



➤ For small number of communities, the IT detection threshold 
is provably matched by (loopy) BP. 

➤ BP performs message-passing updates of the form 

➤ exact inference on simply connected graphs. 

➤ on general graphs, fixed points of BP correspond to critical points of 
the Bethe Free Energy.   

➤ Messages are defined and propagated over edges of     , and 
account for non-backtracking paths. 

BELIEF PROPAGATION

bj(xj) =
1

Zj
�̃j(xj ; y)

Y

i2N(j)

mij(xj) .

mij(xj)  
X

xi

0

@�̃i(xi; y) ij(xi, xj)
Y

k2N(i)\j

mki(xi)

1

A .

G



➤ For small number of communities, the IT detection threshold 
is provably matched by (loopy) BP. 

➤ BP performs message-passing updates of the form 

➤ exact inference on simply connected graphs. 

➤ on general graphs, fixed points of BP correspond to critical points of 
the Bethe Free Energy.   

➤ Messages are defined and propagated over edges of     , and 
account for non-backtracking paths. GNN version?

BELIEF PROPAGATION

bj(xj) =
1

Zj
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Y
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GRAPH NEURAL NETWORKS ON GRAPH HIERARCHIES
➤ The line graph of                     is a new graph                             

that models the adjacency of the edges:    

➤ We augment the GNN with analogous operations on          . 

➤ Related to Covariant Compositional Networks [Kondor et 
al’18], and neural message-passing [Gilmer et al.’17].

G = (V,E) L(G) = (V 0, E0)
V 0 ⇠= E

(source:wikipedia)

L(G)



COMPUTATIONAL-TO-STATISTICAL GAPS
➤ When # of communities > 4, there is a gap between the 

information theoretical threshold and current known 
polynomial-time algorithms: 

➤ Preliminary results for 5 communities,                   :

[Decelle, Krzakala, Moore, Zdeborova,’13]

N = 10
3 G {G,L(G)} BP

Overlap 29.5± 0.5 30.1± 0.5 30.4± 3

deg = 14.5



QUADRATIC ASSIGNMENT PROBLEM
➤ Find an assignment that optimizes the transportation cost 

between two graphs: 

➤ NP-hard 

➤ Contains the TSP as a particular instance.  

➤ Relaxations using SDP and Spectral Approaches. 

[with S. Villar (NYU), A. Nowak (NYU) and A. Bandeira (NYU)]

min
X2⇧n

Tr(A1XA2X
T ) .

⇧n: space of n⇥ n permutation matrices.



QUADRATIC ASSIGNMENT PROBLEM

➤ We learn approximate solutions using siamese graph neural 
networks:  

➤ We train the model to predict the correct permutation matrix 
on a dataset of planted solutions:  

G1 = PG2 +N

G2 ⇠ Erdos-Renyi

N ⇠ Erdos-Renyi

G2 ⇠ Random Regular

G1

G2

�

�

gnn

gnn

M = softmax[�(G1)�(G2)
T )]

MSinkhorn-Knopp

[with S. Villar (NYU), A. Nowak (NYU) and A. Bandeira (NYU)]



QUADRATIC ASSIGNMENT PROBLEM

➤ Our model runs in          , LowRankAlign is           SDP in     

➤ Current: What is the model learning? Link to friendly Graphs. 

➤ Current: Applications to Shape Correspondence, Unaligned 
language translation 

o(n2) o(n4)o(n3)

[with S. Villar (NYU), A. Nowak (NYU) and A. Bandeira (NYU)]



GIVENS FACTORIZATION OF UNITARY MATRICES

➤ Suppose we have a unitary matrix    (e.g. an eigenbasis) that 
we want to use extensively.  

➤ Complexity of Matrix-vector multiplication:  

➤ But structure on     can yield massive gains: 

[with D. Folque (NYU)]
U

⇥(n2) [Winograd]

U FFT ⇥(n log n) [Tukey]



GIVENS FACTORIZATION OF UNITARY MATRICES

➤ Suppose we have a unitary matrix    (e.g. an eigenbasis) that 
we want to use extensively.  

➤ Complexity of Matrix-vector multiplication:  

➤ But structure on     can yield massive gains:  

➤ General case?

[with D. Folque (NYU)]
U

⇥(n2) [Winograd]

U FFT ⇥(n log n) [Tukey]



GIVENS FACTORIZATION OF UNITARY MATRICES
➤ We consider Sparse Matrix Transforms given by Givens plane 

rotations:  

➤                        sufficient for any     ,   

➤ NP-complete, non-commutative manifold-optimization problem.  

➤ Use GNN model to learn such factors. 

[with D. Folque (NYU)]

U =
KY

k=1

O(ik, jk,↵k)

O(ik, jk,↵k): Rotation of ↵k in the plane {ik, jk}.
K =

n(n� 1)

2 U FFT : K = n log n



GIVENS FACTORIZATION OF UNITARY MATRICES

➤ We consider a simple inverse-problem setup with planted 
solution: 

➤ Model: a GNN on the fully-connected graph, where we learn 
both edge and node features. 
➤ Uses multiset loss to account for partial permutation invariance.  

➤ Preliminary results: matching greedy algorithm. 

(
U (l) :=

KY

k=1

O(i(l)k , j(l)k ,↵(l)
k )

)

lL

input labels

[with D. Folque (NYU)]



OPEN PROBLEMS
➤ Theory 

➤ Quantify how smoothness is created in GNN layers. 

➤ Intrinsic geometric stability. Alternatives to Gromov-Hausorff? 

➤ Learnability thresholds in statistical inference. 

➤ Useful to study computational-to-statistical gaps?  

➤ Vast areas of application 

➤ Algorithms: Learning approximations to combinatorial optimization. 

➤ Biostatistics 

➤ Social Networks: ranking, large-scale community detection. 

➤ Physics: Numerical Methods for more complex PDEs?



THANKS!


