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ConvNets: A breakthrough in image recognition...

IMAGENET

Deep learning

4.1%

2010 2011 2013 2014 2015 2016

> >
Handcraft features (SIFT) Learned features (end-to-end systems)

[1] LeCun, Bottou, Bengio, Haffner 1998
[2] Krizhevsky, Sutskever Hinton, 2012
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in speech recognition...

HMM
TR\ VT | Acoustic model Recog | RTO03S
h(M ) Observation \ WER | FSH

I W, ol Traditional 1-pass 27.4 23.6

features -adapt
Deep Learning 1-pass
-adapt

- “i(?bservation

[3] Dahl, Yu, Deng, Acero, 2010
[4] Hinton, Deng, Yu, Dahl et al. 2012
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Embeddings

Convolutions

Gated
Linear
Units

Attention

in language translation...

<p> They agree </s> <p>
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WMT’14 English-German BLEU
Wau et al. (2016) GNMT 26.20
Wuetal. (2016) GNMT + RL  26.30
ConvS2S 26.43
WMT’14 English-French BLEU
Zhou et al. (2016) 40.4
Wu et al. (2016) GNMT 40.35
Wu et al. (2016) GNMT +RL  41.16
ConvS2S 41.44
ConvS2S (10 models) 41.62

BLEU Time (s)

H_H L L I Tl

<p>

<p>

<s> Sie stimmen zu

Sie stimmen zu </s>

[5] Gehring, Auli, Grangier, Yarats, Dauphin, 2017
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GNMT GPU (K80) 31.20 3,028
GNMT CPU 88 cores 31.20 1,322
GNMT TPU 31.21 384
ConvS2S GPU (K40)b =1 33.45 327
ConvS2S GPU (M40) b =1 33.45 221
ConvS2S GPU (GTX-1080ti)) b=1  33.45 142
ConvS2S CPU 48 cores b =1 33.45 142
ConvS2S GPU (K40)b =5 34.10 587
ConvS2S CPU 48 cores b =5 34.10 482
ConvS2S GPU (M40)b =5 34.10 406
ConvS2S GPU (GTX-1080ti)) b=5  34.10 256




An architecture for high-dimensional learning

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5

INPUT
3232 6@28x28

S2: f. maps
6@14x14

|
‘ Full coanection ‘ Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

@ Curse of dimensionality:
dim(image) = 512 x 512 = 10°
For N=10 samples/dim = 101,000,000 points

@ ConvNets are powerful to solve high-
dimensional learning problems.

“I think you should be more explicit here in step two.”

Xavier Bresson 7



ConvNets

® Main assumption: Data (images, videos, sounds) are compositional,
they are formed of patterns that are:

® Local
@ Stationary
® Multi-scale (hierarchical)

@ ConvNets leverage the compositionality structure: They extract
compositional features and feed them to classifier, recommender,

etc (end-to-end).

AAAAA

g C
vertible B dalmatian
grille s| al
pickup ngus
beach wagon Ingus |ffordshire bullterrier

fire engine || dead-man's-fingers currant

Computer Vision NLP Drug discovery Games
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Key property

@ Locality: Property inspired by visual cortex neurons.

@ Local receptive fieldsl®l activate in the presence of local features.

Electrical signal
from brain

Recording electrode ——

Visual area
of brain

Stimulus : ;ﬁ

8 8 & 8 8

Neural response (spikes/sec)

°

40 20 0 20 40
Stimulus orientation (deg)

Neocognitron!”

[6] Hubel, Wiesel 1962
[7] Fukushima 1980
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Key property

@ Stationarity < Translation invariance
(global invariance)

@ Local stationarity <> Similar patches
are shared across the data domain

(local invariance, good for intra-class
variations)

Xavier Bresson
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Key property

@ Multi-scale: Simple structures combine to compose slightly more
abstract structures, and so on, in a hierarchical way.

@ Inspired by brain visual primary cortex (V1 and V2 neurons).

Features learned by ConvNet become increasingly more complex at deeper layers!8l.

[8] Zeiler, Fergus 2013

Xavier Bresson
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Implementation complexity

@ Locality: Compact support kernels
= O(1) parameters per filter.

@ Stationarity: Convolutional operators

= O(nlogn) in general (FFT) and f ®

O(n) for compact kernels.

2x2 max
pooling 6| 8

@ Multi-scale: Downsampling +
pooling = O(n)

7

- W] 0N =
W= NN

NI NIO | =
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Compositional layers

fi = I-th image feature (R,G,B channels), dim(f;) =n x 1
gl(k) = [-th feature map, dim(gl(k)) = nl( ) x 1
f1 gcl)ut
f 2 g : ggu"
- — -
) ) o
©) @) ©)
o o o
fp ggut

Compositional features consist of multiple convolutional 4+ pooling layers.

qk—1 dk—2
Convolutional layer gl(k) =¢ (Z Wl(l?,) * & (Z Wl(lz, Yy ( - fl’) ))

I'=1 =1
Activation, e.g. £(x) = max{x,0} rectified linear unit (ReLU)
Pooling gl(k)(x) = Hgl(k_l)(a:’) ' e N(z)||, p=1,2, or o

Xavier Bresson

13



ConvNets

C3: f. maps 16@10x10

INPUT C1: feature maps S4: f. maps 16@5x5

32x32

© 6 6 6 0

Xavier Bresson

6@28x28

S2: f. maps C5: layer .
6@14x14 120 ye %%layer 01gTPUT

I
| Ful confection ’ Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

Filters localized in space (Locality)

Convolutional filters (Stationarity)

Multiple layers (Multi-scale)

O(1) parameters per filter (independent of input image size 1)
O(n) complexity per layer (filtering done in the spatial domain)

14



Outline

» Part 1: Euclidean ConvNets

- Non-FEuclidean data
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Data domain for ConvNets

@ Image, volume, video: 2D,
, 2D+1 Euclidean
omains

@ Sentence, word, sound: 1D
uclidean domain

O ROMEO, ROMEO, WHEREFORE ART THOU ROMEO?

Although we use “wherefore,” I at al, as a synonym for “why," Juliet
uses the word In a more limited sense. By "wherefore?" Juliet means.
for what purpose?” If she had merely asked "Why art thou Romeo?”
she wouldn't be distinguishing the two major meanings of

‘Why"—"from what cause (In the past) and "for what purpose” (in the
future). "Wherefore clearly emphasizes the latter sense, which is why
‘whys and wherefores" are different things.

‘Wherefore® and Its partner “therefore" reflect the basic tendency of
Engl “where?” “there"—to.
Ideas, such as cause and effect,

WHAT'S IN A NAME? THAT WHICH WE CALL A
WORD WOULD SMELL AS SWEET

[Foeresmcns g e sakepers oy s s |

‘sweet” are Instant Bard, although the latter s, as many forget, merely a
paraphrase. From the romantic declamation to the crass
these phrases

flexibilty.

“What's n a name?” is the less specific of the two phrases, and also the
less common. Jullet here merely rehearses in a different form the point
of "What's a Montague,” moving, like a good Renaissance student, from
the particular to the general. Names In general, she Insists, ought to be
separable from the things they name. Romeo never does change his
‘name, and It wouldn't have done much good anyway. Whether or not
he's essentially a Montague, and Juliet essentially a Capulet, their
familles will continue to act that way.

That which we call a rose/ By any other word would smell as sweet”
seems bloated to the modern ear. But we're accustomed to the
paraphrase, which never occurred to the playwright or his audience. It
a il futlle to second-guess Shakespeare now, but he did have o fil
outa line and a half of blank verse, Regarding Juiets use of “word"
Instead of “name, we can perhaps be grateful; she already uses

‘name" six times In fifteen and a hal lines.

@ These domains have nice regular spatial structures.

= All ConvNet operations are math well defined and fast

Xavier Bresson

(convolution, pooling).




Non-Euclidean data

Functional networks 3D shapes

@ Also chemistry, NLP, physics, social science, communication networks, etc.

Xavier Bresson 17



Challenges

@ How to extend ConvNets to graph-structured data?

@ Assumption: Non-Euclidean data are locally stationary and manifest
hierarchical structures.

® How to define compositionality on graphs? (convolution and pooling
on graphs)

® How to make them fast? (linear complexity)

Xavier Bresson
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» Part 2: Spectral ConvNets for Fixed Graphs %/@

Xavier Bresson
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Problem setting

® Given fixed graph(s) G, and a set of signals s, on G to be
analyzed with ConvNets:

S

Functional activation
(fMRI)

Brain connectivity network (sMRI)
Fixed graph G

Xavier Bresson
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Spectral ConvNets

5 Pax:t 1: S
(Euclidean) . o
Signal s;: Image ConvNets 3381 Classification
New data
domain
—_ Part 2: J —
. Non-Euclidean ° . .
Signal s;: fMRI il Classification
end Skq ConvNets

AR i
L 4 “'"}\

Fixed graph G

Xavier Bresson 21



What do we need to generalize?”

@ Convolution and downsampling must be generalized from
Euclidean grid domains to graphs. How?

@ Spectral graph theory allows to redefine convolution in the
context of graphs with Fourier analysis.

@ Graph theory provide graph clustering techniques to
reformulate downsampling for graphs.

Xavier Bresson 22



Outline

» Part 2: Spectral ConvNets for Fixed Graphs
» Spectral Graph Theory

- Graph convolution: Graphs

Xavier Bresson

)’
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Graphs

@ Graph G=\V,¢&)

@ Vertices V={1,...,n}

@ Edges ECY xV

® Vertex weights 0; >0forieV

@ Edge weights aij > 0 for (i,j) € €

@ Vertex fields L*V)={f:V > R"}
Represented as = (f1,..., fn)

@ Hilbert space with inner product

<f7 9>L2(V) = Ziev a; [i9i

[9] Chung 1994

Xavier Bresson 24



Graph Laplacian

® Laplacian operator A : L?(V) — L?(V)

1
(Af)i =+ > ai(fi—fi)
*ji(ig)eE
difference between f and its local average (274
derivative on graphs)

@ C(Core operator in spectral graph theory.

@ Represented as a positive semi-definite n X n matrix
® Unnormalized Laplacian A=D-A
® Normalized Laplacian A=I-D1/2AD /2
® Random walk Laplacian A=I-D'A

where A = (a;;) and D = diag()_,; aij)

Xavier Bresson
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Outline

» Part 2: Spectral ConvNets for Fixed Graphs
» Spectral Graph Theory

- Graph convolution: Fourier modes

Xavier Bresson
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Spectral decomposition

@ A Laplacian of a graph of n vertices admits n eigenvectors:

Ad, =\, k=1,2,...

® EKigenvectors are real and orthonormal (¢, ¢rr)r2(v) = Okr/
(self-adjointness)

o Eigenvalues are non-negative O=A1 < A <. <A\,
(positive-semidefiniteness)

® Laplacian eignenvectors are also called Fourier basis functions/modes.

@ FEigendecomposition of graph Laplacian:

A=d"AP

where ® = (¢,...,¢,,) and A = diag(A1,...,\)

Xavier Bresson 27



Interpretation

¢ Find the smoothest orthonormal basis ® = (¢,...,¢,) on a graph

min Epi (@) st. [[¢u] =1, £=2,3,...n

¢, L span{ey,...,d,_1}

where Fy, is the Dirichlet energy = measure of smoothness of a function

Epi.(f) = fT Af
@ Solution: first n Laplacian eigenvectors

min  trace(®' A®) st. @' D=1
@ERan (. 7

~

|®||g Dirichlet norm

Xavier Bresson 28



Fourier modes

@ Fuclidean domain: LW v&

First eigenvectors of 1D Euclidean Laplacian = standard Fourier basis

@ Graph domain:

First Laplacian eigenvectors of a graph

Lap eigenvectors related to graph geometry
(s.a. communities, hubs, etc), spectral clustering!'”)

[10] Von Luxburg 2007

Xavier Bresson 29



Outline

» Part 2: Spectral ConvNets for Fixed Graphs %/@
» Spectral Graph Theory

- Graph convolution: Fourier analysis

Xavier Bresson
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Fuclidean Fourier analysis

@ A function f:[—m, 7 = R can be written as Fourier series:

E : —'Lk:x dCC/ e—zkx
2
k>0 _

-~

Fr=(Fre=%=) L2 o)

+ f /\+A3/\/\+
IV "V V

R I S

o Fourier basis ¢ """ = Laplace-Beltrami eigenfunctions:
— Ay, = ki
¢r = Fourier mode
k= frequency of Fourier mode

Xavier Bresson 31



Fourier analysis on graphs

@ A function f:V — R can be written as Fourier series!!!l:

n

fi= fo, Pr)L2(v) Pk,
k=1 ~-
fr

o f is the k-th graph Fourier coefficient.

® In matrix-vector notation, with the n x n Fourier matrix ® = |¢,,..., ¢, |

G =2 Dma@E=2D

Fourier / \ Inverse Fourier
transform transform

® Graph Fourier basis ®; = Laplacian eigenvectors :

graph Fourier mode
(square) frequency

Y

A, = A\p®,, with { P

[11] Hammond, Vandergheynst, Gribonval, 2011

Xavier Bresson 32



Outline

» Part 2: Spectral ConvNets for Fixed Graphs
» Spectral Graph Theory

- Graph convolution: convolution



Convolution in Euclidean space

® Given two functions f,g:|[—m, 7] = R their convolution is a function

T

(f*g9)(@)= [ [f(a")g(z—a)da’

— T

@ Shift-invariance: f(x —xg) *xg(x) = (f *g)(x — x9)

@ Convolution theorem: Convolution can be computed in the
Fourier domain as

@ Efficient computation using FFT: O(nlogn)

Xavier Bresson 34



Convolution in discrete Euclidean space

@ Convolution of two vectors f = (f1,...,fn) and g = (g1,...,9n) "

(f* g)i — Zg(z—m) mod n * Jm

_91 gs gdn i ) )
gn 91 g2 ... Gn-1 J1

frg = S :
gs g4 ... 01 g2 _fn_
_gg gs ... ... g1 |

A\ 7
-~

Circulant matrix
diagonalised by Fourier basis (Toeplitz)

= & 'f = &(®'god'f)

Xavier Bresson



Convolution on graphs

® Spectral convolution of f,g € L?(V) can be defined by analogy!!|
(f*xg)i= Z \(f, Or) L2 (V) <ga¢k>L2(V)j Dk,i

k>1 . N :
— product in the Fourier domain

A\ 7
~"

inverse Fourier transform

@ In matrix-vector notation

— (@ godf)

= ®diag(Gr,..., 0P f

G

— BG(A)®f = §(®AD)f

@ Not shift-invariant (G has no circulant structure)
@ Filter coefficients depend on basis ¢1,..., 0,

@ FExpensive computation (no FFT): O(n?)

[11] Hammond, Vandergheynst, Gribonval, 2011

Xavier Bresson

36



No shift invariance on graphs

@ A signal fon graph can be translated to vertex i:

@ FEuclidean domain

A

(a) Ts f

® Graph domain!'?|

[12] Shuman et al. 2016

Xavier Bresson

(b) Ty f (c) Tsn f
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Outline

» Part 2: Spectral ConvNets for Fixed Graphs
» Spectral Graph Theory

- Graph coarsening: Graph clustering

Xavier Bresson
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Graph dowsampling

® Goals:
@ Pool similar local features (max/average pooling).

@ Series of pooling layers create invariance to global geometric
deformations.

@ Challenges:

@ Design a multi-scale coarsening algorithm that preserves non-
linear graph structures.

@ How to make graph pooling fast?

Xavier Bresson
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Graph dowsampling

@ Graph downsampling < graph coarsening < graph partitioning:
Decompose G into smaller meaningful clusters.

Gl:O — G Gl:l

@ Graph partitioning is NP-hard = Approximation

Xavier Bresson
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Balanced cuts

@ Powerful combinatorial graph partitioning models:

@ Normalized cut!!3]

K
) Cut(Ck,C,j,f)
D Do A

Partitioning by min edge cuts.

@ Normalized association

K

Assoc(C)
g, 2 Vol(Cy,) o

= Partitioning by max vertex matching.

where Cut(A, B) := ) ;.4 jep @ijs Assoc(A) 1= i 4 e p ijy
VOI(A) = ZieA,jEB di, and dz = ZjEV Qij.

@ Both models are equivalent, but lead to different algorithms.

[13] Shi, Malik, 2000

Xavier Bresson
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Balanced cuts

@ Balanced cuts are NP-hard = most popular approximation
techniques focus on linear spectral relaxation (eigenproblem
with global solution).

@ Graph geometry are generally not linear = Graclus' algorithm
computes non-linear clusters that locally maximize the
Normalized Association.

@ Graclus algorithm offers a control of the coarsening ratio of = 2
(like image grid) using heavy-edge matchingl!!%,

[14] Dhillon, Guan, Kulis 2007
[15] Karypis, Kumar 1995

Xavier Bresson
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Outline

» Part 2: Spectral ConvNets for Fixed Graphs
» Spectral Graph Theory

- Graph coarsening: HEM

Xavier Bresson
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Heavy-Edge Matching (HEM)

@ HEM proceeds by two successive steps, vertex matching and
graph coarsening (that guarantees a local solution of Norm
assoc):

(1) Vertex matching: {i,j = argmax
J

l l l
a;; + 2(1,2-]- +aj;

l 1
di + d,

} (2): G = {

bssb dsh

aijl = Cut(Cl, C})
a -

+1 _

i

Assoc(C)

Graph coarsening/

clustering

-

_//

Matched vertices {o;,0;} are

merged into a super-vertex O

at the next coarsening level.

Xavier Bresson
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Outline

» Part 2: Spectral ConvNets for Fixed Graphs
» Spectral Graph Theory

)’

- Graph coarsening: binary tree indexing

Xavier Bresson
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Unstructured pooling

@ Sequence of coarsened graphs produced by HEM:

G G? Coarsening structure

(unstructured)

® Stores a table of indices for graph and all its coarsened versions

® Computationally inefficient

Xavier Bresson
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Fast graph pooling

@ Structured poolingl'8l: Arrangement of the node indexing such that
adjacent nodes are hierarchically merged at the next coarser level.

G G? Coarsening structure

@‘@ o]laJ2)ls )]s e 7]

(binary tree)

© As efficient as 1D-Euclidean grid pooling.

[18] Defferrard, Bresson, Vandergheynst 2016

Xavier Bresson
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Outline

» Part 2: Spectral ConvNets for Fixed Graphs %/@

» Spectral ConvNets
- SplineNets

Xavier Bresson
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Vanilla spectral graph ConvNets

@ Graph convolutional layer:

fi, = [-th data feature on graphs, dim(f;) =n x 1
g, = [-th feature map, dim(g;) =n x 1

- Wi
-+ = ol h e L ® 2

Y

L ne ®z

i he s
p
Conv. layer g = f Z Wl,l’ * fl’
I'=1

Activation, e.g. &(x) = max{x,0} rectified linear unit (ReLU)

[16] Bruna, Zaremba, Szlam, LeCun 2014

Xavier Bresson



Spectral graph convolution

@ Convolutional layer in the spatial domain:

g = ( *i)\‘ "
=1 S
"*ﬂ_ .-’l\;ﬁ:;

where W, ;. = matrix of graph spatial filter,

can also be expressed in the spectral domain (using gxf = ® g(A)CIJTf )

(Z T,

l'=1

where Wl,z' = n x n diagonal matrix of graph spectral filter.

We will denote the spectral filter without the hat symbol, i.e. W,/

Xavier Bresson

V
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Vanilla spectral graph ConvNets

@ Series of spectral convolutional layers:

NUEED
k k k—
gz():f Z (I)Wl(,l/)(I’ng(/ v
I'=1

with spectral coefficients W l(l;,) to be learned at each layer.

First spectral graph CNN architecture
No guarantee of spatial localization of filters
O(n) parameters per layer

© O O 6

O(n?) computation of forward and inverse Fourier transforms
¢, " (no FFT on graphs)

Filters are basis-dependent = does not generalize across graphs

®

[16] Bruna, Zaremba, Szlam, LeCun 2014

Xavier Bresson 51



Spatial localization and spectral smoothness!'”

@ In the Euclidean setting (by Parseval's identity)

+00 +00 8klb()\)
k
[ etupa = [ |50

— 0 — 0

2
d\

= Localization in space = smoothness in frequency domain

" A

Spatial localization Smooth spectral filter function

[17] Henaff, Bruna, LeCun 2015

Xavier Bresson



Smooth parametric spectral filter

® Parametrize the smooth spectral filter function w\) with a linear
combination of smooth kernel functions S1(A),...,5-(\), e.g. splines:

Wa(A) = Z a;B;(A)

|

Wa (X)) = Zajﬁjui) = (Ba); —> W = Diag(Ba)

where « = (a1,...,a,)" is the vector of filter parameters

[17] (Litman, Bronstein, 2014); Henaff, Bruna, LeCun 2015

Xavier Bresson 53



SplineNets

@ Series of parametric spectral convolutional layers:

NUEED
k k k—
gz():f Z (I)Wl(,l/)(I’ng(/ v
I'=1

with smooth spectral parametric coefficients Wl(li,) to be learned at each layer.

©

Fast-decaying filters in space

©

O(1) parameters per layer

®

O(n?) computation of forward and inverse Fourier transforms
¢, " (no FFT on graphs)

® Filters are basis-dependent = does not generalize across graphs

[17] Henaff, Bruna, LeCun 2015

Xavier Bresson 54



Outline

» Part 2: Spectral ConvNets for Fixed Graphs

» Spectral ConvNets

- ChebNets* [NIPS’16]



Spectral polynomial filters

@ Represent smooth spectral functions with polynomials of Laplacian eigenvalues:
Wa (A) = Z o N
§=0

-

where o = (a1,...,q,) is the vector of filter parameters.

@ Convolutional layer: Apply spectral filter to feature signal f

W (A)f = Z;:O Q4 Ajf 1-hop %
@ Key observation: Each Laplacian >< '
operation increases the support of a \
/

function by 1-hop = Exact control
the size of Laplacian-based filters.

[18] Defferrard, Bresson, Vandergheynst 2016
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Linear complexity

@ Application of the filter to a feature signal f

wa (A =Yooy A'f

® Denote X, = f and define X; = AX, = Af and the sequence X, = AX;_;

wa(A)f = Z;:O Oéij

@ Two important observations:
1. *No* need to compute the eigendecomposition of the Laplacian (¢,A).

2. Observe that {X;} are generated by multiplication of a sparse
matrix and a vector = Complexity is O(Er)=0(n) for sparse graphs.

@ Graph convolutional layers are GPU friendly.

Xavier Bresson 57



Spectral graph ConvNets with polynomial filters

@ Series of spectral convolutional layers

q(k—l)
k k k—
gV =c Y ewhaeTgl |,
l’'=1

with spectral polynomial coefficients W ﬁ? to be learned at each layer.

©

Filters are exactly localized in r-hops support

©

O(1) parameters per layer

©

No computation of ¢, " = O(n) computational complexity
(assuming sparsely-connected graphs)

®

Unstable under coefficients perturbation (hard to optimize)

®

Filters are basis-dependent = does not generalize across graphs

[18] Defferrard, Bresson, Vandergheynst 2016

Xavier Bresson
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Chebyshev polynomials

® Graph convolution with (non-orthogonal) monomial basis 1, z, 22, 23, - --

Wa (A =)

r ) 7

® Graph convolution with (orthogonal) Chebyshev polynomials

we (A)f = Z] —0 aJTJ(A)f

® Orthonormal on L?([—1,+1]) w.r.t.

@ Stable under perturbation of
coefficients

Xavier Bresson

+1 d\
F9) = I N9 725
1 \
0.5 |\ ) N — — -
0 \‘\ B _— :
—0.5 \ - ////
_1—1/ —0.8 —0.6 —0.4 —0.2 0 0.2 0.4 0.6 0.8
To,17,12,13
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ChebNets

@ Application of the filter with the scaled Laplacian A = 2ATA — T

with

~ ~

wa (A =37 a;THA) =30 XU

X (4)

T;(A)f
= 2AXU-D _x0U-2) X0 =f XD =Af

©

© O

©
®

Filters are exactly localized in r-hops support

O(1) parameters per layer

No computation of ¢, " = O(n) computational complexity
(assuming sparsely-connected graphs)

Stable under coefficients perturbation

Filters are basis-dependent = does not generalize across graphs

[18] Defferrard, Bresson, Vandergheynst 2016

Xavier Bresson
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Graph: a 8NN
graph of the
Euclidean grid

Numerical experiments

@ Running time

14

3000 6000 8000

n (input size)

100

Test accuracy

10

— Splinchtv
12| *—= ChebNet
@ 10
/] ?\ =z
C osf
:
N L/ op 06f
A=
= ol
)
A 02}
005 2000
@ Optimization
6.5 .
6.0l ~—— ChebNet
~—— Non-param
5.5¢ ~—— SplineNet
5.0
£ 45
= 7|
4.0+
3.5¢
3.0t
2.5 ' | ' '
500 1000 1500 2000
Iterations

Xavier Bresson

10000 12000

@ Accuracy

Model Order  Accuracy
LeNet5 - 99.33%
SplineNet 25 97.75%
ChebNet 25 99.14%

30}
20}

—— ChebNet

—— Non-param

~—— SplineNet

500

1000

1500 2000

Iterations
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Outline

» Part 2: Spectral ConvNets for Fixed Graphs %/@

» Spectral ConvNets

- GraphConvNets
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Graph convolutional nets: simplified ChebNets

@ Use Chebychev polynomials of degree 7=2 and assume A, =~ 2

wa(A)f = Oéof + Gfl(A — I)f
— aof — ;D V/2PWD1/2f

@ Further constrain @ = oy = —a1 to obtain a single-parameter filter

wo (A = a(I+ D Y2WD1/2)f

o Caveat: The eigenvalues of I+ D~Y/2WD~1/2 are now in [0,2]
= repeated application of the filter results in numerical instability

@ Fix: Apply a renormalization
wo (A = aD~Y2WD~1/2f

with W=W +Iand D = diag(zj# W)
[19] Kipf, Welling 2016
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Example: Citation networks

Method Cora’ PubMed”

Manifold Regularization® 59.5% 70.7%
Semidefinite Embedding” 59.0% 71.1% |
Label Propagation® 68.0% 63.0%
DeepWalk® 67.2% 65.3%
Planetoid” 75.7% 77.2%

Graph Convolutional Net® 81.59% 78.72%

Classification accuracy of different methods on citation network datasets

Monti et al. 2016; data: 1:2Sen et al. 2008; methods: 3Belkin et al. 2006; *Weston
et al. 2012; 5Zhu et al. 2003; Perozzi et al. 2014; 7Yang et al. 2016; 8Kipf, Welling
2016
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» Part 2: Spectral ConvNets for Fixed Graphs %/@

» Spectral ConvNets

- CayleyNets*
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Xavier Bresson

CayleyNets

Federico Monti (Universita della Svizzera Italiana)

Deep Geometric Matrix Completion: a Geometric Deep
Learning approach to Recommender Systems

Thursday, February 8, 2018, 10:10 - 10:50
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» Part 2: Spectral ConvNets for Fixed Graphs %/@

» Spectral ConvNets

- Multiple fixed graphs* [NIPS’17]

Xavier Bresson
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Spectral ConvNets for multiple fixed graphs

Federico Monti (Universita della Svizzera Italiana)

Deep Geometric Matrix Completion: a Geometric Deep
Learning approach to Recommender Systems

Thursday, February 8, 2018, 10:10 - 10:50

Xavier Bresson 68
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» Part 3: ConvNets for Variable Graphs

- Graph learning problems*
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Euclidean
space/grid

Standard
ConvNets

Xavier Bresson

Data domains

Non-Euclidean
space/graph

Fixed domain

Spectral graph
ConvNets

Spectral NNs offer rich
families of spectral filters

Change one single
edge

Variable domain

Can we still use
spectral graph
ConvNets?

Are spectral filters
transferable?
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Limitations of spectral NN techniques

® Poor generalization to new/different graphs: Fourier modes are
unstable under graph perturbations = bad transfer/generalization
of learned filters to new graphs:

B, Wd £+ Pg, W, f

@ Aligning Fourier modes is hard, and does not guarantee good
generalization.

@ Directed graphs: Definition of directed graph Laplacian is unclear.

@ Graphs with variable size: Spectral techniques work with fixed
size graphs.

Xavier Bresson
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Problem setting

@ Spectral ConvNets: Given fixed

graph(s) G, and a set of signals s, on AL el Punctional
G to be analyzed with ConvNets: ToAery L] w oL A activation (FMRI)
¥ «S ) r M
i v
‘I “‘Uv !‘“’k‘,“(‘ ﬂn“\ bl
w'{)‘ ’L ‘ / Kf‘ ‘W
S2
Brain connectivity network (sMRI)
Fixed graph G
@ ConvNets for arbitrary graphs: Given
a set of graphs G, and signals s, on
G|, to be analyzed with ConvNets:
G, s; G, S,

Molecules
Variable graphs G,

Xavier Bresson 72



Graph ConvNet architectures

>
Signal s,: Image

Signal s, on graph G:

Molecule with atoms

X

Xavier Bresson

Part 1:
(Standard) . >
ConvNets 222l (lassification
New data
domain
Part 2: S
Spectral .
ConvNets &% Classification
Fixed graph G
New data
Part 3: domain
Graph >
ConvNets A Classification

Variables graphs G,
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Graph neural networks

@ Spatial NN technique to deal with arbitrary graphs/27.

@ Minimal inner structures:

0

@ Invariant by vertex re-indexing (no graph matching is Ji 1
required)

@ Locality (only neighbors are considered) i, h,

@ Weight sharing (convolutional operations)

® Independence w.r.t. graph size

hi = fann ({hj L] — Z}>

@ What instantiation of f ?

[27] Scarselli et-al 2009
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Graph RNNs

@ Graph RNN: Multilayer perceptron!?”l

hi =Y Conwe(xihj) =Y Ac(Bo(Uz; + Vh;))

71 Jj—1

® Graph GRUI%2! (Gated Recurrent Unit)

hi = Ca.cru (33@'7 Z hj)

J—1

Fixed-point iterative scheme:

ht o= ) ki, W =u,

J—1
zf“ = U(Uzh§+Vzﬁf)
rf+1 = o(U.hl + V,.hb)
Pt = tanh(Uy(hf © ri™h) + VR
P = (1) O b+ o R

[27] Scarselli et-al 2009
[28] Li, Tarlow, Brockschmidt, Zemel, 2015
[29] Cho et-al, 2014
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Graph ConvNets

@ Vanilla graph ConvNetsl30;

ML = Conen (G D RE), W0 =,

Jj—1

= ReLU(U*h{ + VI3 hf), h™" =a,

7
J—1

layer /¢ layer £+ 1

[30] Sukhbaatar, Szlam, Fergus 2016

Xavier Bresson
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Sainaa Sukhbaatar (New York University)

Deep Architecture for Sets and Its Application to
Multi-agent Communication

Friday, February 9, 2018, 9:00 - 9:40
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Graph RNNs or ConvNets?

@ Common trend: Most published papers use RNN architectures
(GRU, LSTM) = Are they superior to ConvNet architectures
for arbitrary graphs?

@ Numerical study to compare both graph architectures!3!l for 2
basic and representative graph problems:

® Subgraph matchingl?7l
® Semi-supervised classification

[27] Scarselli et-al 2009
[31] Bresson, Laurent 2017
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Gated graph ConvNets

@ Graph ConvNets architecture with edge gating mechanism
(leveragingl30:32:33) and residualityl3!:

Wit =ReLU | U'hf+ > niy © VRS
J—1
edge gates
(anisotropic property)

ni; = o (A°hi + B*hY)

layer ¢ layer £ + 1

[31] Bresson, Laurent 2017

[30] Sukhbaatar, Szlam, Fergus 2016
[32] Tai, Socher, Manning, 2015

[33] Marcheggiani, Titov 2017

Xavier Bresson
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Graph learning problem 1

@ Pattern matching

@ Experimental results:

90 A

85 1

Accuracy

70 1

65 1

o]
o
!

~
vl
1

——— Proposed Graph ConvNets
~—— Marcheggiani — Titov

——— Sukhbaatar et al

=== Graph LSTM

—== Multilayer Li et al

3 4 5 6 7 8 9

L

10

Batch time (sec)

14

[y
N

fary
o
1

o
1

——— Proposed Graph ConvNets
——— Marcheggiani — Titov
—— Sukhbaatar et al

4 === Graph LSTM

—== Multilayer Li et al

@ All graph NNs are upgraded with residuality (offers 10% improvements).

[31] Bresson, Laurent 2017

Xavier Bresson
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Graph learning problem 2

@ Semi-supervised clustering

@ Experimental results:

>
1°)
e
=]
o
O
<<
—— Proposed Graph ConvNets \\
30 —— Marcheggiani — Titov AN
—— Sukhbaatar et al
209 --- Graph LSTM
——~ Multilayer Li et al
10 A
1 2 3 4 5 8 9 10

Batch time (sec)

1 —— Proposed Graph ConvNets

——— Marcheggiani — Titov

| —— Sukhbaatar et al

—== Graph LSTM
——~ Multilayer Li et al

-
-

Accuracy

—— Proposed Graph ConvNets
——— Marcheggiani — Titov

—— Sukhbaatar et al

=== Graph LSTM

—== Multilayer Li et al

50

@ Conclusion: Use ConvNets architecture for variable graphs.

Xavier Bresson

75

100 125 150 175 200
Time (sec)

81



Learning vs. non-learning techniques

@ Semi-supervised clustering

@ Comparing learning vs non-learning (variational) techniques/4:
82% vs 45% and test time is O(E) vs O(E%/?).

[34] Grady 2006

Xavier Bresson
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Remarks

@ Anisotropy vs isotropy:

@ Standard ConvNets produce anisotropic filters because .l' |IF
Euclidean grids have directional structure.

@ Graph ConvNets compute isotropic filters because there is
no notion of directions on arbitrary graphs. EIE'

@ How to get anisotropy back for graphs?

@ FEdge gatesl®! /attention®fl information to treat
neighbors differently.

e Differentiate graph edges and graph verticesl3® (e.g.
different atoms and atom connections)

@ Graph learning:

@ For social networks, brain connectivity, road network, the
graph is fixed and given.

@ For citations network, image network, NLP, the graph
must be constructed /learned.

[31] Bresson, Laurent 2017
[35] Gilmer et-al 2017
[36] Velickovic et-al 2017
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> Part 1: Euclidean ConvNets

- Architecture
- Non-FEuclidean data
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» Part 2: Spectral ConvNets for Fixed Graphs
» Spectral Graph Theory

- Graph convolution
- Graph coarsening

» Spectral ConvNets

- SplineNets

- ChebNets* [NIPS’16]

- GraphConvNets

- CayleyNets*

- Multiple fixed graphs™® [NIPS’17]

» Part 3: ConvNets for Variable Graphs

- Graph learning problems*

» Conclusion
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Conclusion

@ Contributions:

Generalization of ConvNets to data on graphs
Exact /tight localized filters on graphs

Linear complexity for sparse graphs

GPU implementation

Rich expressivity

Multiple and arbitrary graphs

@ Several potential applications in data and network sciences.

Xavier Bresson
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Papers and codes

@ Papers

@ Convolutional neural networks on graphs with fast localized spectral
filtering, M Defferrard, X Bresson, P Vandergheynst, NIPS, 2016,
arXiv:1606.09375

® Geometric matrix completion with recurrent multi-graph neural
networks, F Monti, MM Bronstein, X Bresson, NIPS, 2017,
arXiv:1704.06803

@ CayleyNets: Graph Convolutional Neural Networks with Complex
Rational Spectral Filters, R Levie, F Monti, X Bresson, MM Bronstein,
2017, arXiv:1705.07664

@ Residual Gated Graph ConvNets, X Bresson, T Laurent, 2017,
arXiv:1711.07553

Graph ConvNets in PyTorch

@ Codes o>
® https://github.com/xbresson/ 2@"‘

graph convnets pytorch

Xavier Bresson
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P R Thank you

(=) http: //www.ntu.edu.sg/home/xbresson
() https://github.com /xbresson
¥ https://twitter.com/xbresson
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