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» Most of the work presented in this talk stemmed from work from two of my PhD
students

« Reuben Dorent, ongoing PhD, working on hetero-modal learning

« Guotai Wang, PhD between 2014-2018 on minimally interactive segmentation
« Currently associate professor at the at University of Electronic Science and
Technology of China
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> > Summer School: Mathematics in Brain Imaging

Summer School: Mathematics in Brain Imaging
JULY 14 - 25, 2008

http: //www.ipam.ucla.edu/programs/summer-schools/summer-school-mathematics-in-brain-imagin

Neurolmage 45 (2009) S1-S2

Contents lists available at ScienceDirect

Neurolmage

journal homepage: www.elsevier.com/locate/ynimg

Editorial

Special Issue on Mathematics in Brain Imaging

Statistics Computing on Manifolds: from Riemannian Geometry to Computational Anatomy

Xavier Pennec

Institut National de Recherche en Informatique Automatique (INRIA)

Projet Epidaure

Computational anatomy aims at modeling the biological variability of the human anatomy.

To reach this goal, the method Is to identify anatomically representative geometric features (points, tensors, curves, surfaces, volume transformations), and to describe and
compare their statistical distribution in different populations. Unfortunately, geometric features often belong to manifolds that are not vector spaces. Based on a Riemannian
manifold structure, we will detail how one can develop a consistent framework for statistical computing on manifolds, starting with the notions of mean value and covariance

matrix of a random element, normal law, Mahalanobis distance and test. Then, we will extend the Ri computing

k to PDEs for smoothing and interpolation of
fields of geometric elements with the example of positive define symmetric matrices (tensors). We show that the choice of a convenient Riemannian metric allows to generalize
consistently to tensor fields many important geometric data processing algorithms such as interpolation, filtering, diffusion and restoration of missing data. This framework will be
exemplified with the modeling of the brain variability from a dataset of lines on the cerebral cortex. The resulting dense 3D variability map can be seen as the diagonal elements
of the Green's function of the Brain accross subjects. This modeling can be extended with non-diagonal element by computing significantly correlated regions in the brain. Finally,

we will discuss some of the methods that have been recently introduced to compute statistics on diffeomorphisms.

Audio (MP3 File, Podcast Ready) Presentation Files (Zip Archive)

Back to School: ics in Brain

http://www.ipam.ucla.edu/abstract/?tid=7413&pcode=MBI2008

Diffeomorphic demons: Efficient non-parametric image registration

T Vercauteren, X Pennec, A Perchant, N Ayache - Neurolmage, 2009 - Elsevier

We propose an efficient non-parametric diffeomorphic image registration algorithm based on
Thirion's demons algorithm. In the first part of this paper, we show that Thirion's demons
algorithm can be seen as an optimization procedure on the entire space of displacement ...

Yr 99 Cited by 1128 Related articles Web of Science: 653

htips://www.sciencedirect.com/science/journal/10538119/45/1/supp/S1
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image courtesy of Bilgeretal.  * K€y role of medical imaging

= * Pre-operative planning
 Intra-operative navigation / guidance
« Post-operative assessment

« Challenges

* Only partial standardisation of imaging
Image courtesy of Stechison —  Intra-operative changes
 Interpretation difficulties

 Cognitive workload

« Requirements
 Integrate in the workflow
 Only partial annotations for learning
 Leave the clinical team in control
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Machine Q) iRm0  Hetero-modality challenge
learning model
Practical clinical workflows rarely
VNGRSt provides all modalities for every

» Tissue types patient
e Lesion contours — Need to handle hetero-modal
scenarios

Naive solutions are suboptimal

« Exploiting only common
modality

« Zero filling

« Learning imputation as pre-
processing
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Training datasets in medical imaging

BRAIN PARCELLATIONS

Heterogeneous dataset challenge

Training datasets are usually task
specific

— Need to handle multi-task learning
innovatively

=R S
: DESIkan strle .l' 4 '
' Lilliany

andreas.horn@charite.de
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Robustness challenge

Despite some predictions, robustness will
remain a key issue

4 5'" | N
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o
L]

Automated

refinement

truth §

30 Jan 2020 IPAM Workshop on Deep Learning and Medical Applications - Tom Vercauteren 7






Missing input modalities: the hetero-modality challenge

Possible solutions to deal with missing modalities
 Input filled with zeros

 Synthesising missing 3D modalities:
- Generative models (ex: GAN, VAE)

 Creating a common feature space that encodes the shared
information
—> Arithmetic operations (moments)
- Hetero-modal variational encoder-decoder

Treat the segmentation as a missing modality
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Hetero-modal architecture via arithmetic fusion

« Extract features from each modality independently

« Fuse modality-agnostic latent features using arithmetic operations (e.g. mean)

 Can we formalise the fusion in a probabilistic graphical model?

)

16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 32
— \
. . d Block with residual
|:| Inst. 1x1x1 convolutions ReLU KE Inst. 3x3x3 convolutions ReLU [———— connections
Norm. Kernel Norm. Kernel Mean
o orm n Kernels - orm n Kernels _L_D_.I_ dilated by a factor d

Havaei, et al. HeMIS: Hetero-modal image segmentation. MICCAI 2016.
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R Dorent et al. Hetero-modal variational encoder-decoder for joint

All modalities and the segmentation considered modality completion and segmentation. Proc. MICCAI 2019.
conditionally independent given latent features z

° p@('zawlv"'aajn) :p(Z) H?:lpe(x’Az)

@ @ @ @ @ Prior| |Parametrised with

Ex: T1 Tlc T2 FLAIR Seg (Typically modelled| |a neural network
as Gaussian)| |(decoder recons.)

Auto-encoder objective: maximize the marginal log-likelihood

L(x;0) = log(pe(x1, ..., 2n)) = log ([ pe(x]|2)p(z))

l

intractable
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Introduction of another parametric distribution (encoder provides parameters). Typically:

e (2|x) = N (2; g (%), Xy (%))

For any distribution ¢ (Z ‘ X) one can exploit the following lower-bound of the log-likelihood:

L(x;0) > ELBO(x;0,¢) = By, (2x)[log(pe(x]2))] — KL[ge(2]x)||p(2)]

Reconstruction loss Regularization term
Estimated by sampling Closed form between
from Gaussian q,(z|x) parameters (Gaussians)

ELBO maximal w.r.t. ¢» when Q¢(z|x) = Do (Z|X)

Kingma, D.P., Welling, M. Auto-encoding variational Bayes. ICLR 2014
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Generalising multi-modal auto-encoder to missing modalities (including segmentation) by
decomposing the latent posteriors as modality-specific latent posteriors

9 po(2]x) o p(2) Ty 205

(%) o< p(2) [Ti=1 9. (2]2:)
@ @ @ @ @ 4 pT dé 1

Ex: T1 Tlc T2FLAIR Seg Prior = Use modality-specific

probabilistic encoder

Assume all modality-specific variational posteriors modeled with Gaussians:
qz(z|xz) :N(Z7ILL¢?,($7’)7Z¢'L($Z)) p(z) :N(O,I)

q4(2|x) is Gaussian with mean and covariance defined by a closed-form formula:

Yo = (I + Z E;il)_l and py = Z;l(z Z;il,uq;i) Principled fusion operation
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Let P denote the set of all possible non-empty combinations of the n modalities.

Goal: optimizing the log-likelihood when 2 encoded with a random subset 7 € P drawn with a
probability Cv ¢

- we model G (Z ’X) as a mixture of Gaussian

qg(2]x) = Z Uy (2|%x)
TP
> Given the convexity of the KL divergence and ) ep Or =1

L(x:0,0) > > an(Eqr (), 10g(pe(x]2))] — KL[g] (2[xx)|[p(2)])
TP ™ ~

ELBO7 (x)
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@ All observed (non-missing) modalities encoded independently
(@ Modality-specific features maps combined to produce a multi-resolution hidden variable
® All modalities and segmentation independently decoded

/ [ ENCODERS ] \ /[@ orPGRA?B;JszT\N]\ / [ DECODERS] \

z1 ~ N (1, 1) ||H

Segmentation
+

Image modality

'_sz_ ________ —’(,U-?'V,],Zfi,,l) Ek = (I+ ZEI_I})_I

ﬂ _________ (fiz2,Xi2) Hie = 221(; Zz‘_,li/v‘i) 2y ~ N (2, 2)
le

mage W WLIM -————— —(1i,3,2i,3) \ / 2 ~ Nps, )

Modality
r——"(ll-i,4,27:,4) \24 ~ N (g, 24) /

8
-
Ilnst. Leaky- | N 3x3x3 |Inst. Leaky- | N 3x3x3 H N 1x1x1 ® Concat sz Bilinear 1x2 2x2x2 ]
N N

Norm RelU conv. |Norm RelLU conv. conv. Upsampling max pooling
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Recons.
FLAIR

Ground Truth

T1 +T1c T1+T1 c+T2 T1+T1c+T2+FLAIR

Recons ‘ o 6

Input FLAIR FLAIR+T2 FLAIR+T2+T1c FLAIR+T2+T1c+T1 Ground Truth

Recons.
Seg

Input  FLAIR FLAIR+T2 FLAIR+T2+T1 c FLAIR+T2+T1c+T1 Ground Truth
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 Models comparison:
- HeMIS: architecture in [2] fusing modality-specific maps via arithmetic operations.
- U-HeMIS: U-Net + modality specific features fused with first moment.
- U-HVED: the hetero-modal multi-level variational auto-encoder
- Sing: U-Net (1 encoder, 1 decoder) trained for each modality specific subset (i.e. 15 models)

Dice (%) for combinations of available (@) and missing (Q) modalities. * significant improvement — Wilcoxon test p<0.05

Modalities Complete Core Enhancing
F T\ Tie T, | HeMIS U-HeMIS U-HVED | Sing || HeMIS U-HeMIS U-HVED | Sing || HeMIS U-HeMIS U-HVED | Sing
o o o o 38.6 79.2 80.9" 82.6 19.5 50.0 54.1% 54.9 0.0 23.3 30.8" 34.2
o o ° o 2.6 58.5 62.4" 70.4 6.5 58.5 66.7" 71.5 111 60.8 65.5" 70.4
o e o o 0.0 54.3" 52.4 72.7 0.0 37.9 37.2 59.2 ‘ 0.0 12.4 13.7* 32.2
e o o o 55.2 79.9 82.1% 81.5 16.2 49.8 50.4 55.5 6.6 24.9 24.8 26.3
o o . s 48.2 81.0 82.7* 83.2 45.8 69.1 73.7° 73.3 ‘ 55.8 68.6 70.2* 70.1
o e ° o 15.4 63.8 66.8" 70.6 30.4 64.0 69.7" 73.9 42.6 65.3 67.0" 71.9
e o o o 71.1 83.9 84.3 83.3 11.9 56.7" 55.3 54.3 ‘ 1.2 29.0" 24.2 30.7
o e o e 47.3 80.8 82.2" 83.1 172 53.4 57.2* 59.7 || 0.6 28.3 30.7" 33.4
e O o . 74.8 86.0 87.5" 86.3 17.7 58.7 59.7 57.7 ‘ 0.8 28.0 34.6" 31.0
e o ° o 68.4 83.3 85.5" 85.3 414 67.6 72.9" 72.0 53.8 68.0 70.3* 69.9
e o © o 70.2 85.1 86.2* 85.1 48.8 70.7 74.27 74.9 ‘ 60.9 69.9 71.1 70.1
e o o o 75.2 87.0 88.0" 85.7 18.7 61.0 61.5 57.9 1.0 334 34.1 34.1
e o s s 75.6 87.0 88.6" 85.8 54.9 72.2 75.6" 75.2 ’ 60.5 69.7 71.2" 72.2
o e ® ° 44.2 82.1 83.3" 81.5 46.6 70.7 75.3" 74.7 55.1 69.7 T1.1* 71.1
e o . ° 73.8 87.6 88.8" 87.5 55.3 73.4 76.4" 78.4 61.1 70.8 717" 72.7
‘Means - 50.7 78.6 80.1" | 81.6 || 28.7 59.7 64.0° | 66.2 || 27.4 48.1 50.0° | 52.7
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Learning a joint model for tissue and lesion segmentation

Segmentation

« Challenge: No large fully annotated dataset for joint tissue and lesion segmentation

« Can we leverage task-specific datasets?
« Maybe, but these are also often hetero-modal
« May even display domain shift in the common modalities (Not covered in this lecture)
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Learning from task-specific hetero-modal and domain-shifted data

Neuromorphometrics BraTSi18

T1, T1c, T2, FLAIR

Available modalities:

INlustrated modalities: T1 Protocol 1 T1 Protocol 2

Hereby referred to as: Control Lesion

30 Jan 2020 IPAM Workshop on Deep Learning and Medical Applications - Tom Vercauteren
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LosS decomposition: Tissue & lesion

R Dorent et al. Learning joint lesion and tissue segmentation from
task-specific hetero-modal datasets. PMLR 102:164-174, 2019

Flalr
hG £(h0($T1’$Flai'r')’y) _ Et(h()(lenglair)’yt) s [Zl(h”('l,”f"l“I,Fluir>. !//)
CNN output hy(z’?, 21e) Joint loss Tissue loss Lesion loss
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Focus on data distribution from the patient group: (X . Y) L7 b .

9* = a’rgmingEDlesion [Et (h’e(XT17 XFlair)’ Yt)]—’_E’DI(-.\-iun [‘Cl (h(} (XT] ) XF[(I ”1)’ }fl )]

=, Y

Rt () RL(O)
Missing tissue annotations Estimation using the Lesion
Could we use the Control dataset? dataset
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Tissue loss upper-hound for missing modalities

Echsion [Et (h’O(XT17 XFlalr)’ Yt)]

R*(0)

Use a loss satisfying the triangle inequality (e.g. Jaccard)

£t (h/() (.’I,’Tl T Fl(u'wr) : yt)

hO (le : mFlair)

[,1 (]I()(.’I'Tl 1 .IfFlr'zi'r)! /7(} (;I‘Tl ))

he(z')

RYO) < E(x v )~Dponin L (ho( X, XY o (X TN+ x v ~Dprs N (ho (X T, Y]

R4 (6) RS
Hetero-modal consistency Missing tissue annotations

Could we use the Control dataset?
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Tissue loss only evaluated on healthy tissues

Scenario 1: T1 scans have been acquired with a similar setting
Intensity distribution similar on non-lesion parts of the brain

PDlesion (x’lc,rl ) y’l, ‘y’l, S CT) — PDcontrol (:L.'L,-Tll ) y’l, |y7' S CT)

Assume the network outputs similar predictions on healthy tissues

E(x,¥)~Drosion L (h(X ™), YY) = EX,Y)~Deonira [L'(ho(XT), Y]

N =4

N 29
-~ N

REL(O) RE(0)

Estimation using the
Control dataset
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Heterogeneous labelling learning summary

— —

L. RE Control tissue loss
Control (supervised)
scans Neural
Network
______________________________________________________________________________________________________________________________________________________________________ _ Tissue _
loss
Neural
Network
Lesion Lh—R] Hetero-modal consistency
scans _ _(unsupervised)
Neural
Network . .
LRI Lesion loss (supervised)
Lesion Tissue
segmentation segmentation
map map
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Classes: White Matter Lesion + GM, WM, Cerebellum, Basal Ganglia, Brain Stem, Ventricles

MRBrainS18

Neuromorphometrics

T1 T1, Flair T1, Flair
28+32 = 60* 60 7

[*] Cardoso, et al. Geodesic information flows: Spatially-variant graphs and their application to segmentation and fusion. 2015

30 Jan 2020 IPAM Workshop on Deep Learning and Medical Applications - Tom Vercauteren

26



Joint models:
- FS-MRB: joint model trained on the 7 training scans of MRBrainS18 (T1+Flair)
- JSTABL: our model trained on WMH and Neuromophometrics (T1+Flair )

Task-specific models:

- Tissue: tissue segmentation model trained on Neuromorphometrics (T1)
- Lesion: lesion segmentation model trained on WMH (T1+Flair)

- Pipeline = Tissue + Lesion

Evaluation of our framework (jJSTABL) on patients with White Matter Lesion (Bronze standard for WMH tissues)
Means and standard deviations for Dice scores
Neuromorphometrics WMH MRBrainS18

Classes

Tissue  FS-MRB  jSTABL  Pipeline  FS-MRB  jSTABL SPM FS-MRB  jSTABL

Grey matter OL8 (16) 280 (44) 9009 (15) 846 (3.2) 52 3 (21.8) 834 (1.9) 765 81.1(2.0) 786 (3.1)
White mater ~ 93.1 (1.6) 58.2 (6.3) 92.7 (1.3)  90.3 (1.9) 1 (21.5) 90.4 (1.4) 757 838 (2.1) 84.6 (2.4)
Brainstem 93.3 (0.9) 265 (5.4) 932 (0.8) 89.6 (3.9) 203 (34.8) 91.4 (2.6) 765 884 (1.8) 725 (1.7)
Basal ganglia ~ 88.4 (2.5) 29.8 (6.1) 87.8 (2.1) 802 (7.2) 39.7 (20.9) 81.9 (3.9) 747 80.2 (29) 787 (2.7)
Ventricles 80.3 (4.3) 6.4 (5.0) 887 (46) 91.1(6.0) 622 (25.6) 94.0 (2.3) 80.9 912 (3.9) 920 (2.5)
Cerebellum 05.7 (0.8) 18.6 (6.9) 95.4 (1.1) 93.3 (2.0) 30.7 (30.8) 93.7 (1.9) 89.4 89.8 (2.5) 89.9 (2.1)
White matter lesion 76.4 (8.7) 37.4(26.9) 76.4 (8.7) 40.8 52.9(22.5) 57.3(23.5)
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Classes: Whole tumour, Core tumour, Enhancing tumour + GM, WM, Cerebellum, Basal Ganglia,
Brain Stem, Ventricles

BRaTS18

Neuromorphometrics BRaTS18 ]
symmetrised

T1, T1-c, T2 Flair T1

T1
28+32 = 60* 285 129

[*] Cardoso, et al. Geodesic information flows: Spatially-variant graphs and their application to segmentation and fusion. 2015

[*] Cardoso, et al. Geodesic information flows: Spatially-variant graphs and their application to segmentation and fusion. 2015
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jSTABL-d,

jSTABL-d,

jSTABL-d_,

Les. Ann.
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Joint models:

- JSTABL.: joint model trained without Domain Adaptation (DA)

- JSTABL-d35: joint model trained with 5 symmetrised samples for DA

- JSTABL-d35: joint model trained with 10 symmetrised samples for DA

- JSTABL-dall: joint model trained with 129 symmetrised samples for DA

Evaluation of our framework (jJSTABL) on patients with glioma in comparison.
Means and standard deviations for Dice scores.

Models Neuromorphometrics BRaTS18

jSTABL  jSTABL-d5; jSTABL-dyy jSTABL-d,; jSTABL  jSTABL-d; jSTABL-dyy jSTABL-d.j;

Grey matter  93.1 (1.8) 923 (1.8) 922 (1.6) 926 (1.6) 67.0 (12.1) 87.1 (4.5)  86.9 (4.4)  87.8 (4.0)
Brainstem 92.9 (2.3) 91.6 (2.3) 92.4 (1.8) 89.8 (3.8) (0.1) 80.5 (8.6) 86.2 (6.7) 81.9 (9.0)
Basal ganglia ~ 86.6 (2.8)  83.7 (2.9)  85.4 (2.3)  85.8 (2.0) 1(40) 736 (9.1) 768 (85)  80.7 (6.9)
Ventricules 89.5 (4.0)  88.5 (4.5) 88.8 (4.1) 89.0 (4.1) (1.4) 91.4 (5.5) 91.5 (5.6) 92.0 (4.9)
Cerebellum 96.5 (1.6) 94.8 (2.1) 95.8 (1.3) 95.2 (1.7) 11.0 (8.4)  88.8 (6.2) 89.5 (5.0) 88.2 (5.3)
Whole tumour 86.3 (9.8)  86.1 (9.1) 86.3 (8.6) 86.4 (8.9)
Core tumour 78.3 (19.7) 75.2 (21.3) 764 (21.0) 76.8 (19.4)
Enhancing tumour 74.7 (20.2) 73.8 (21.2) 74.0 (21.0) 74.2 (20.4)
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Automated
initialisation

Y

Input image

Initial segmentation

Refined segmentation

Refinement ﬁ
algorithm

User-interactions

IPAM Workshop on Deep Learning and Medical Applications - Tom Vercauteren

Final segmentation



Input image with scribbles Sce}lar cost map
in green and blue (gradient magnitude,
Segmentation in white learned features, etc.)
) .
Di(x) := mig?d(S,X), [ € {F, B}, where d(sy,s2) := min / IW(x)-Cs,,sz(x)Idx,
M- s1.52 J 51
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G Wang et al. DeeplGeoS: A Deep Interactive Geodesic Framework for Medical Image Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2019 Jul;41(7):1559-1572

Input image

Previous
segmentation

A
A

Geodesic
distance

Input of refinement network

User interactions
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« Rely on conditional random field (CRF) for spatial regularisation and to impose hard constraints

Bx) =Y bulz) + Y plesy)

(4,5)EN
Optimisation: Unary term: Pairwise term:
CRF-RNN ConvNet output Fully trainable
or Scribbles ()

 Trainable pairwise potentials

DRSS A
wp(mi’xj) :'u(lz’lj)f(fz_yadZJ) Egj =f —1;- : <55
Label Free-form Features | - S

dij

compat. function ;
Euclid. Dist.
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* Motivation
 Interactive segmentation
« Learn from specific image context

» GrabCut
* Rother et al. ACM Trans. Graph. 2004
« Adapt a GMM to a specific image
* Use a conditional random field (CRF) for
spatial regularisation
* Bounding box + refinement

30 Jan 2020 IPAM Workshop on Deep Learning and Medical Applications - Tom Vercauteren

« Deal with unseen objects
« Update the model on the fly
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GonvNet: Pre-trained feature extraction + classifier

Blo.ck 1 Blo.ck 2 Block 3 Blogk 4 Bl(zck 5 Block 6

Input Image
1X1, 2
Output

11 8 8 16 16 16 1|

Feature extractor i classifier
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G Wang et al. Interactive Medical Image Segmentation Using Deep Learning With
. M eth 0 d Image-Specific Fine Tuning. IEEE Trans Med Imaging. 2018 Jul;37(7):1562-1573.

e Pre-train a ConvNet

using cropped images of

o Trained CNN
different organs Training model
stage 0,

* 1, Use ConvNet to get an

Training images Cropped training images

initial segmentation

: . . Image-specific fine- Updated CNN
inside a user-provided >|uming withweigtea [—> ol
. re-trained oss function 1
bounding box N model
. Testing
* 2, Fine-tune the ConvNet stage [ 0,
with optional scribbles Image with user-provided |
bounding box = : e : Rl ==
° Can deal With pI‘eViously Initial result _Scrlbbles_ Weight map Refined result

unseen objects
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 Joint optimization problem:

« When @ is fixed

Y .0

arg mm{EY 9) ZO 3| X, 0) —l—)\ZL (93, 5| X) }

subjectto:y; =s; ifi€ S

(Graph Cut type problem) arg min {Z ¢ (55 X,0) + XD 0, 951 X) } (5)
Y i i,j
(‘l‘OO ifieSanin:si
¢ (9:1X,0) =<0 if i € S and §; # s;
| —log P (¥ X, 0) otherwise

« When Y is fixed
(Back propagation)

30 Jan 2020
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arg min { Z (g)ilogpq; + (1 — 9;)log(1 — pi)) }

0 ;
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Image-snecific fine-tuning for interactive corrections

Wang et al.
IEEE TPAMI 2018

Wang et al.
IEEE TMI 2018

DEEPIGEQOS

3D SEGMENTATION OF BRAIN TUMOR
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User-provided __ Foreground __ Background

bounding box scribble scribble

(a) Tumor core in T1c

(previously seen)

(b) Whole tumor in FLAIR

(previously unseen)

— f—t

- Segmentation result

Ground truth

Input PC-Net Scribbles
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Take-home messages

Pre-operative planning

Intra-operative data fusion &
tissue characterisation

MR and US images
courtesy of:
Solheim et al.
Neurosurgery 2015
Rivaz et al.

2015

Ultrasound Med. Biol.

i

Navigation & tracking IntraQAbperatiVe imaging
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Flexible machine learning
solutions are needed to address
the complexity of clinical
workflows

Principled approaches can help us
go beyond initial limitations of
existing approaches
Multi-disciplinarity is required to
drive machine leaning towards
patient impact
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