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Abstract. Recently, with the significant developments in deep learning techniques, solving
underdetermined inverse problems has become one of the major concerns in the medical imaging y b
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In this talk, many of my personal opinions (not rigorous) are included
to give an exaggerated emphasis on deep learning.

Medical image

Learn f(b) — useful OUtPUt



ill-posed inverse problems

Hadamard's weII-posedness (excluding existence)

Ay = b is well-posed if the following two conditions hold:
1) for each b, Ay = b has a unique solution; b
2) the solution is stable under perturbation of b. y
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Learn f(b) =Y Data

My personal opinion

* Whether or not a problem is well-posed may be Medical image
dependent on how the solution is expressed.
« Many problems are ill-posed because we are overly

ambitious or lacking in expressiveness.



Conventional CT and MRI data collections are designed
for the corresponding forward matrix A
to be well-expressed & to be reasonably complete.

# of equations (data) =~ # of unknowns (pixels of image)

Forward Matrix y b
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The classical principle that make problems well-posed is:
H of equations (number of samples) = H# of unknowns (number of pixels of image).

Tomography with Nyquist Sampling

*  MRI measures approximately an image’s

Fourier transform. Nyquist sampling is —_ 1
required for the analytic reconstruction. A

. .. . . Inverse Fourier
~# S 1IN K-
# plxels n lmage sampllng k.space Transform

transform. According to Nyquist sampling &
Fourier slice theorem,

¢ CT measures approximately an image’s Radon A — 1 (

Filtered
J# pixels in image ~# projection angles Backprojection




Why do we pay attention to underdetermined problems
(fewer equations than unknowns) in CT & MRI ?

It is because of the great needs to reduce
radiation dose in CT & data acquisition time in MRI. \

A AN A

ol
3
®

# of equations A

©

# of unknowns (# of pixels)




Solving Ay = b is to find A

the reconstruction map f b - Yy = Afullbfull

Is it possible to solve it ?

° bfull denotes the "fully sampled” data (e.g, sinogram in CT and k-space data in MRI).

* b = Supbsyn where S, denotes a subsampling operator.

* Agyy is discrete

Fourier transform in MRI &
Radon transform in CT.
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Subsampling operator




Undersampled MRI problem

Is it
possible?

Subsampling (30%) Full sampling

AT: Pseudo-Inverse of A.



Forward operator

How to
solve A

k-space data

Without imposing prior knowledge on the solution,
this problem has infinitely many solutions.

— v Need to choose one out of infinitely many images in N, (A): = { z: Az = b}. —

dim N,(A) = # columns — # rows



Is it possible to find f:ATb —» y = A7 },bsu ?

A

v Solving Ay = b depends on an appropriate use of a priori

information about medical CT or MRI images as solutions.
v" We need to consider a constraint problem:

Ay = D subjectto Y € M (solution Manifold)

~

unknown

Example: sparse view CT
Pseudo-lnyerse

= Aguy bpun # ATh =




Example 1 S'b=&"85.b.

S:ubssub bfull

A

Sparse
View CT

Zero filling

S

Well-expressed l A~ 1
Afany = brun

Similar noise patterns regardless of images

It is capable of learning

ri

f(AT Ay) =Yy VYyE ImageManifold



Example 2

Local CT

. Subsampling b=38,_b. Zero filling
= S-uln k Sj_ﬂ)
ﬁ ﬁ
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Well-expressed

_ A7l
Afuly = brun l
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It is capable of learning
because x — y is analytic

S:b=3S8
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Dental CBCT: Need to develop a reconstruction method that addresses the
problems caused by “Offset detector, FOV truncation, Low X-ray dose".

Local CT

Avoid methods having many iteration steps!
Reconstructed image

Truncated projection data

Dental CBCT

source A
¢

Truncated region

Truncated region Extrapplation

ector

s1ze

- S
| Weighting [

¢ 3
Conter of detector

Det

Reconstructed image




Example 3 b Underdetermined MRI S*b = 8*S.b,

Zero filling

ﬁ

Subsampling

l) — S,,__:_Il)._..h

Violating Nyquist Sampling Rule

A
f;) ill-posed AT
=b

Ay

Well-expressed l A_l
Afaty = bgan } "

y = A;lbmlg

;

Is it capable of learning?

f(AT Ay) =y V Yy E ImageManifold



Methods to solve the ill-posed problem A

-

v' This is a highly nonlinear problem!

The degree of nonlinearity depends on the sampling of data b and solution manifold.

v" Methods to impose Prior Knowledge on the solution

Hand-made Sparse Sensing

Use sparse representation of y
Regularized data fitting method :

f(x) =Wh, h= argmin ||AWh — x||% + ||h|] 1
Single data fidelity

Machine-made Deep Regression

Use training data {y™:n =1,---, N} to get
the prior knowledge.
Deep Learning :

f= argmin 3|y, — f(xll*

f€ENeural Nets

Group data fidelity



Comparison A

 Hand-made Sparse Sensing

Image Prior

f(x) = Wh,h = argmin ||AWh — x||72 + A[[h|]

Single data fidelity
versus

. Machine-made DL Approach

Image prior {(x™,y™®):n=1,---,N}

. / \
f= argmin ) |y - f@)I

fE€Neural Nets ”

Group data fidelity



Hand-Made vs Machine-Made

Test problem: Sparse View CT model with specially chosen My,

Comparison: A =
i

. . Performance Evaluation
In this sparse-view CT model, CS methods are known to work well.

Feature 1 Feature 2




Comparison: Man-Made vs Machine-Made A

For this sparse-view CT problem, we use
a special solution manifold M;;,,,. (assumed to be unknown).

. . . Performance Evaluation
Dimension of M ;nqge = 7

Feature 1 Feature 2

Minage := { ®(h) € R%maze . h € K}

. 1 B sinh (h7Rxp,, )
h)= ——R*ZT1 |1 n
&(h) 4 [n( h7Rxp,

Since this solution manifold is only 7 dimension,

Ay = b can be solvable only with 7 equations.



Comparison: Hand-Made vs Machine-Made

« CS and linear approaches eliminate
the feature 1.

f(x) =Dh, h=argmin |ADh — Ax|?%
h
f(x) = Dh, h = argmin ||[ADh — A.X“?‘z + Al
h

f(x) = argmin [|Ay — Ax[l2 + A Vy|a
y

« Deep learning preserves the feature 1.

Ndata

Z 1F (™) =y ™2

f = argmin

GNN nd"nt'\

Input data x

Ground truth y

Linear Approaches

CS Approaches

Deep Learning

PCA

Fourier

Haar Wavelet

O

Total Variation

Db4 Wavelet

U-net




Man-Made vs Machine-Made

PCA Total Variation Deep Learning

Produce terrible
outcome due to the
use of insufficient
orthogonal basis.

Keep key features.
Remove key features.

' B




Man-Made vs Machine-Made A

Linear methods (PCA, Wavelet decomposition) may be unable to
deal with the highly curved solution manifold.

Consider the vector space spanned by images {y®, y, ... y(¥) } where
y® is km/N rotation of image y(©.

The middle image between y(®& y( cannot be expressed properly by the space spanned by {y@, y(@ ... y()y},




TV approach: fpy(x) = argm}n || Ay — x| |§2 + A||Vy]] 1

Test Data

. / Can CS methods
............ preserve the

,-"'h"nfeature 1 while

- removing artifacts?

May be NOT.

a-m

QOur desired solution

It may not preserve some detailed structures
that may contain crucial medical information.

Remove everything
within this interval
without exception.

—Aa +Aa




TV approach: fyy(x) = argm;n ||Ay — x| |§z + A||Vy]| 1

v The performance depends on the regularization parameter.
v Need several iterations to find a sparse expression.

A=0.5a A=« A=15a




Man-Made vs Machine-Made

« DL approach can selectively preserve the
feature 1.

R {Xiﬂ}}::d:mim - M:*

[Training Process|

Learn f by updating

Miata

JVI{% Z !fi:}{!"’j y;mi.]

WF.:+I . WI\-

XI esh

t (11) ] Ndat:
.E Munage {XI J}n=ilh1

N/

f = angmin(=— 3% ")~y
= data Th=1

|Test Evaluation]

feature 1




Deep Learning
Approach

Use training data to learn both f and image manifold such that

f(AJr Ay) =Yy VYyE Image Manifold.



One of DL's most important advantages is to provide non-iterative
reconstruction methods for highly non-linear problems.

What is learnable.
What is NOT.

unknown

The necessary condition for learning f is that l

f(AJr Ay) =y. Vy € Image Manifold.

Use training data {y™:n =1,---, N} to get
prior knowledge.




Impact of Training Data: It is critical to choose suitable training Joint work with
datasets to reflect the appropriate image priors, in order to preserve Hyungsuk Park
detailed features of the images.

Training No small
Data 1 anomaly

~

Traini small
raining anomaly

Data 2 inside
rectangle

ral

small
anomaly

Training
Data 3 inside disk




Observation: The reconstruction map f:x = ATh — y is learnable if

A satisfies the M-RIP (manifold restricted isometry property) condition.

\
\
\

\ T
cly = ¥'|| <||Ay —Ay'| < Elly —y'|| forall y,y" € M.

v Necessary condition for learnability is

dim My, < Rank A

V' Mipmqg4e indicates the unknown solution Manifold




M-RIP condition: Nj,(A) N M. = {y} (uniqueness & stability).

Solving Underdetermined Problem: Ay = b

- K
B ¥ generator
2 ‘ﬂ, —_ A’ Mi}:lag-.‘ /—\ m
J's G:hoy

N g,
—_— \E .4
g™ = \
iN‘nL.A\] £,
= \
Necessary condition for solvability
— {y} dimMinae < Dimage — AIMAN,L(A)

M;nq4e indicates a solution manifold that is assumed to be a good regression of MR
head image data distributions {y™:n =1, ,N}.

- x = ATb is the minimum-norm solution which will be used to find the true solution y.

—r



A — is a highly nonlinear problem!

* A is (# equations) x (#unknowns) matrix

Mimage = {y: ¥ = G(h), h € K}, where G is a generator &
K is a compact subset of R,

Observation: f: x = ATb — y is nonlinear if dim (span{d;G(h): h € K}) > # equations .

generat

v  The map f: x=A"b - y can be
<6 h viewed as an image restoration
function with filling-in missing data
in x. Therefore, Vf(x) depends on
the image structure in x.

v The nonlinearity of f is affected by

sampling and the degree of bending
of the manifold M;,,,,.




Observation: f: x = ATh — y is nonlinear if dim (span{d;G(h): h € K}) > # equations .

generat] Proof:

G ho
- f)=y - f(ATAy)=y - f(ATAG(h))=AG(h)

« If f:x=ATb > y islinear, B=Vf(") is a constant
— matrix &

/ BAT AVG(h) = VG(h) for all h € K.

v Hence, all 3;G(h) € Eigen;(BAT A) , the eigenspace of BAT A corresponding to the eigenvalue 1.
v’ This is not possible if dim (span{d;G(h): h € K}) > # equations.

Message: The degree of nonlinearity depends on the sampling of data b &
the degree of bending of the solution manifold M;,,,,. .



Example 1: Sparse View CT

Both deep learning and compressed sensing work very well for this kind of problems.

BN e
:.él'imijnat'i ‘n"g_' S
ithiIS.S‘imp-Ie :

-noise -
~structure. =0

L' —Regularized data fitting technique

Assume that there exist W such that y = Wz with z being sparse. —Aa
min E(z) = ||gWz) — x||* + || 2| » +Aa
z = S)4(z — aV|| g(Wz) — x||*)

Siq(2z)=sign(z) max{|z| — Aa, 0}



Example 2: Local CT

Deep learning works well because of unique
continuation of analytic function along the vertical |, dimensiona!

direction. ~,  repre

latent

ible!
sentation p055|b\e.




Example 3: Underdetermined MRI

According to the Poisson summation formula, the discrete Fourier transform of b = S, brun
(uniformly subsampled data with factor 4) produces the following four-folded image.

bfu]] Inverse
Fourier
Full sampling Transform

e

Inverse
b = Ssubbfull Fourier
Transform

uniform
subsampling
with factor 4




if we use Uniform subsampling s,,, with factor 4,
it is difficult to learn f S.L. f(AT AY) =Yy VY E ImageManifold

v" Fail to satisfy M-RIP condition.
v DL is NOT a magic.

x = ATAy = ATA(y + )

Poisson summation formula




However, the result changes dramatically by adding only one line in k-space.

b = Ssupbrun

»

Fourier
Transform

-/ o
» Fourier

Transform




Why does the learning effect dramatically change by adding only one line in k-space?

« Let A4 be the sensitivity matrix corresponding to uniform sampling with factor 4.

« Let AZ be the sensitivity matrix corresponding to the row just above the center.

y: A} Ay = }={., ...}

Indistinguishable +

Because of this rough signature, it is capable of learning f s.t.
f(AtAy) =y Vye€ Image Manifold

Distinguishable

Inverse Fourier transform
of the single line in k-space




Let us consider learning ability issue:

Patch images
VS
full image

# (number)
J_{""""""___'___""'"""""""""'_""""""""""i

Learning ability

fo: Xy = Iy

n
As 7 increases, the number of unknowns increases more
rapidly than the number of equations.

M! = {¥y: ¥y isa 256 X 1 image patch extracted from y € M;;;,4¢}

image

My personal opinion

..-—-""—"’E ('l‘l]l][: -»".‘VI]nm;_;t-_J;}

(expected)

v" Dimension of the manifold M?mage does not increase

proportionally to 7.
v" Hence, the learning ability about f,:x, — y, is gradually
improved as 77 increases.

T



Experimental results

demonstrate that the learning Learning ability

ability abqut fnixy = Yy is fn; Xy = Yp
gradually improved as 7
: I
INcreases.

# (number) 1 8 32

] | |

MSE = 2.021 x 10~* MSE = 1.788 x 10~* MSE = 1.691 x 10~*

dim( M, e )

(expected)




L

dim (M e )

(expected)

Reasons for expecting dim M?mage to grow

significantly slowly as 7 increases.

m! = {yy: Yy is @256 X 1 image patch extracted from y € M;;;,44¢}

v
v

v

v

image

Assume that M;,,,,. is the set of all the human head MR images.
Then, all the images in M;;,,,. possess a similar anatomical
structure that consists of skull, gray matter, white matter,
cerebellum, among others.

In addition, every skull and tissue in the image have distinct
features that can be represented nonlinearly by a relatively small
number of latent variables, and so does for the entire image.
Notably, the skull and tissues of the image are spatially
interconnected, and even if a part of the image is missing, the
missing part can be recovered with the help of the surrounding
image information.



Challenging Issue: Low-dimensional

representation of MR and CT images (high
dimensional data: 512 x 512 x 400 voxels)

GAN (Generative Adversarial Network)

VA E (Variational Autoencoder)

Given data distributions {y™:n = 1,---, N} in medical images
(e.g. dental CBCT data), can we find a low dimensional

latent generator (decoder) W:h — y and an encoder @ : y —
h such that W o ®(y) =~ y for all y € M4 - !

- -
’—— iy




One of challenging issues for solving an ill-posed problem is to
find a low-dimensional representation. A

w(h)= L% }ﬁ{: At

|
EREE

5 Latent variables

Generator Latent
/decoder variable

22

Disentangled expression
with extracting the
underlying explanatory
axis




Example  E|ectrical Impedance Tomography is
known to be a highly ill-posed problem.

16384 y b ,
However, it can be well-posed

db if we give up excessive
A= — (sensitivity matrix)

dy

Q

208

ambition or find a way to
make a low dimensional

dim{y € R1%38% : Ay = 0} > 16384 — 208 expression.

Data acquisition




Hand-made regularization techniques may not be effective for EIT imaging.

Y = argmin||A)'/—V|| + AReg(y)
Y

(L?,LY, TV regularization)

Despite myriads of profound theories of EIT over the past 40 years,
there still are some problems for clinical use. se prob\




16384 Y b
l This can be well-posed if we

_db

. can find a low dimensional
dy

representation of soltuions.

A

208

(sensitivity matrix) ~

dim{y € R16384 : Ay = 0} > 16384 — 208

208=# of equations (data) <«
16384 =4# of unknowns (pixels of image).

Deep learning framework may
provide a nonlinear regression on
training data
which acts as learning complex
prior knowledge on the output.

0 P .
Sy Y%, ()¢ g .
0’. - . fshrinking s
: transformation 4
o

n
/ .

raw input vector space



Low-dimensional latent representation produces Manifold.

I o~ k=32«784=d __ ' !
I : N - i (D Y( h;) Y( h; )
bu - L) - 1 ]
X € R7%4 ! / 4 z € R32 \ ! ReR™ i . " " .
i | B h, € R RE E_ hy € RS I i I ( ]. - t)ll; + f—h_} .J[()].‘ U < IL < _I. ’rj
hy € R128 o€ R¥ ' hy € R0 L l

hi h 7

Interpolation between two points
h; and h;in the latent space.

Between the two given images,
VAE can generate the interpolated - n m m m
image.

e ( 3 P I
Image ¥ = W(h) |

Tangents

Tangent vectors
on manifold M




What about low-dimensional
representation of high dimensional
images such as MR and CT images.

So far, my team
has tried several
kinds of GANs and

VAE, but has not
succeeded.




Opaeene = 100 256x 256 Head MR Image 512x 512 Head CT Image

Test
Sample

For high
dimensional
data, AEs suffer
from image

PCA

blurring and
loss of small
details.

AE

VAE




Generative Adversarial Network

v" GANs have shown remarkable success in generation of various realistic images. However,
there exist some limitations in synthesizing high resolution medical data.

v' The GAN's approach makes it difficult to deal with high-dimensional data because the
generated image can be easily distinguished from the training data, which can lead to
collapse or instability during training process.

Dneene = 100 Generated 256 x 256 Head MR Image Generated 512x512 Head CT Image

VAE

GAN
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My personal opinion

AEs learns a bidirectional mapping(encoder and decoder), while GANs learn
only the unidirectional mapping (decoding) in high dimensional medical images.

GANs have a remarkable ability
to generate these images.

f T4 At

GANs have difficulties in encoding
high dimensional images.

AE can control this
latent variables

However, for high
dimensional data,
AEs suffer from
image blurring and
loss of small details.

/
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Challenging Issue: Generalization

Test error =0
Ytest — f(xtest) ~ (

Training error =~ ()
> lyic = FE0I? ~ 0
k

Recognize and Problems that do not

generalize features appear in the tutorial also
find the correct answer.

Memorize learning
materials well



Example of Memorization without Generalization

Recently, several experiments regarding adversarial classifications (false positive
output of cancer) have shown that deep neural networks (obtained via gradient
descent-based error minimization procedure) are vulnerable to various noisy-like
perturbations, resulting in incorrect output (that can be critical in medical

environments).

Adversarial attacks against medical deep learning systems
by Samuel G. Finlayson et al (2018)
The percentage represents the probability of Pneumothorax.

100.0%




MNIST example of Memorization without Generalization

One pixel attack

However, deep learning may provide

FER =1 =8 = 1)

fx)=c (WL QR (6 ocP oo (WL Q (g oP oa(W! @ x+by)-- )+by_1)+by)



Adversarial attacks against MNIST handwritten classification

We will focus on this
13t signal and analysis
what it means.

Library of 16 features for 6

"
14 Mnist Classified (I:oz:\fvtcl;e: Classified Classified
Data as 6 as 6 as 1

6 and O



Challenging issue: Normalization of input data

, [ .' —
Lx xzi
100.0%

diStradiologist(xl:xZ) =0 & diStradiologist(xBJxéL) =0

Adversarial attacks against
medical deep learning systems
by Samuel G. Finlayson et al (2018)

v These adversarial examples show that a well-trained function f:x — y works only in
the immediate vicinity of a manifold, whereas producing incorrect results if the input
deviates even slightly from the training data manifold.

v" In practice, the measured data is exposed to various noise sources such as machine
dependent noise; therefore, the developed algorithm must be stable against the
perturbations due to noise sources.

v" Hence, normalization of the input data is essential for improving robustness and
generalizability of the deep learning network against adversarial attacks.



Final Remark: Historically, our mathematicians have tried to find well-posed model
by imposing appropriate constraints to solution spaces. In the simple Dirichlet
problem, it took decades to find the appropriate space W'2(Q). It can take decades

to solve the challenging problems in DL .

The Dirichlet problem may not be well-posed without the constraint W12(Q).

V-Vu=0 in Q

Au=> <:> u‘(mzb

v Without the constraint M = W1%(Q), Au = 0 has infinitely many

2n 2n

solutions in C*(Q): u(r,0) = (rs —r 3 sinz?ne, n=012--
v Wit the constraint M = W12(Q), Au = 0 has the unique solution
u=_0.

In terms of M-RPI, note that || Au — Au'|| 1 ~ || u—u’||H1(Q)
HZ(

Q)
forall uu e M ={uewt?(Q):V-Vu=0 in Q).

|

3
(r,8):0<r< 1,0<9<—Tl’}

()



| hope that we will discuss various
challenging issues during this meeting.
Thank youl!
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