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This talk is based on joint work with my PhD students.

In this talk, many of my personal opinions (not rigorous) are included 
to give an exaggerated emphasis on deep learning.

A Solve

Measured 
Data

Medical image

Forward Matrix

Learn useful output



ill-posed inverse problems
Hadamard's well-posedness ሺexcluding existenceሻ

𝑨𝒚 ൌ 𝒃 is well-posed if the following two conditions hold:
1) for each b, 𝑨𝒚 ൌ 𝒃 has a unique solution;

2) the solution is stable under perturbation of 𝒃.

• Whether or not a problem is well-posed may be 
dependent on how the solution is expressed.

• Many problems are ill-posed because we are overly 
ambitious or lacking in expressiveness.

A Solve
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My personal opinion

Learn



Conventional CT and MRI data collections are designed 
for the corresponding forward matrix A 

to be well-expressed & to be reasonably complete.

A

of equations (data)  of unknowns (pixels of image)

Forward Matrix



• MRI measures approximately an image’s 
Fourier transform. Nyquist sampling is 
required for the analytic reconstruction.

⋕ 𝒑𝒊𝒙𝒆𝒍𝒔 𝒊𝒏 𝒊𝒎𝒂𝒈𝒆 ൎ⋕ 𝐬𝐚𝐦𝐩𝐥𝐢𝐧𝐠𝐬 𝐢𝐧 k-space

• CT measures approximately an image’s Radon 
transform. According to Nyquist sampling & 
Fourier slice theorem, 

⋕ 𝐩𝐢𝐱𝐞𝐥𝐬 𝐢𝐧 𝐢𝐦𝐚𝐠𝐞 ൎ⋕ 𝐩𝐫𝐨𝐣𝐞𝐜𝐭𝐢𝐨𝐧  𝐚𝐧𝐠𝐥𝐞𝐬

Tomography with Nyquist Sampling

fully sampled 

Data 

The classical principle that make problems well-posed is:

⋕ of equations (number of samples) ൎ ⋕ of unknowns (number of pixels of image).

Inverse Fourier 
Transform

Filtered 
Backprojection



Why do we pay attention to underdetermined problems 
(fewer equations than unknowns) in CT & MRI ?

# of equations

# of unknowns (# of pixels)

It is because of the great needs to reduce 
radiation dose in CT & data acquisition time in MRI.



Is it possible to solve it ? 

A

y

b=Solving is to find 

the reconstruction map  𝒇𝒖𝒍𝒍
ି𝟏

𝒇𝒖𝒍𝒍.

• 𝒃𝒇𝒖𝒍𝒍 denotes the "fully sampled" data (e.g, sinogram in CT and k-space data in MRI).

• 𝒃 ൌ 𝑺𝒖𝒃𝒃𝒇𝒖𝒍𝒍 where 𝑺𝒖𝒃 denotes a subsampling operator.

• 𝑨𝒇𝒖𝒍𝒍 is discrete 
Fourier transform in MRI &
Radon transform in CT.

Subsampling operator



Undersampled MRI problem

Subsampling (30%) Full sampling

ற
𝐟𝐮𝐥𝐥
ି𝟏

𝒇𝒖𝒍𝒍

𝐀ற: Pseudo-Inverse of A.

Is it 
possible? 



Without imposing prior knowledge on the solution, 
this problem has infinitely many solutions.  

𝐀ற𝒃

 Need to choose one out of infinitely many images in 𝑵𝒃 𝑨 : ൌ ሼ 𝒛: 𝑨𝒛 ൌ 𝒃ሽ.

How to 
solve  

𝒅𝒊𝒎 𝑵𝒃 𝑨 ൌ # 𝒄𝒐𝒍𝒖𝒎𝒏𝒔 െ # 𝒓𝒐𝒘𝒔



Is it possible to find ற
𝒇𝒖𝒍𝒍
ି𝟏

𝒇𝒖𝒍𝒍 ?

A
y

b=

𝒇𝒖𝒍𝒍
ି𝟏

𝒇𝒖𝒍𝒍

Pseudo-Inverse

 Solving 𝑨𝒚 ൌ 𝒃 depends on an appropriate use of a priori 
information about medical CT or MRI images as solutions.

 We need to consider a constraint problem:

𝑨𝒚 ൌ 𝒃 subject to (Solution Manifold)

Example: sparse view CT

unknown



Sparse 
View CT

Example 1

𝒇 𝐀ற 𝐀𝐲 ൌ 𝐲     ∀ 𝐲 ∈ 𝐈𝐦𝐚𝐠𝐞 𝐌𝐚𝐧𝐢𝐟𝐨𝐥𝐝

Similar noise patterns regardless of images

Well-expressed
𝐀𝐟𝐮𝐥𝐥𝐲 ൌ 𝐛𝐟𝐮𝐥𝐥

𝒃𝒇𝒖𝒍𝒍 𝑺𝒔𝒖𝒃
∗ 𝑺𝒔𝒖𝒃𝒃𝒇𝒖𝒍𝒍



Local CT
Example 2

Well-expressed
𝐀𝐟𝐮𝐥𝐥𝐲 ൌ 𝐛𝐟𝐮𝐥𝐥



Dental CBCT: Need to develop a reconstruction method that addresses the 
problems caused by “Offset detector, FOV truncation, Low X-ray dose".

DENTRI, HDXWILL

Local CT

Avoid methods having many iteration steps!



Underdetermined MRIExample 3

Violating Nyquist Sampling Rule

Well-expressed
𝐀𝐟𝐮𝐥𝐥𝐲 ൌ 𝐛𝐟𝐮𝐥𝐥 ill-posed 

𝒇 𝐀ற 𝐀𝐲 ൌ 𝐲     ∀ 𝐲 ∈ 𝐈𝐦𝐚𝐠𝐞 𝐌𝐚𝐧𝐢𝐟𝐨𝐥𝐝



Hand-made Sparse Sensing   

• Use sparse representation of y
• Regularized data fitting method :  
𝒇 𝒙 ൌ 𝐖𝐡, 𝐡 ൌ  𝐚𝐫𝐠𝐦𝐢𝐧

𝐡ሚ
||𝑨𝑾𝐡 െ 𝒙||ℓ𝟐

𝟐  ||𝐡||ℓ𝟏

• Single data fidelity

 Methods to impose Prior Knowledge on the solution

Machine-made Deep Regression 

• Use training data  𝒚 𝒏 : 𝒏 ൌ 𝟏, ⋯ , 𝑵 to get 
the prior knowledge.

• Deep Learning : 
𝒇 ൌ  𝒂𝒓𝒈𝒎𝒊𝒏

𝒇∈𝐍𝐞𝐮𝐫𝐚𝐥 𝐍𝐞𝐭𝐬 
 ∑ ||𝒚𝒌 െ 𝒇ሺ𝒙𝒌ሻ||𝟐

𝒌

• Group data fidelity

 This is a highly nonlinear problem! 
The degree of nonlinearity depends on the sampling of data b and solution manifold.

Methods to solve the ill-posed problem A
y

b=



A
y

b=Comparison 

• Hand-made Sparse Sensing

𝒇∈𝐍𝐞𝐮𝐫𝐚𝐥 𝐍𝐞𝐭𝐬
𝒌 𝒌

𝟐

𝒌

versus
𝐡 ℓ𝟐

𝟐
ℓ𝟏

Single data fidelity

Image Prior 

• Machine-made DL Approach
Image prior ሺ𝒙 𝒏 , 𝒚 𝒏 ሻ: 𝒏 ൌ 𝟏, ⋯ , 𝑵

Group data fidelity



Find  

A
y

b=

Test problem: Sparse View CT model with specially chosen 𝑴𝐢𝐦𝐚𝐠𝐞

In this sparse-view CT model, CS methods are known to work well.

ற

Comparison: 
Hand-Made vs Machine-Made

Feature 1 Feature 2

Performance Evaluation



Comparison: Man-Made vs Machine-Made

Since this solution manifold is only 7 dimension,

𝑨𝒚 ൌ 𝒃 can be solvable only with 7 equations. 

Feature 1 Feature 2

Performance Evaluation

For this sparse-view CT problem, we use 
a special solution manifold 𝑴𝒊𝒎𝒂𝒈𝒆 (assumed to be unknown).

Dimension of 𝒊𝒎𝒂𝒈𝒆

A
y

b=



Comparison: Hand-Made vs Machine-Made

• Deep learning preserves the feature 1.

feature 1

• CS and linear approaches eliminate 
the feature 1.



Man-Made vs Machine-Made

A
y

b=
𝒇: 𝒙 → 𝒚 

ற

PCA Total Variation Deep Learning

Remove key features.
Keep key features.

Produce terrible 
outcome due to the 
use of insufficient 
orthogonal basis.



Man-Made vs Machine-Made A
y

b=
Linear methods (PCA, Wavelet decomposition) may be unable to 
deal with the highly curved solution manifold.

Consider the vector space spanned by images ሼ𝒚 𝟎 , 𝒚 𝟏 , ⋯ , 𝒚 𝑵 } where 
𝒚 𝒌 is 𝐤𝝅/𝑵 rotation of image 𝒚 𝟎 .

The middle image between 𝒚 𝟎 & 𝒚 𝟏 cannot be expressed properly by the space spanned by ሼ𝒚 𝟎 , 𝒚 𝟏 , ⋯ , 𝒚 𝑵 }.



Can CS methods 
preserve the 
feature 1 while 
removing artifacts?

May be NOT. 

TV approach: 𝐓𝐕 𝒚 ℓ𝟐
𝟐

ℓ𝟏

It may not preserve some detailed structures 
that may contain crucial medical information.

Remove everything 
within this interval 
without exception.

𝝀𝜶െ𝝀𝜶



TV approach: 𝒇𝐓𝐕 𝒙 ൌ 𝐚𝐫𝐠𝐦𝐢𝐧
𝒚

||𝑨𝐲 െ 𝒙||ℓ𝟐
𝟐  𝝀||𝛁𝐲||ℓ𝟏

 The performance depends on the regularization parameter.  
 Need several iterations to find a sparse expression.



Man-Made vs Machine-Made

• DL approach can selectively preserve the 
feature 1.

feature 1



Use training data to learn both  𝒇  and image manifold such that

ற  𝐈𝐦𝐚𝐠𝐞 𝐌𝐚𝐧𝐢𝐟𝐨𝐥𝐝.

A
Sensitivity matrix𝐀ற 𝐛

Deep Learning 
Approach



What is learnable. 
What is NOT. 

The necessary condition for learning 𝒇  is that

.

unknown

One of DL’s most important advantages is to provide non-iterative 
reconstruction methods for highly non-linear problems.

Use training data  𝒚 𝒏 : 𝒏 ൌ 𝟏, ⋯ , 𝑵 to get 
prior knowledge.



Training 
Data 1

Training 
Data 2

Training 
Data 3

Impact of Training Data: It is critical to choose suitable training 
datasets to reflect the appropriate image priors, in order to preserve 
detailed features of the images.

No small 
anomaly

small 
anomaly 
inside 
rectangle

small 
anomaly 
inside disk

Joint work with   
Hyungsuk Park



Observation: The reconstruction map 𝒇: 𝐱 ൌ 𝐀ற𝒃 → 𝒚 is learnable if 
𝑨 satisfies the M-RIP (manifold restricted isometry property) condition. 

 Necessary condition for learnability  is

𝒊𝒎𝒂𝒈𝒆

 𝑴𝒊𝒎𝒂𝒈𝒆 indicates the unknown solution Manifold



• 𝑴𝒊𝒎𝒂𝒈𝒆 indicates a solution manifold that is assumed to be a good regression of MR  
head image data distributions 𝒚 𝒏 : 𝒏 ൌ 𝟏, ⋯ , 𝑵 .

• 𝐱 ൌ 𝐀ற𝒃 is the minimum-norm solution which will be used to find the true solution 𝒚.

M-RIP condition: 𝑵𝒃 𝑨 ∩ 𝑴𝒊𝒎𝒂𝒈𝒆 ൌ 𝒚 (uniqueness & stability).



is a highly nonlinear problem! 

 The map 𝒇:  𝐱 ൌ 𝐀ற𝒃 → 𝒚 can be 
viewed as an image restoration 
function with filling-in missing data 
in 𝐱. Therefore,  𝛁𝒇ሺ𝒙ሻ depends on 
the image structure in 𝐱. 

 The nonlinearity of 𝒇 is affected by 
sampling and the degree of bending 
of the manifold 𝑴𝒊𝒎𝒂𝒈𝒆

Observation: 𝒇:  𝐱 ൌ 𝐀ற𝒃 → 𝒚 is nonlinear if dim (spanሼ𝝏𝒋𝑮 𝒉 : 𝒉 ∈ 𝑲ሽሻ  # 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏𝒔 . 

A
y

b=

• 𝑨 is (# equations) ൈ (#unknowns) matrix
• 𝑴𝒊𝒎𝒂𝒈𝒆 ൌ ሼ 𝒚:   𝒚 ൌ 𝑮 𝒉 , 𝒉 ∈ 𝑲ሽ, where 𝑮 is a generator & 

𝑲 is a compact subset of 𝑹𝒌.



Observation: 𝒇:  𝐱 ൌ 𝐀ற𝒃 → 𝒚 is nonlinear if dim (spanሼ𝝏𝒋𝑮 𝒉 : 𝒉 ∈ 𝑲ሽሻ  # 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏𝒔 . 

• 𝒇 𝒙 ൌ 𝐲     →      𝒇 𝐀ற 𝐀𝐲 ൌ 𝐲   →     𝒇 𝐀ற 𝐀𝐆ሺ𝐡ሻ ൌ 𝐀𝐆ሺ𝐡ሻ

• If 𝒇:  𝒙 ൌ 𝑨ற𝒃 → 𝒚 is linear, 𝑩 ൌ 𝜵𝒇ሺ⋅ሻ is a constant 
matrix &

𝐁𝐀ற 𝐀𝛁𝐆ሺ𝐡ሻ ൌ 𝛁𝐆ሺ𝐡ሻ for all 𝐡 ∈ 𝑲.

 Hence, all 𝝏𝒋𝑮 𝒉 ∈ 𝐄𝐢𝐠𝐞𝐧𝟏ሺ𝐁𝐀ற 𝐀ሻ , the eigenspace of 𝐁𝐀ற 𝐀 corresponding to the eigenvalue 1.

 This is not possible if dim (spanሼ𝝏𝒋𝑮 𝒉 : 𝒉 ∈ 𝑲ሽሻ  # 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏𝒔.

Message:  The degree of nonlinearity depends on the sampling of data b &
the degree of bending of the solution manifold 𝑴𝒊𝒎𝒂𝒈𝒆 .

Proof: 



𝒎𝒊𝒏 𝑬 𝒛 ≔  ||𝒈 𝑾𝒛 െ 𝒙||𝟐  𝝀 || 𝒛||ℓ𝟏

𝐳 ൌ 𝐒𝝀𝜶ሺ𝒛 െ 𝜶𝛁|| 𝐠 𝐖𝐳 െ 𝐱||𝟐ሻ

Assume that there exist W such that 𝐲 ൌ 𝑾𝒛 𝐰𝐢𝐭𝐡 z being sparse.

Both deep learning and compressed sensing work very well for this kind of problems.

𝐒𝝀𝜶ሺ𝒛)=𝒔𝒊𝒈𝒏 𝒛  𝒎𝒂𝒙 𝒛 െ 𝝀𝜶, 𝟎

𝝀𝜶
െ𝝀𝜶

𝑳𝟏 െRegularized data fitting technique

By 
eliminating 
this simple 
noise 
structure.

Example 1: Sparse View CT



Deep learning works well because of unique 
continuation of analytic function along the vertical 
direction.

Example 2: Local CT



Inverse
Fourier 
Transform

Inverse
Fourier 
Transform

According to the Poisson summation formula, the discrete Fourier transform of 𝐛 ൌ 𝑺𝒔𝒖𝒃𝐛𝐟𝐮𝐥𝐥
(uniformly subsampled data with factor 4) produces the following four-folded image. 

𝐛 ൌ 𝑺𝒔𝒖𝒃𝐛𝐟𝐮𝐥𝐥

uniform 
subsampling 
with factor 4

𝐛𝐟𝐮𝐥𝐥

Full sampling

𝐀𝐟𝐮𝐥𝐥
ି𝟏  𝐛𝐟𝐮𝐥𝐥 

ற

Example 3: Underdetermined MRI



If we use uniform subsampling 𝑺𝒔𝒖𝒃 with factor 4, 

it is difficult to learn 𝒇  𝒔. 𝒕.    𝒇 𝐀ற 𝐀𝐲 ൌ 𝐲     ∀ 𝐲 ∈   𝐈𝐦𝐚𝐠𝐞 𝐌𝐚𝐧𝐢𝐟𝐨𝐥𝐝

 Fail to satisfy M-RIP condition.
 DL is NOT a magic. 

Null space
Poisson summation formula



Fourier 
Transform

Fourier 
Transform

Adding one line

However, the result changes dramatically by adding only one line in k-space.

ற𝒔𝒖𝒃 𝐟𝐮𝐥𝐥



Because of this rough signature, it is capable of learning 𝒇  𝒔. 𝒕.  
𝒇 𝐀ற 𝐀𝐲 ൌ 𝐲 ∀ 𝐲 ∈ 𝐈𝐦𝐚𝐠𝐞 𝐌𝐚𝐧𝐢𝐟𝐨𝐥𝐝

Why does the learning effect dramatically change by adding only one line in k-space?

Inverse Fourier transform 
of the single line in k-space

• Let 𝐀𝟏 be the sensitivity matrix corresponding to uniform sampling with factor 4. 

• Let 𝐀𝟐 be the sensitivity matrix corresponding to the row just above the center.

𝟏
ற

𝟏

𝟐
ற

𝟐
Indistinguishable

Distinguishable



Patch images 
vs 

full image 

Learning ability

𝜼 𝜼 𝜼

 Dimension of the manifold 𝑴𝒊𝒎𝒂𝒈𝒆
𝜼 does not increase 

proportionally to 𝜼.
 Hence, the learning ability about 𝒇𝜼: 𝒙𝜼 → 𝒚𝜼 is gradually 

improved as 𝜼 increases.

𝑴𝒊𝒎𝒂𝒈𝒆
𝜼 ൌ ሼ 𝒚𝜼: 𝒚𝜼 𝐢𝐬 𝐚 𝟐𝟓𝟔 ൈ 𝛈 𝐢𝐦𝐚𝐠𝐞 𝐩𝐚𝐭𝐜𝐡 𝐞𝐱𝐭𝐫𝐚𝐜𝐭𝐞𝐝 𝐟𝐫𝐨𝐦 𝒚 ∈ 𝑴𝒊𝒎𝒂𝒈𝒆ሽ

My personal opinion

Let us consider learning ability issue: 

As  𝜼 increases, the number of unknowns increases more 
rapidly than the number of equations. 



Experimental results 
demonstrate that the learning 
ability about 𝒇𝜼: 𝒙𝜼 → 𝒚𝜼 is 
gradually improved as 𝜼
increases.
.



 Assume that 𝑴𝒊𝒎𝒂𝒈𝒆 is the set of all the human head MR images. 
 Then, all the images in 𝑴𝒊𝒎𝒂𝒈𝒆 possess a similar anatomical 

structure that consists of skull, gray matter, white matter, 
cerebellum, among others.

 In addition, every skull and  tissue in the image have distinct 
features that can be represented nonlinearly by a relatively small 
number of latent variables, and so does for the entire image. 

 Notably, the skull and tissues of the image are spatially 
interconnected, and even if a part of the image is missing, the 
missing part can be recovered with the help of the surrounding 
image information. 

𝑴𝒊𝒎𝒂𝒈𝒆
𝜼 ൌ ሼ 𝒚𝜼: 𝒚𝜼 𝐢𝐬 𝐚 𝟐𝟓𝟔 ൈ 𝛈 𝐢𝐦𝐚𝐠𝐞 𝐩𝐚𝐭𝐜𝐡 𝐞𝐱𝐭𝐫𝐚𝐜𝐭𝐞𝐝 𝐟𝐫𝐨𝐦 𝒚 ∈ 𝑴𝒊𝒎𝒂𝒈𝒆ሽ

Reasons for expecting dim 𝑴𝒊𝒎𝒂𝒈𝒆
𝜼 to grow 

significantly slowly as 𝜼 increases. 



Challenging Issue: Low-dimensional 
representation of MR and CT images (high 
dimensional data: 𝟓𝟏𝟐 ൈ 𝟓𝟏𝟐 ൈ 𝟒𝟎𝟎 voxels)

Given data distributions 𝒚 𝒏 : 𝒏 ൌ 𝟏, ⋯ , 𝑵 in medical images 
(e.g. dental CBCT data), can we find a low dimensional 
latent generator (decoder) 𝚿: 𝐡 → 𝒚 and an encoder 𝚽 ∶ 𝒚 →
𝒉 such that  𝚿 ∘ 𝚽ሺ𝒚ሻ ൎ 𝒚 for all 𝒚 ∈ 𝑴𝒊𝒎𝒂𝒈𝒆 . 

GAN (Generative Adversarial Network)

VAE (Variational Autoencoder)
𝒉𝟏

𝒉𝟑
𝒉𝟐 𝒉𝟓

𝒉𝟒

Ψሺ𝐡ሻ



5 Latent variables

𝒉𝟏

𝒉𝟑
𝒉𝟐 𝒉𝟓

𝒉𝟒

Ψሺ𝐡ሻ

Generator
/decoder

Latent 
variable

𝐡 ൌ ሺℎଵ, ⋯ , ℎହሻ

One of challenging issues for solving an ill-posed problem is to 
find a low-dimensional representation.

Disentangled expression 
with extracting the 
underlying explanatory 
axis

??

A
y

b=



Electrical Impedance Tomography is 
known to be a highly ill-posed problem.

𝟐𝟎
𝟖 Aൌ 𝒅𝒃

𝒅𝒚
(sensitivity matrix)

𝟏𝟔𝟑𝟖𝟒

ൎ

𝒚 b

𝑑𝑖𝑚 𝒚 ∈ ℝଵଷ଼ସ ∶ 𝐴𝐲 ൌ 0  16384 െ 208

Example

Data acquisition

However, it can be well-posed 
if we give up excessive 
ambition or find a way to 
make a low dimensional 
expression.



𝜸ሶ ൌ argmin
𝜸ሶ

|| 𝑨 𝜸ሶ െ 𝑽ሶ ||   𝝀 𝑹𝒆𝒈ሺ𝜸ሶ ሻ

Despite myriads of profound theories of EIT over the past 40 years, 
there still are some problems for clinical use. 

𝜸ሶ ℓ𝟏True 𝜸ሶ

Hand-made regularization techniques may not be effective for EIT imaging.

(𝑳𝟐, 𝑳𝟏, 𝑻𝑽 regularization) 



208=⋕ of equations (data)  ≪  
16384=⋕ of unknowns (pixels of image).

𝟐𝟎
𝟖 Aൌ 𝒅𝒃

𝒅𝒚
(sensitivity matrix)

𝟏𝟔𝟑𝟖𝟒

ൎ

𝒚 b

𝑑𝑖𝑚 𝒚 ∈ ℝଵଷ଼ସ ∶ 𝐴𝐲 ൌ 0  16384 െ 208

This can be well-posed if we 
can find a low dimensional 
representation of soltuions.

Deep learning framework may 
provide a nonlinear regression on 

training data
which acts as learning complex 
prior knowledge on the output. 



• Interpolation between two points 
𝐡𝒊 and 𝐡𝒋 in the latent space. 
Between the two given images, 
VAE can generate the interpolated 
image.

• Tangent vectors 
on manifold 𝓜

Low-dimensional latent representation produces anifold.

Ψ   𝐡𝐢  Ψ   𝐡𝒋  



𝒉𝟏
𝒉𝟑

𝒉𝟐 𝒉𝟓
𝒉𝟒

Ψሺ𝐡ሻ

What about low-dimensional 
representation of high dimensional 
images such as MR and CT images.

So far, my team 
has tried several 
kinds of GANs and 
VAE, but has not 
succeeded.

=



For high 
dimensional 
data, AEs suffer 
from image 
blurring and 
loss of small 
details.



 GANs have shown remarkable success in generation of various realistic images. However, 
there exist some limitations in synthesizing high resolution medical data. 

 The GAN's approach makes it difficult to deal with high-dimensional data because the
generated image can be easily distinguished from the training data, which can lead to 
collapse or instability during training process.

Generative Adversarial Network





𝒉𝟏

𝒉𝟑
𝒉𝟐 𝒉𝟓

𝒉𝟒

Ψሺ𝐡ሻ

GANs have a remarkable ability 
to generate these images.

AEs learns a bidirectional mapping(encoder and decoder), while GANs learn 
only the unidirectional mapping (decoding) in high dimensional medical images.

AE can control this 
latent variables

GANs have difficulties in encoding 
high dimensional images.

However, for high 
dimensional data, 
AEs suffer from 
image blurring and
loss of small details.

My personal opinion



Challenging Issue: Generalization

Training error Test error 0

Memorize learning 
materials well

Problems that do not 
appear in the tutorial also 
find the correct answer.

Recognize and 
generalize features

 ||𝒚𝒌 െ 𝒇 𝒙𝒌 ||𝟐 ൎ 𝟎
𝒌

𝒚𝒕𝒆𝒔𝒕 െ 𝒇 𝒙𝒕𝒆𝒔𝒕 ൎ 0
Hope



Adversarial attacks against medical deep learning systems
by Samuel G. Finlayson  et al  (2018)

The percentage represents the probability of Pneumothorax.

Recently, several experiments regarding adversarial classifications (false positive 
output of cancer) have shown that deep neural networks (obtained via gradient 
descent-based error minimization procedure) are vulnerable to various noisy-like 
perturbations, resulting in incorrect output (that can be critical in medical 
environments). 

Example of Memorization without Generalization



f 𝒙 ൌ 𝝈 𝑾𝑳 ⊗ 𝝈 ∘ 𝑷 ∘ 𝝈 ሺ𝑾𝑳ି𝟏 ⊗ ⋯ ⋯ 𝝈 ∘ 𝑷 ∘ 𝝈 𝑾𝟏 ⊗ 𝒙  𝒃𝟏 ⋯ ⋯  𝒃𝑳ି𝟏  𝒃𝑳  

However, deep learning may provide

) = 1  

One pixel attack 

𝒅𝒊𝒔𝒕𝒉𝒖𝒎𝒂𝒏ሺ                     ,               ሻ ൌ 𝟎 

MNIST example of Memorization without Generalization



Library of 16 features for 6

6

We will focus on this 
13th signal and analysis 

what it means.

14th Mnist
Data

Classified 
as 1

Classified 
as 6

Classified 
as 6

Confuses 
between 
6 and 0

Adversarial attacks against MNIST handwritten classification



 These adversarial examples show that a well-trained function 𝒇: 𝒙 → 𝒚 works only in 
the immediate vicinity of a manifold, whereas producing incorrect results if the input 
deviates even slightly from the training data manifold. 

 In practice, the measured data is exposed to various noise sources such as machine 
dependent noise; therefore, the developed algorithm must be stable against the 
perturbations due to noise sources.

 Hence, normalization of the input data is essential for improving robustness and 
generalizability of the deep learning network against adversarial attacks.

Challenging issue: Normalization of input data 

Adversarial attacks against 
medical deep learning systems

by Samuel G. Finlayson  et al  (2018)

𝟏 𝟐
𝟑 𝟒

𝒅𝒊𝒔𝒕𝒓𝒂𝒅𝒊𝒐𝒍𝒐𝒈𝒊𝒔𝒕ሺ𝒙𝟏, 𝒙𝟐ሻ ൌ 𝟎 & 𝒅𝒊𝒔𝒕𝒓𝒂𝒅𝒊𝒐𝒍𝒐𝒈𝒊𝒔𝒕ሺ𝒙𝟑, 𝒙𝟒ሻ ൌ 𝟎



 Without the constraint 𝑴 ൌ 𝑾𝟏,𝟐 𝛀 , 𝐀𝐮 ൌ 𝟎 has infinitely many 

solutions in 𝑪ஶ 𝛀 : 𝒖 𝒓, 𝜽 ൌ  𝒓
𝟐𝒏
𝟑  െ 𝒓ି𝟐𝒏

𝟑 𝐬𝐢𝐧 𝟐𝒏
𝟑

𝜽 ,   𝒏 ൌ 𝟎, 𝟏, 𝟐, ⋯  
 Wit the constraint 𝑴 ൌ 𝑾𝟏,𝟐 𝛀 , 𝐀𝐮 ൌ 𝟎 has the unique solution 

𝐮 ൌ 𝟎. 

𝛀 ൌ  𝐫, 𝜽 : 𝟎 ൏ 𝒓 ൏ 𝟏, 𝟎 ൏ 𝜽 ൏
𝟑
𝟐

𝝅𝑨𝒖 ൌ 𝒃                     ቐ
𝛁 ⋅ 𝛁 𝐮 ൌ 𝟎   𝐢𝐧  𝛀 

𝒖 ቚ
𝝏𝜴

ൌ 𝒃  

In terms of M-RPI,  note that || 𝐀𝐮 െ 𝐀𝐮ᇱ||
𝐇

𝟏
𝟐 𝝏𝛀

ൎ || 𝒖 െ 𝒖ᇱ||𝑯𝟏ሺ𝛀ሻ

for all u, uᇱ ∈ 𝑴 ൌ ሼ 𝒖 ∈ 𝑾𝟏,𝟐 𝛀 : 𝛁 ⋅ 𝛁 𝐮 ൌ 𝟎 𝐢𝐧 𝛀ሽ.

Final Remark: Historically, our mathematicians have tried to find well-posed model 
by imposing appropriate constraints to solution spaces. In the simple Dirichlet
problem, it took decades to find the appropriate space 𝑾𝟏,𝟐ሺ𝛀ሻ. It can take decades 
to solve the challenging problems in DL .

The Dirichlet problem may not be well-posed without the constraint 𝑾𝟏,𝟐ሺ𝛀ሻ.



I hope that we will discuss various  
challenging issues during this meeting. 

Thank you! 


