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The 21st Century

Various technological advances in the 21st century are only possible through
integrated mathematical modeling, simulation, and optimization.

Further Examples:

Gas networks
 Modeling of gigantic control systems

Atomistic molecular dynamics
 Simulations with ultralong timescales

Medical imaging
 Recovery from distorted data sets

There is a pressing need to go beyond
pure modeling, simulation, and optimization approaches!
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Impact of Deep Learning (Artificial Intelligence)

Health Care

SurveillanceSelf-Driving Cars

Legal Issues

Very few theoretical results explaining their success!
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From Data-Driven to Model-Based Approaches

Problems, Viewpoints and Solution Strategies:

Pure data-driven approaches.
Detect structural components in data sets!

Machine learning with physical constraints.
Insert physical information in machine learning algorithm!

Parametric differential equations.
Learn parameters from given data sets!

Data assimilation.
Combine sparse data with physical model to generate a general model!

Data analysis on simulation data.
Study simulation generated data in search of underlying laws!

Optimal balancing of
data-driven and model-based approaches!
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Outline

1 Imaging Science
Sparse Regularization of Inverse Problems
Optimality of Shearlet Systems
A Microlocal Viewpoint: Wavefront Sets

2 Deep Neural Networks and Inverse Problems
A Mathematical Viewpoint
Conceptual Approaches

3 Taking the Best out of Both Worlds
(Limited-Angle) Computed Tomography
LtI: Learning the Invisible
DeNSE: Deep Network Shearlet Edge Extractor

4 Conclusions
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Solving Inverse Problems

Tikhonov Regularization:
Given an (ill-posed) inverse problem

Kf = g , where K : X → Y ,

an approximate solution f α ∈ X , α > 0, can be determined by

f α := argminf ∈X

[
‖Kf − g‖2︸ ︷︷ ︸

Data fidelity term

+ α · P(f )︸ ︷︷ ︸
Penalty term

]
.

Penalty Term: The penalty term P
ensures continuous dependence on the data,

incorporates properties of the solution.
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The World is Compressible!

Wavelet Transform (JPEG2000):

f 7→ (〈f , ψj ,m〉)j ,m.

Definition: For a wavelet ψ ∈ L2(R2), a wavelet system is defined by

{ψj,m : j ∈ Z,m ∈ Z2}, where ψj,m(x) := 2jψ(2jx −m).
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How to Penalize Non-Sparsity?

Intuition:

 Use the `1 norm!

Sparse Regularization:
Solve an ill-posed inverse problem Kf = g by

f α := argminf

[
‖Kf − g‖2︸ ︷︷ ︸

Data fidelity term

+ α · ‖(〈f , ψj ,m〉)j ,m‖1︸ ︷︷ ︸
Penalty term

]
.
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Shearlets come into Play
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Mathematical Model for Images

Key Observation:

Images are governed by edge-like
structures!

Definition (Donoho; 2001):
Let ν > 0. We then define the class of cartoon-like functions by

E2(R2) = {f ∈ L2(R2) : f = f1 + χB f2},

where B ⊂ [0, 1]2 with ∂B ∈ C 2, and the functions f1 and f2 satisfy
f1, f2 ∈ C 2

0 ([0, 1]2), ‖f1‖C2 , ‖f2‖C2 , ‖∂B‖C2 < ν.
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Key Ideas of the Shearlet Construction

Wavelet versus Shearlet Approximation:

Parabolic scaling (‘width ≈ length2’):

A2j =

(
2j 0

0 2j/2

)
, j ∈ Z.

Orientation via shearing:

Sk =

(
1 k
0 1

)
, k ∈ Z.

Advantage:

Shearing leaves the digital grid Z2 invariant.

Uniform theory for the continuum and digital situation.
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(Cone-adapted) Discrete Shearlet Systems

Definition (K, Labate; 2006):
The (cone-adapted) discrete shearlet system SH(c ;φ, ψ, ψ̃), c > 0,
generated by φ ∈ L2(R2) and ψ, ψ̃ ∈ L2(R2) is the union of

{φ(· − cm) : m ∈ Z2},

{23j/4ψ(SkA2j · −cm) : j ≥ 0, |k| ≤ d2j/2e,m ∈ Z2},

{23j/4ψ̃(S̃k Ã2j · −cm) : j ≥ 0, |k| ≤ d2j/2e,m ∈ Z2}.

Theorem (K, Lim; 2011):

Let φ, ψ, ψ̃ ∈ L2(R2) be compactly supported, and let ψ̂, ˆ̃ψ satisfy certain
decay condition. Then SH(φ, ψ, ψ̃) provides an optimally sparse
approximation of f ∈ E2(R2), i.e.,

‖f − fN‖2 ≤ C · N−1 · (logN)3/2, N →∞.
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A Microlocal Viewpoint

Considering edge-structures together with their direction!

Wavefront Sets:

Notion for singularities and their direction.

The direction indicates the propagation of the singularity.

x1

x2

f = ID for a set D ⊆ R2 with smooth
boundary

x1

x2

φ

Visualization in phase space
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A Microlocal Viewpoint

Considering edge-structures independent of resolution!

Defnition:

Let f ∈ L2(R2) and k ∈ N. A point (x , λ) ∈ R2 × S1 is called
k-regular directed point of f if there exist open neighbourhoods Ux ,Uλ
of x and λ and a smooth function φ ∈ C∞(R2) with supp φ ⊂ Ux ,
φ(x) = 1 such that there is Ck > 0 and

|φ̂f (ξ)| ≤ Ck(1 + |ξ|)−k , for all ξ ∈ R2 \ {0} such that ξ/|ξ| ∈ Vλ.

The complement of the set of all k-regular directed points is called the
k-wavefront set denoted by WFk(f ).

WF (f ) is defined as the complement of the set of all points (x , λ),
which are k-regular directed points for all k.
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Shearlets and Wavefront Sets

Theorem (K, Labate, 2006): “Shearlets can identify the wavefront set at
fine scales.”

More Precisely:

Continuous Shearlet Transform:

L2(R2) 3 f 7→ SHψf (a, s, t) = 〈f , ψa,s,t〉, (a, s, t) ∈ R+ × R× R2.

Resolution of Wavefront Sets (simplified from [K & Labate, 2006], [Grohs,

2011])

WF(f )c =
{

(t0, s0) ∈ R2 × [−1, 1] : for (t, s) in neighborhood U of (t0, s0):

|SHψf (a, s, t)| = O(ak) as a −→ 0, ∀k ∈ N, unif. over U
}
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Summary

Shearlets are a representation system which...

...is generated by one or a few ‘mother functions’,

...provides optimally sparse approximation of cartoons,

...precisely resolves the wavefront set,

...allows for compactly supported analyzing elements,

...is associated with fast decomposition algorithms,

...treats the continuum and digital ‘world’ uniformly.
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Applications

Inpainting:

(Source: K, Lim; 2012)

2D&3D (parallelized) Fast Shearlet Transform (www.ShearLab.org):

Matlab (K, Lim, Reisenhofer; 2013)

Julia (Loarca; 2017)

Python (Look; 2018)

Tensorflow (Loarca; 2019)
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Mathematical Modeling Reaches a Barrier
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Limited Angle-(Computed) Tomography

A CT scanner samples the Radon transform

Rf (φ, s) =

∫
L(φ,s)

f (x)dS(x),

for L(φ, s) =
{
x ∈ R2 : x1 cos(φ) + x2 sin(φ) = s

}
,

φ ∈ [−π/2, π/2), and s ∈ R.

f (x1, x2)

x1

x2

s

φ

L(φ, s)

(cosφ, sinφ)

Challenging inverse problem if Rf (·, s) is only
sampled on [−φ, φ] ⊂ [−π/2, π/2).

Applications: Dental CT, breast tomosynthesis,
electron tomography,...
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Model-Based Approaches Fail

Sparse Regularization:

argminf

[
‖Rf − g‖2︸ ︷︷ ︸

Data fidelity term

+ α · ‖(〈f , ψj ,k,m〉)j ,k,m‖1︸ ︷︷ ︸
Penalty term

]
.

Clinical Data:

Original Image

Filtered BackprojectionSparse Regularization with Shearlets
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Let’s bring Deep Learning into the Game
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Deep Learning = Alchemy?

„Ali Rahimi, a researcher in arti�cial intelligence (AI) at Google in San 

Francisco, California, took a swipe at his �eld last December—and 

received a 40-second ovation for it. Speaking at an AI conference, 

Rahimi charged that machine learning algorithms, in which computers 

learn through trial and error, have become a form of „alchemy."  

Researchers, he said, do not know why some algorithms work and 

others don't, nor do they have rigorous criteria for choosing one 

AI architecture over another....“ 

                                                                                                Science, May 2018
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Fundamental Questions concerning Deep Neural Networks

Expressivity:
I How powerful is the network architecture?
I Can it indeed represent the correct functions?

 Applied Harmonic Analysis, Approximation Theory, ...

Learning:
I Why does the current learning algorithm produce anything reasonable?
I What are good starting values?

 Differential Geometry, Optimal Control, Optimization, ...

Generalization:
I Why do deep neural networks perform that well on data sets, which do

not belong to the input-output pairs from a training set?
I What impact has the depth of the network?

 Learning Theory, Optimization, Statistics, ...

Interpretability:
I Why did a trained deep neural network reach a certain decision?
I Which components of the input do contribute most?

 Information Theory, Uncertainty Quantification, ...
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Interpretability of Deep Neural Networks

Main Goal: We aim to understand decisions of “black-box” predictors!

map for digit 3 map for digit 8
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Interpretability of Deep Neural Networks

Main Goal: We aim to understand decisions of “black-box” predictors!

map for digit 3 map for digit 8

Some Previous Relevance Mapping Methods:

Gradient based methods:
I Sensitivity Analysis (Simonyan, Vedaldi, Zisserman, 2013)
I SmoothGrad (Smilkov, Thorat, Kim, Viégas, Wattenberg, 2017)

Backwards propagation based methods:
I Guided Backprop (Springenberg, Dosovitskiy, Brox, Riedmiller, 2015)
I Layer-wise Relevance Propagation (Bach, Binder, Montavon, Klauschen,

Müller, Samek, 2015)
I Deep Taylor (Montavon, Samek, Müller, 2018)
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Interpretability of Deep Neural Networks

Main Goal: We aim to understand decisions of “black-box” predictors!

map for digit 3 map for digit 8

Rate-Distortion Explanation (MacDonald, Wäldchen, Hauch, K; 2019):

Rigorous definition of relevance by information theory.
 Regarding relevant pixels as key information to transmit.

Formulation of interpretability as optimization problem.

Theoretical analysis of complexity.

For details see the poster outside!
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Numerical Experiments on MNIST

Classification of the Digit 6:

Quality Measure:
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Deep Neural Networks and Inverse Problems

Gitta Kutyniok (TU Berlin) Deep Learning and Modeling IPAM 2020 22 / 52



Typical Deep Learning Approaches to Inverse Problems

Denoising Direct Inversion [Kang,Min,Ye,2017], [Unser et. al.,2017], [Antholzer et al.,2019]

Idea: Direct inversion, e.g. with filtered backprojection, then train CNN to
remove (structured) noise and artefacts.

Plug-and-play with CNN-denoising [Venkatakrishnan,Bouman,Wohlberg,2013],
[Romano,Elad,Milanfar,2016], [Meinhardt et al.,2017], [Reehorst,Schniter,2019]

Iterative solvers such as Douglas-Rachford or ADMM contain a denoising step.

Replace this step by a trained CNN.

Learned Iterative Schemes [Gregor,LeCun,2010], [Yang et al.,2016], [Hammernick et

al.,2016] [Adler,Öktem,2017], [Hammernick et al.,2018], [Hauptmann et al.,2018]

Iterative solvers such as ADMM or Primal-Dual are proximal algorithms.

Replace proximal steps by parametrized operators (not necessarily prox),
where the parameters are learned.

Generative Models Priors [Bora et al.,2017], [Mixon,Villar,2018], [Hand,Voroninski,2018],
[Wei,Yang,Wang,2019], [Shah,Hegde,2019], [Xu,Zeng,Romberg,2019]

Solve minz∈Rk ‖AG (z)− y‖2
2, where G is a generative model (e.g. GAN).
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Taking a Microlocal Viewpoint

General Mission Statement:

Employ model-based approaches as far as they are reliable.

Apply deep learning only where model-based methods fail.

Guiding Principle:

Edges are key features of each image.

Recovery of the wavefront set is crucial:
I Use as prior [Davison; 1983],....
I Reveal missing parts.
I ...

Apply the shearlet transform to “sense” the wavefront set.
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Learning the Invisible (LtI)

joint with

Maximilian März (TU Berlin)

Wojciech Samek and Vignesh Srinivan (Fraunhofer HHI Berlin)

Tatiana Bubba, Matti Lassas, and Samuli Siltanen (University of Helsinki)
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A Related Deep Learning Approach to Limited-Angle CT

Image source: [Gu & Ye, 2017]:
Image source: [Gu & Ye, 2017]:

Missing theory, unclear what the neural network really does:

I Entire image is processed!
I Which features are modified?
I Lack of a clear interpretation!

The neural network needs to learn a lot of streaking artifacts (+noise)
[J. Gu and J. C. Ye. Multi-scale wavelet domain residual learning for limited-angle CT reconstruction. In: Procs Fully3D
(2017), pp. 443447.]

Gitta Kutyniok (TU Berlin) Deep Learning and Modeling IPAM 2020 25 / 52



Zooming in on the Recovery Problem

φ = 15◦, filtered backprojection (FBP)

φ = 30◦, filtered backprojection (FBP)φ = 45◦, filtered backprojection (FBP)φ = 60◦, filtered backprojection (FBP)φ = 75◦, filtered backprojection (FBP)φ = 90◦, filtered backprojection (FBP)

Some Observations:

Only certain boundaries/features seem to be “visible”!

Missing wedge creates artifacts!

Highly ill-posed inverse problem!
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Visibility in CT

Theorem ([Quinto, 1993]): Let L0 = L(φ0, s0) be a
line in the plane. Let (x0, ξ0) ∈ WF(f ) such that
x0 ∈ L0 and ξ0 is a normal vector to L0.

The singularity of f at (x0, ξ0) causes a
unique singularity in W (R f ) at (φ0, s0).

Singularities of f not tangent to L(φ0, s0) do
not cause singularities in R f at (φ0, s0).

f (x1, x2)

x1

x2

s

φ

L(φ, s)

(cosφ, sinφ)

“visible”: singularities tangent “invisible”: singularities not tangent
to sampled lines to sampled lines
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Shearlets can Help

Key Idea: Filling the missing angle is an
inpainting problem of the wavefront set!

The Shearlet Transform:

Shearlets can identify the wavefront set at fine scales.

Shearlets can separate the visible and invisible part.

ξ1

ξ2

Wφ

Invisible
Semi-visible

Visible
Visible Wedge
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Models versus Data

The High-level Idea:

How can we access the visible parts with shearlets?
 Sparse Regularization!

How can we inpaint the missing parts?
 Deep Learning!
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Our Approach “Learn the Invisible (LtI)”
(Bubba, K, Lassas, März, Samek, Siltanen, Srinivan; 2018)

Step 1: Reconstruct the visible

f ∗ := argminf≥0‖Rφ f − g‖2
2 + ‖ SHψ(f )‖1,w

Best available classical solution (little artifacts, denoised)

Access “wavefront set” via sparsity prior on shearlets:

I For (j , k, l) ∈ Iinv: SHψ(f ∗)(j,k,l) ≈ 0
I For (j , k, l) ∈ Ivis: SHψ(f ∗)(j,k,l) reliable and near perfect

Step 2: Learn the invisible

NN θ : SHψ(f ∗)Ivis F

(
!
≈ SHψ(fgt)Iinv

)
Step 3: Combine

fLtI = SHT
ψ (SHψ(f ∗)Ivis + F )

Gitta Kutyniok (TU Berlin) Deep Learning and Modeling IPAM 2020 30 / 52



Numerical Simulation

Verify the concept of (in-)visibility

with the help of an oracle:

fgt

FBP`1-analysis shearlet solution f ∗SHT
ψ

(
SHψ(f ∗)Ivis + SHψ(fgt)Iinv

)
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Our Approach – Step 2: PhantomNet

U-Net-like CNN architecture NN θ (40 layers) that is trained by minimizing:

min
θ

1

N

N∑
j=1

‖NN θ(SH(f ∗j ))− SH(f gtj )Iinv‖2
w ,2.
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Learning the Invisible

Model Based & Data Driven: Only learn what needs to be learned!

Advantages over Pure Data Based Approach:

Interpretation of what the CNN does ( 3D inpainting)

Reliability by learning only what is not visible in the data

Better performance due to better input

The neural network does not process entire image, leading to...

I ...less blurring by U-net
I ...fewer unwanted artifacts

Better generalization

Disadvantage:

Speed: dominated by `1-minimization
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Setup

Experimental Scenarios:

Mayo Clinic1: human abdomen scans provided by the Mayo Clinic for the
AAPM Low-Dose CT Grand Challenge.

I 10 patients (2378 slices of size 512× 512 with thickness 3mm)
I 9 patients for training (2134 slices) and 1 patient for testing (244 slices)
I simulated noisy fanbeam measurements for 60◦ missing wedge

Lotus Root: real data measured with the µCT in Helsinki

I generalization test of our method (training is on Mayo data!)
I 30◦ missing wedge

. . .

1We would like to thank Dr. Cynthia McCollough, the Mayo Clinic, the American Association of Physicists in Medicine
(AAPM), and grant EB01705 and EB01785 from the National Institute of Biomedical Imaging and Bioengineering for
providing the Low-Dose CT Grand Challenge data set.
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Evaluation on Test Patient

fgt

fFBP: RE = 0.50, HaarPSI=0.35fTV: RE = 0.21, HaarPSI=0.41f ∗: RE = 0.19, HaarPSI=0.43f[Gu & Ye, 2017]: RE = 0.22, HaarPSI=0.40fLtI: RE = 0.09, HaarPSI=0.76
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Average over Test Patient

Method RE PSNR SSIM HaarPSI
fFBP 0.47 17.16 0.40 0.32
fTV 0.18 25.88 0.85 0.37
f ∗ 0.17 26.34 0.85 0.40

f[Gu & Ye, 2017] 0.25 23.06 0.61 0.34
NN θ(fFBP) 0.15 27.40 0.78 0.52

NN θ(SH(fFBP)) 0.16 26.80 0.74 0.52
fLtI 0.08 32.77 0.93 0.73

HaarPSI (Reisenhofer, Bosse, K, and Wiegand; 2018)

Advantages over (MS-)SSIM, FSIM, PSNR, GSM, VIF, etc.:

Achieves higher correlations with human opinion scores.

Can be computed very efficiently and significantly faster.

www.haarpsi.org
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Generalization to Lotus Root

fgt

fFBP: RE = 0.31, HaarPSI=0.61fTV: RE = 0.12, HaarPSI=0.74f ∗: RE = 0.11, HaarPSI=0.75f[Gu & Ye, 2017]: RE = 0.25, HaarPSI=0.62fLtI: RE = 0.11, HaarPSI=0.83
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Deep Network Shearlet Edge Extractor (DeNSE)

joint with

Hector Andrade-Loarca (TU Berlin)

Ozan Öktem (KTH Royal Institute of Technology)

Philipp Petersen (University of Vienna)
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Computed Tomography and Wavefront Sets

Course of Action:

1. Detect the wavefront set of the sinogram.

2. Apply the inverse canonical relation.

3. Use the wavefront set of the reconstructed image as prior.

Canonical Relation:
The canonical relation C satisfies

WF
(
R(f )

)
= C ◦WF(f ) whenever f ∈ D′(R2),

where

C =
{(
θ, p, s(−x · ω(θ)⊥dθ + dp); x , sω(θ)dx

)
∈ T ∗(M) :

(θ, p) ∈M, x ∈ R2, s 6= 0, x · ω(θ) = p
}
.
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Deep Network Shearlet Edge Extractor (DeNSE)
(Andrade-Loarca, K, Öktem, Petersen; 2019)

Key Steps:

(1) Apply the shearlet transform to an image.
 Extract the correct features.
 Derive a good data representation.

(2) Consider patches of shearlet coefficients.
 Localize to each position.

(3) Apply a convolutional neural network.
 Predict the direction (180 directions) in each patch.

Network Architecture:
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Training of the ConvNet

Training Data: Patches of the shearlet transform of images made of...

1. ...random sums of ellipses and parallelograms of different contrasts, sizes, and
orientations.

2. ...random sums of ellipses and parallelograms, but convolves these images
with a kernel to generate a function with a higher-order wavefront set.

3. ...the BSDS500 (Berkeley Segmentation data set) provided by the Computer
Vision Group of UC Berkeley. It comprises 503 natural images of different
types.

4. ...the Semantic Boundaries data set (SBD) with 11355 natural images, again
provided by the Computer Vision Group of UC Berkeley.
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Ellipses and Parallelograms

Original

Human Annotation [Yi, Labate, Easley, Krim; 2009]

CoShREM [Reisenhofer et al.; 2015] DeNSE
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Smoothed Ellipses and Parallelograms

Original

Human Annotation [Yi, Labate, Easley, Krim; 2009]

CoShREM [Reisenhofer et al.; 2015] DeNSE
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Comparison Results

Comparison for Ellipses/Parallelograms:

Method MF-score
Canny 49.1
Sobel 40.0
BEL 63.3

Yi-Labate-Easley-Krim 70.3
CoShREM 90.6
DEnSE 97.5

MF-Score:

F :=
2PR

R + P
, where

P is the precision, i.e., the number of true positives divided by the sum of
true and false positives,

R is the recall, i.e., the number of true positives divided by the sum of true
positives and false negatives.

Gitta Kutyniok (TU Berlin) Deep Learning and Modeling IPAM 2020 44 / 52



BSDS500 Data Set

Original

Human Annotation SEAL [Yu et al; 2018]

CoShREM [Reisenhofer et al.; 2015] DeNSE
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Comparison Results

Comparison for BSDS500 Data Set:

Method MF-score
gPb-owt-ucm 73.7

gPb 71.5
Mean Shift - Comaniciu, Meer 64.0

Normalized Cuts - Cour, Benezit, Shi 64.2
Fetzenszwalb, Huttenlocher 61.0

Canny 60.3
CoShREM 75.7
DeepEdge 75.3
DEnSE 95.4
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Computed Tomography and Wavefront Sets

Course of Action:

1. Detect the wavefront set of the sinogram.

2. Apply the inverse canonical relation.

3. Use the wavefront set of the reconstructed image as prior.

Canonical Relation:
The canonical relation C satisfies

WF
(
R(f )

)
= C ◦WF(f ) whenever f ∈ D′(R2),

where

C =
{(
θ, p, s(−x · ω(θ)⊥dθ + dp); x , sω(θ)dx

)
∈ T ∗(M) :

(θ, p) ∈M, x ∈ R2, s 6= 0, x · ω(θ) = p
}
.

Gitta Kutyniok (TU Berlin) Deep Learning and Modeling IPAM 2020 47 / 52



Application of the Canonical Relation

Phantom Wavefront Set by DeNSE

Sinogram Wavefront Set by Canonical Relation

Gitta Kutyniok (TU Berlin) Deep Learning and Modeling IPAM 2020 48 / 52



Application of the Inverse Canonical Relation

Phantom Wavefront Set by Inverse Canonical Relation

Low-Dose Sinogram Wavefront Set by DeNSE

Gitta Kutyniok (TU Berlin) Deep Learning and Modeling IPAM 2020 49 / 52



Comparison Results

Comparison for Application of Inverse Canonical Relation:

Inversion technique Mean square error
Tikhonov 443.0
Total variation 380.9
Filtered backprojection 504.3
Canonical relations 168.1

Superior performance to any first-invert-then-extract strategy!
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Conclusions
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What to take Home...?

Model-Based Side:

Inverse problems can be solved by sparse regularization.

Shearlets are optimal for imaging science problems.

Methods based on mathematical models today often reach a barrier.

Deep Learning:

Impressive performance for Inverse Problems.

Theoretical foundation of neural networks almost entirely missing:
Expressivity, Learning, Generalization, and Interpretability.

Combining Both Sides (Limited-Angle Tomography):

LtI: Learning the Invisible
 Accessing the visible part by (sparse regularization) with shearlets.
 Learning only the invisible part.

DeNSE: Deep Network Shearlet Edge Extractor
 Extracting the wavefront set by shearlets and deep learning.
 Applying the canonical relation to use the wavefront set as prior.
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Technische Universität Berlin
Applied Functional Analysis Group  

THANK YOU!

References available at:
www.math.tu-berlin.de/∼kutyniok

Code available at:
www.ShearLab.org

Related Books:
Y. Eldar and G. Kutyniok
Compressed Sensing: Theory and Applications
Cambridge University Press, 2012.

G. Kutyniok and D. Labate
Shearlets: Multiscale Analysis for Multivariate Data
Birkhäuser-Springer, 2012.

P. Grohs and G. Kutyniok
Theory of Deep Learning
Cambridge University Press (in preparation)
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