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ConvNets: A breakthrough in image recognition…
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4.1%Human	accuracy

Learned	features	(end-to-end	systems)Handcraft	features	(SIFT)

[1] LeCun, Bottou, Bengio, Haffner 1998
[2] Krizhevsky, Sutskever Hinton, 2012



in speech recognition...
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[3] Dahl, Yu, Deng, Acero, 2010
[4] Hinton, Deng, Yu, Dahl et al. 2012



in language translation...
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[5] Gehring, Auli, Grangier, Yarats, Dauphin, 2017



An architecture for high-dimensional learning
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Curse of dimensionality:
dim(image) = 512 x 512 ≈ 106

For N=10 samples/dim ⇒ 101,000,000 points

ConvNets are powerful to solve high-
dimensional learning problems.



ConvNets

Main assumption: Data (images, videos, sounds) are compositional, 
they are formed of patterns that are:

Local
Stationary
Multi-scale (hierarchical)
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ConvNets leverage the compositionality structure: They extract 
compositional features and feed them to classifier, recommender, 
etc (end-to-end). 

Computer Vision NLP Drug discovery Games



Key property

Locality: Property inspired by visual cortex neurons.
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Local receptive fields[6] activate in the presence of local features.

Neocognitron[7]

[6] Hubel, Wiesel 1962
[7] Fukushima 1980



Key property

Stationarity ⇔ Translation invariance 
(global invariance)
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Local stationarity ⇔ Similar patches 
are shared across the data domain 
(local invariance, good for intra-class 
variations)



Key property

Multi-scale: Simple structures combine to compose slightly more 
abstract structures, and so on, in a hierarchical way.
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Inspired by brain visual primary cortex (V1 and V2 neurons).

Features learned by ConvNet become increasingly more complex at deeper layers[8].

[8] Zeiler, Fergus 2013



Implementation complexity

Locality: Compact support kernels
⇒ O(1) parameters per filter.
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Stationarity: Convolutional operators 
⇒ O(nlogn) in general (FFT) and 
O(n) for compact kernels.

Multi-scale: Downsampling + 
pooling ⇒ O(n)



Compositional layers
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fl = l-th image feature (R,G,B channels), dim(fl) = n⇥ 1

g(k)
l = l-th feature map, dim(g(k)

l ) = n(k)
l ⇥ 1

Compositional features consist of multiple convolutional + pooling layers.

Convolutional layer g(k)
l = ⇠

 qk�1X

l0=1

W(k)
l,l0 ? ⇠

 qk�2X

l0=1

W(k�1)
l,l0 ? ⇠

 
· · · fl0

!!!

Activation, e.g. ⇠(x) = max{x, 0} rectified linear unit (ReLU)

Pooling g(k)
l (x) = kg(k�1)

l (x

0
) : x

0 2 N (x)kp p = 1, 2, or 1



ConvNets
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Filters localized in space (Locality)
Convolutional filters (Stationarity)
Multiple layers (Multi-scale)
O(1) parameters per filter (independent of input image size n)
O(n) complexity per layer (filtering done in the spatial domain)
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Ø Part 1: Euclidean ConvNets

- Non-Euclidean data
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Data domain for ConvNets
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Image, volume, video: 2D, 
3D, 2D+1 Euclidean 
domains 

Sentence, word, sound: 1D 
Euclidean domain

These domains have nice regular spatial structures.
⇒ All ConvNet operations are math well defined and fast (convolution, pooling).

2D grids

1D grid



Non-Euclidean data

Also chemistry, NLP, physics, social science, communication networks, etc.
Xavier	Bresson 17

Graphs/
Networks

=



Challenges

How to extend ConvNets to graph-structured data?

Assumption: Non-Euclidean data are locally stationary and manifest 
hierarchical structures.

How to define compositionality on graphs? (convolution and pooling 
on graphs)

How to make them fast? (linear complexity)

Xavier	Bresson 18
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Ø Part 2: Spectral ConvNets for Fixed Graphs
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Given fixed graph(s) G, and a set of signals sk on G to be 
analyzed with ConvNets:

Problem setting

Xavier	Bresson 20

Brain connectivity network (sMRI)
Fixed graph G

Functional activation 
(fMRI)

s1

s2



Signal sk: Image

Spectral ConvNets
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Part 1:
(Euclidean)
ConvNets Classification

Signal sk: fMRI
Part 2:

Non-Euclidean
ConvNets

Classification

New data 
domain

Fixed graph G



Convolution and downsampling must be generalized from 
Euclidean grid domains to graphs. How?

Spectral graph theory allows to redefine convolution in the 
context of graphs with Fourier analysis.

Graph theory provide graph clustering techniques to 
reformulate downsampling for graphs.

What do we need to generalize?

Xavier	Bresson 22
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Ø Part 2: Spectral ConvNets for Fixed Graphs
Ø Spectral Graph Theory

- Graph convolution: Graphs
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Graphs
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[9] Chung 1994

Graph

Vertices

Edges

Vertex weights

Edge weights

Vertex fields
Represented as

Hilbert space with inner product

G = (V, E)

V = {1, . . . , n}

E ✓ V ⇥ V

f = (f1, . . . , fn)

hf, giL2(V) =
P

i2V aifigi

L2(V) = {f : V ! Rh}

bi > 0 for i 2 V

aij � 0 for (i, j) 2 E



Graph Laplacian
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Laplacian operator

difference between f and its local average (2nd

derivative on graphs)

Core operator in spectral graph theory.

Represented as a positive semi-definite n × n matrix 

Unnormalized Laplacian

Normalized Laplacian

Random walk Laplacian

� : L2(V) ! L2(V)

(�f)i =
1

bi

X

j:(i,j)2E

aij(fi � fj)

where A = (aij) and D = diag(
P

j 6=i aij)

� = D�A

� = I�D�1A

� = I�D�1/2AD�1/2
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Ø Part 2: Spectral ConvNets for Fixed Graphs
Ø Spectral Graph Theory

- Graph convolution: Fourier modes
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Spectral decomposition
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A Laplacian of a graph of n vertices admits n eigenvectors:

Eigenvectors are real and orthonormal
(self-adjointness)

Eigenvalues are non-negative 
(positive-semidefiniteness)

Laplacian eignenvectors are also called Fourier basis functions/modes.

Eigendecomposition of graph Laplacian:

��k = �k�k, k = 1, 2, . . .

h�k,�k0iL2(V) = �kk0

0 = �1  �2  . . .  �n

where � = (�1, . . . ,�n) and ⇤ = diag(�1, . . . ,�n)

� = �T⇤�



Interpretation
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Find the smoothest orthonormal basis on a graph

where EDir is the Dirichlet energy = measure of smoothness of a function

Solution: first n Laplacian eigenvectors 

� = (�1, . . . ,�n)

min
�k

EDir(�k) s.t. k�kk = 1, k = 2, 3, . . . n

�k ? span{�1, . . . ,�k�1}

EDir(f) = f>�f

min
�2Rn⇥n

trace(�>��)| {z }
k�kG Dirichlet norm

s.t. �>� = I



Fourier modes
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Euclidean domain:

Graph domain:

Lap eigenvectors related to graph geometry 
(s.a. communities, hubs, etc), spectral clustering[10]

[10] Von Luxburg 2007 
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Ø Part 2: Spectral ConvNets for Fixed Graphs
Ø Spectral Graph Theory

- Graph convolution: Fourier analysis
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Euclidean Fourier analysis
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A function  can be written as Fourier series:

Fourier basis  = Laplace-Beltrami eigenfunctions:

f : [�⇡,⇡] ! R

f(x) =
X

k�0

1

2⇡

Z
⇡

�⇡

f(x0)e�ikx

0
dx

0

| {z }
f̂

k

=hf,e�ikxi
L

2([�⇡,⇡])

e

�ikx

�k = Fourier mode

k = frequency of Fourier mode

e�ikx

���k = k2�k

f



Fourier analysis on graphs
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[11] Hammond, Vandergheynst, Gribonval, 2011

A function                   can be written as Fourier series[11]:

is the k-th graph Fourier coefficient.

In matrix-vector notation, with the n x n Fourier matrix

Graph Fourier basis  =  Laplacian eigenvectors :

f̂k

fi =
nX

k=1

hf,�kiL2(V)| {z }
f̂k

�k,i

� =
⇥
�1, ...,�n

⇤

f̂ = �>f and f = �f̂

�k

f : V ! R

Fourier 
transform

Inverse Fourier 
transform

��k = �k�k
�k = graph Fourier mode

�k = (square) frequency

with
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Ø Part 2: Spectral ConvNets for Fixed Graphs
Ø Spectral Graph Theory

- Graph convolution: convolution
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Convolution in Euclidean space
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Given two functions their convolution is a function

Shift-invariance:

Convolution theorem: Convolution can be computed in the 
Fourier domain as

Efficient computation using FFT: O(nlogn)

f, g : [�⇡,⇡] ! R

(f ? g)(x) =

Z ⇡

�⇡
f(x0)g(x� x

0)dx0

f(x� x0) ? g(x) = (f ? g)(x� x0)

\(f ? g) = f̂ · ĝ



Convolution in discrete Euclidean space
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Convolution of two vectors f = (f1, . . . , fn)> and g = (g1, . . . , gn)>

(f ? g)i =

X

m

g
(i�m)mod n · fm

f ? g =

2

666664

g
1

g
2

. . . . . . gn
gn g

1

g
2

. . . gn�1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

g
3

g
4

. . . g
1

g
2

g
2

g
3

. . . . . . g
1

3

777775

| {z }
Circulant matrix

diagonalised by Fourier basis (Toeplitz)

2

64
f
1

.

.

.

fn

3

75

= �

2

64
ĝ
1

.

.

.

ĝn

3

75�>f = �
�
�>g ��>f

�



f ? g = � (�>g ��>f)

= � diag(ĝ1, . . . , ĝn)�
>

| {z }
G

f

= �ĝ(⇤)�>f = ĝ(�⇤�>)f = ĝ(�)f

Convolution on graphs
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Spectral convolution of   can be defined by analogy[11]

In matrix-vector notation

Not shift-invariant (G has no circulant structure) 

Filter coefficients depend on basis

Expensive computation (no FFT): O(n2)

(f ? g)i =
X

k�1

hf,�kiL2
(V)

hg,�kiL2
(V)| {z }

product in the Fourier domain

�k,i

| {z }
inverse Fourier transform

f, g 2 L2(V)

�1, . . . ,�n

[11] Hammond, Vandergheynst, Gribonval, 2011



(f) Ti00f(e) Ti0f(d) Tif

No shift invariance on graphs
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A signal f on graph can be translated to vertex i:

Euclidean domain

Graph domain[12]

[12] Shuman et al. 2016

Tif = f ? �i

(a) Tsf (b) Ts0f (c) Ts00f
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Ø Part 2: Spectral ConvNets for Fixed Graphs
Ø Spectral Graph Theory

- Graph coarsening: Graph clustering
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Graph dowsampling

Goals:

Pool similar local features (max/average pooling).

Series of pooling layers create invariance to global geometric 
deformations.

Challenges:

Design a multi-scale coarsening algorithm that preserves non-
linear graph structures.

How to make graph pooling fast?

Xavier	Bresson 39



Graph dowsampling
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Graph partitioning is NP-hard ⇒ Approximation

Graph downsampling ⇔ graph coarsening ⇔ graph partitioning: 
Decompose G into smaller meaningful clusters.



Powerful combinatorial graph partitioning models:

Normalized cut[13]

Normalized association

Both models are equivalent, but lead to different algorithms.

Balanced cuts
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Partitioning by min edge cuts.

Ck Cc
k

Partitioning by max vertex matching.

Ck

[13] Shi, Malik, 2000

max

C1,...,CK

KX

k=1

Assoc(Ck)

Vol(Ck)

min

C1,...,CK

KX

k=1

Cut(Ck, Cc
k)

Vol(Ck)

where Cut(A,B) :=

P
i2A,j2B aij , Assoc(A) :=

P
i2A,i2B aij ,

Vol(A) :=

P
i2A,j2B di, and di :=

P
j2V aij .



Balanced cuts
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Balanced cuts are NP-hard ⇒ most popular approximation 
techniques focus on linear spectral relaxation (eigenproblem
with global solution).

Graph geometry are generally not linear ⇒ Graclus[14] algorithm 
computes non-linear clusters that locally maximize the 
Normalized Association.

Graclus algorithm offers a control of the coarsening ratio of ≈	2
(like image grid) using heavy-edge matching[15].

[14] Dhillon, Guan, Kulis 2007
[15] Karypis, Kumar 1995
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Ø Part 2: Spectral ConvNets for Fixed Graphs
Ø Spectral Graph Theory

- Graph coarsening: HEM
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Heavy-Edge Matching (HEM)
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HEM proceeds by two successive steps, vertex matching and 
graph coarsening (that guarantees a local solution of Norm 
assoc):

Matched vertices {�i, �j} are

merged into a super-vertex

at the next coarsening level.

… …

Gl�1

…

…
…

Gl Gl+1 Gl+2

Graph coarsening/

clustering

…

…

�

i

j

(1) Vertex matching:

n

i, j = argmax

j

alii + 2alij + aljj
dli + dlj

o

(2): Gl+1
=

⇢
al+1
ij = Cut(Cl

i , C
l
j)

al+1
ii = Assoc(Cl

i)
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Ø Part 2: Spectral ConvNets for Fixed Graphs
Ø Spectral Graph Theory

- Graph coarsening: binary tree indexing
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Unstructured pooling

Sequence of coarsened graphs produced by HEM:

Xavier	Bresson 46

Stores a table of indices for graph and all its coarsened versions

Computationally inefficient



Fast graph pooling

Structured pooling[18]: Arrangement of the node indexing such that 
adjacent nodes are hierarchically merged at the next coarser level.

Xavier	Bresson 47

As efficient as 1D-Euclidean grid pooling.

[18] Defferrard, Bresson, Vandergheynst 2016
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Ø Part 2: Spectral ConvNets for Fixed Graphs

Ø Spectral ConvNets
- SplineNets
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Vanilla spectral graph ConvNets

Graph convolutional layer:

Xavier	Bresson 49

[16] Bruna, Zaremba, Szlam, LeCun 2014

fl = l-th data feature on graphs, dim(fl) = n⇥ 1

gl = l-th feature map, dim(gl) = n⇥ 1

Conv. layer gl = ⇠

 
pX

l0=1

Wl,l0 ? fl0

!

Activation, e.g. ⇠(x) = max{x, 0} rectified linear unit (ReLU)

⇒



Spectral graph convolution
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Convolutional layer in the spatial domain:

where          = matrix of graph spatial filter,

can also be expressed in the spectral domain

where         = n x n diagonal matrix of graph spectral filter.

We will denote the spectral filter without the hat symbol, i.e. 

gl = ⇠

 
pX

l0=1

Wl,l0 ? fl0

!
,

Wl,l0

(using g ? f = � ĝ(⇤)�>f)

Ŵl,l0

Wl,l0

gl = ⇠

 
pX

l0=1

�Ŵl,l0�
>fl0

!
,

�



Vanilla spectral graph ConvNets
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Series of spectral convolutional layers:

with spectral coefficients         to be learned at each layer. 

g(k)
l = ⇠

0

@
q(k�1)X

l0=1

�W(k)
l,l0�

>g(k�1)
l0

1

A ,

W(k)
l,l0

First spectral graph CNN architecture
No guarantee of spatial localization of filters
O(n) parameters per layer
O(n2) computation of forward and inverse Fourier transforms 
φ,	φT (no FFT on graphs)
Filters are basis-dependent ⇒ does not generalize across graphs

[16] Bruna, Zaremba, Szlam, LeCun 2014



Spatial localization and spectral smoothness[17]
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In the Euclidean setting (by Parseval's identity)

⇒ Localization in space = smoothness in frequency domain

Smooth spectral filter function

,

�

Spatial localization

Z +1

�1
|x|2k|w(x)|2dx =

Z +1

�1

����
@

k
ŵ(�)

@�

k

����
2

d�

w(x) ŵ(�)

[17] Henaff, Bruna, LeCun 2015



Smooth parametric spectral filter
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[17] (Litman, Bronstein, 2014); Henaff, Bruna, LeCun 2015

Parametrize the smooth spectral filter function         with a linear 
combination of smooth kernel functions , e.g. splines:

where                           is the vector of filter parameters

�1(�), . . . ,�r(�)

↵ = (↵1, . . . ,↵r)>

)

) W = Diag(B↵)

w↵(�) =
rX

j=1

↵j�j(�)

w↵(�i) =
rX

j=1

↵j�j(�i) = (B↵)i

w(�)

w(�)



SplineNets
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Series of parametric spectral convolutional layers:

with smooth spectral parametric coefficients         to be learned at each layer. 

g(k)
l = ⇠

0

@
q(k�1)X

l0=1

�W(k)
l,l0�

>g(k�1)
l0

1

A ,

W(k)
l,l0

Fast-decaying filters in space
O(1) parameters per layer
O(n2) computation of forward and inverse Fourier transforms 
φ,	φT (no FFT on graphs)
Filters are basis-dependent ⇒ does not generalize across graphs

[17] Henaff, Bruna, LeCun 2015



Outline

Ø Part 2: Spectral ConvNets for Fixed Graphs

Ø Spectral ConvNets

- ChebNets* [NIPS’16]
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Spectral polynomial filters
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Represent smooth spectral functions with polynomials of Laplacian eigenvalues:

where                           is the vector of filter parameters.

Convolutional layer: Apply spectral filter to feature signal f

w↵(�) =
rX

j=0

↵j�
j

↵ = (↵1, . . . ,↵r)>

w↵(�)f =
Pr

j=0 ↵j�
jf

Key observation: Each Laplacian 
operation increases the support of a 
function by 1-hop ⇒ Exact control 
the size of Laplacian-based filters.

s=heat 
source

1-hop

2-hop�� · · ·�| {z }
�j

�[18] Defferrard, Bresson, Vandergheynst 2016



Linear complexity
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Application of the filter to a feature signal f

Denote            and define                          and the sequence

Two important observations:

1. *No* need to compute the eigendecomposition of the Laplacian (φ,Λ).

2. Observe that {Xj} are generated by multiplication of a sparse 
matrix and a vector ⇒ Complexity is O(Er)=O(n) for sparse graphs.

Graph convolutional layers are GPU friendly.

w↵(�)f =
Pr

j=0 ↵j�
jf

Xj = �Xj�1X0 = f

w↵(�)f =
Pr

j=0 ↵jXj

X1 = �X0 = �f



Spectral graph ConvNets with polynomial filters
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Series of spectral convolutional layers

with spectral polynomial coefficients          to be learned at each layer. 

g(k)
l = ⇠

0

@
q(k�1)X

l0=1

�W(k)
l,l0�

>g(k�1)
l0

1

A ,

W(k)
l,l0

Filters are exactly localized in r-hops support 
O(1) parameters per layer
No computation of φ,	φT ⇒ O(n) computational complexity 
(assuming sparsely-connected graphs) 
Unstable under coefficients perturbation (hard to optimize)
Filters are basis-dependent ⇒ does not generalize across graphs

[18] Defferrard, Bresson, Vandergheynst 2016



Chebyshev polynomials
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Graph convolution with (non-orthogonal) monomial basis

Graph convolution with (orthogonal) Chebyshev polynomials

w↵(�)f =
Pr

j=0 ↵j�
jf

1, x, x2
, x

3
, · · ·

Orthonormal on

Stable under perturbation of 
coefficients

L2([�1,+1]) w.r.t. hf, gi =
R +1
�1 f(�̃)g(�̃) d�̃p

1��̃2

T0, T1, T2, T3

w↵(�̃)f =
Pr

j=0 ↵jTj(�̃)f



ChebNets
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[18] Defferrard, Bresson, Vandergheynst 2016

Application of the filter with the scaled Laplacian

with

�̃ = 2��1
n �� I

X(j) = Tj(�̃)f

= 2�̃X(j�1) �X(j�2), X(0) = f , X(1) = �̃f

Filters are exactly localized in r-hops support 
O(1) parameters per layer
No computation of φ,	φT ⇒ O(n) computational complexity 
(assuming sparsely-connected graphs) 
Stable under coefficients perturbation
Filters are basis-dependent ⇒ does not generalize across graphs

w↵(�̃)f =
Pr

j=0 ↵jTj(�̃)f =
Pr

j=0 ↵jX(j)



Numerical experiments
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Running time Accuracy

Optimization

Graph: a 8-NN 
graph of the 

Euclidean grid

i

j



Outline

Ø Part 2: Spectral ConvNets for Fixed Graphs

Ø Spectral ConvNets

- GraphConvNets
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Graph convolutional nets: simplified ChebNets
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[19] Kipf, Welling 2016

Use Chebychev polynomials of degree r=2 and assume

Further constrain to obtain a single-parameter filter

Caveat: The eigenvalues of are now in [0,2]
⇒ repeated application of the filter results in numerical instability

Fix: Apply a renormalization

with

�n ⇡ 2

↵ = ↵0 = �↵1

w↵(�)f = ↵0f + ↵1(�� I)f

= ↵0f � ↵1D
�1/2WD�1/2f

w↵(�)f = ↵(I+D�1/2WD�1/2)f

I+D�1/2WD�1/2

w↵(�)f = ↵D̃�1/2W̃D̃�1/2f

W̃ = W + I and D̃ = diag(
P

j 6=i w̃ij)



Example: Citation networks
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Ø Part 2: Spectral ConvNets for Fixed Graphs

Ø Spectral ConvNets

- CayleyNets* 
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Federico Monti (Universita della Svizzera Italiana)

Deep Geometric Matrix Completion: a Geometric Deep 
Learning approach to Recommender Systems

Thursday, February 8, 2018, 10:10 - 10:50

CayleyNets
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Ø Part 2: Spectral ConvNets for Fixed Graphs

Ø Spectral ConvNets

- Multiple fixed graphs* [NIPS’17]
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Federico Monti (Universita della Svizzera Italiana)

Deep Geometric Matrix Completion: a Geometric Deep 
Learning approach to Recommender Systems

Thursday, February 8, 2018, 10:10 - 10:50

Spectral ConvNets for multiple fixed graphs

Xavier	Bresson 68
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Ø Part 3: ConvNets for Variable Graphs
- Graph learning problems*
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Data domains
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Euclidean 
space/grid

Non-Euclidean 
space/graph

Change one single 
edge

Standard 
ConvNets

Spectral graph 
ConvNets

⇒

Spectral NNs offer rich 
families of spectral filters

Can we still use 
spectral graph 

ConvNets?

Fixed domain Variable domain

Are spectral filters 
transferable?⇒



Limitations of spectral NN techniques
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Poor generalization to new/different graphs: Fourier modes are 
unstable under graph perturbations ⇒ bad transfer/generalization 
of learned filters to new graphs:

Aligning Fourier modes is hard, and does not guarantee good 
generalization.

Directed graphs: Definition of directed graph Laplacian is unclear.

Graphs with variable size: Spectral techniques work with fixed 
size graphs.

�G1W�>
G1
f 6= �G2W�>

G2
f



Spectral ConvNets: Given fixed 
graph(s) G, and a set of signals sk on 
G to be analyzed with ConvNets:

Problem setting
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ConvNets for arbitrary graphs: Given 
a set of graphs Gk and signals sk on 
Gk to be analyzed with ConvNets:

G1, s1 G2, s2

Brain connectivity network (sMRI)
Fixed graph G

Functional 
activation (fMRI)

s1

s2

Molecules
Variable graphs Gk



Signal sk: Image

Graph ConvNet architectures
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Part 1: 
(Standard)
ConvNets Classification

Signal sk: fMRI
Part 2:
Spectral

ConvNets Classification

New data 
domain

Fixed graph G

Signal sk on graph Gk: 
Molecule with atoms

Part 3:
Graph

ConvNets Classification
Variables graphs Gk

New data 
domain



Graph neural networks
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Spatial NN technique to deal with arbitrary graphs[27].

Minimal inner structures:
Invariant by vertex re-indexing (no graph matching is 
required)
Locality (only neighbors are considered)
Weight sharing (convolutional operations)
Independence w.r.t. graph size

What instantiation of f ?

[27] Scarselli et-al 2009

hi = fGNN ({hj : j ! i})

j, hj

i, hi

W
W



Graph RNNs
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Graph RNN: Multilayer perceptron[27]

Graph GRU[28,29] (Gated Recurrent Unit)

j, hj

i, xi

hi = CG-GRU(xi,

X

j!i

hj)

hi =
X

j!i

CG-MLP(xi, hj) =
X

j!i

A�(B�(Uxi + V hj))

[27] Scarselli et-al 2009 
[28] Li, Tarlow, Brockschmidt, Zemel, 2015
[29] Cho et-al, 2014
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Fixed-point iterative scheme:



Graph ConvNets
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Vanilla graph ConvNets[30]:

[30] Sukhbaatar, Szlam, Fergus 2016
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Sainaa Sukhbaatar (New York University)

Deep Architecture for Sets and Its Application to 
Multi-agent Communication

Friday, February 9, 2018, 9:00 - 9:40
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Graph RNNs or ConvNets?
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Common trend: Most published papers use RNN architectures 
(GRU, LSTM) ⇒ Are they superior to ConvNet architectures 
for arbitrary graphs?

Numerical study to compare both graph architectures[31] for 2 
basic and representative graph problems:

Subgraph matching[27]

Semi-supervised classification

[27] Scarselli et-al 2009 
[31] Bresson, Laurent 2017



Gated graph ConvNets
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Graph ConvNets architecture with edge gating mechanism 
(leveraging[30,32,33]) and residuality[31]:

[31] Bresson, Laurent 2017
[30] Sukhbaatar, Szlam, Fergus 2016
[32] Tai, Socher, Manning, 2015
[33] Marcheggiani, Titov 2017
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Graph learning problem 1

Xavier	Bresson 80

Pattern matching

Experimental results:

All graph NNs are upgraded with residuality (offers 10% improvements).
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[31] Bresson, Laurent 2017



Semi-supervised clustering

Experimental results:

Conclusion: Use ConvNets architecture for variable graphs.

Graph learning problem 2
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G

C1

C2

0

1

2
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Semi-supervised clustering

Comparing learning vs non-learning (variational) techniques[34]: 
82% vs 45% and test time is O(E) vs O(E3/2).

Learning vs. non-learning techniques
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G

C1

C2

0

1

2

C0

[34] Grady 2006



Remarks
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Anisotropy vs isotropy:
Standard ConvNets produce anisotropic filters because 
Euclidean grids have directional structure.
Graph ConvNets compute isotropic filters because there is 
no notion of directions on arbitrary graphs.
How to get anisotropy back for graphs? 

Edge gates[31]/attention[36] information to treat 
neighbors differently.
Differentiate graph edges and graph vertices[35] (e.g. 
different atoms and atom connections)

Graph learning:
For social networks, brain connectivity, road network, the 
graph is fixed and given.
For citations network, image network, NLP, the graph 
must be constructed/learned.

[31] Bresson, Laurent 2017
[35] Gilmer et-al 2017
[36] Velickovic et-al 2017



Outline

Ø Conclusion
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Conclusion

Contributions:

Generalization of ConvNets to data on graphs 
Exact/tight localized filters on graphs
Linear complexity for sparse graphs
GPU implementation 
Rich expressivity
Multiple and arbitrary graphs 

Several potential applications in data and network sciences.
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Papers and codes

Papers
Convolutional neural networks on graphs with fast localized spectral 
filtering, M Defferrard, X Bresson, P Vandergheynst, NIPS, 2016, 
arXiv:1606.09375 
Geometric matrix completion with recurrent multi-graph neural 
networks, F Monti, MM Bronstein, X Bresson, NIPS, 2017, 
arXiv:1704.06803
CayleyNets: Graph Convolutional Neural Networks with Complex 
Rational Spectral Filters, R Levie, F Monti, X Bresson, MM Bronstein, 
2017, arXiv:1705.07664
Residual Gated Graph ConvNets, X Bresson, T Laurent, 2017, 
arXiv:1711.07553

Xavier	Bresson 86

Codes
https://github.com/xbresson/
graph_convnets_pytorch



Thank you
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http://www.ntu.edu.sg/home/xbresson
https://github.com/xbresson
https://twitter.com/xbresson


