DeepMind

Solving Mixed Integer Programs Using Neural Networks

<u> https://arxiv.org/pdf/2012.13349.pdf</u>

Vinod Nair vinair@google.com DeepMind

24th February 2021

Collaborators

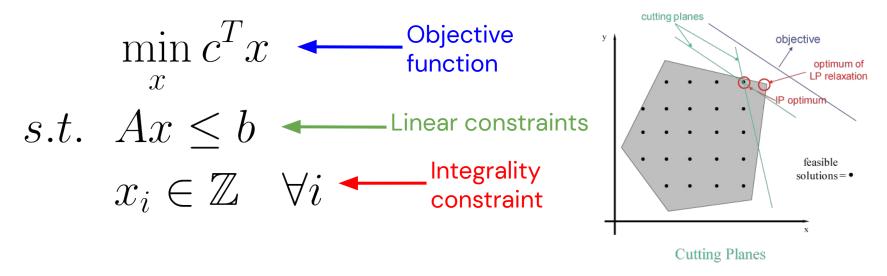
Sergey Bartunov^{*1}, Felix Gimeno^{*1}, Ingrid von Glehn^{*1}, Pawel Lichocki^{*2}, Ivan Lobov^{*1}, Brendan O'Donoghue^{*1}, Nicolas Sonnerat^{*1}, Christian Tjandraatmadja^{*2}, Pengming Wang^{*1},

Ravichandra Addanki¹, Tharindi Hapuarachchi¹, Thomas Keck¹, James Keeling¹, Pushmeet Kohli¹, Ira Ktena¹, Yujia Li¹, Oriol Vinyals¹, Yori Zwols¹

*Equal contributors ¹DeepMind ²Google Research

Mixed Integer Programming (MIP)

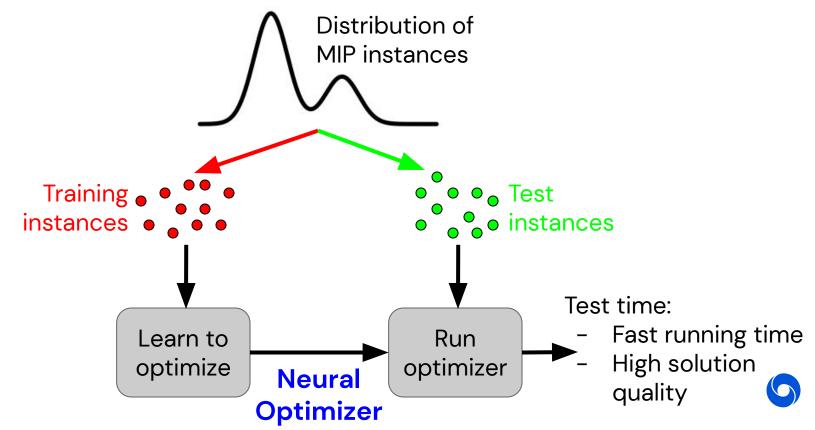
• Integer programming: One of Karp's 21 NP-complete problems



- "Mixed" \rightarrow x can also contain continuous variables
- Many real-world applications!

Why Learning?

• Exploit distribution-specific structure to construct better optimizers

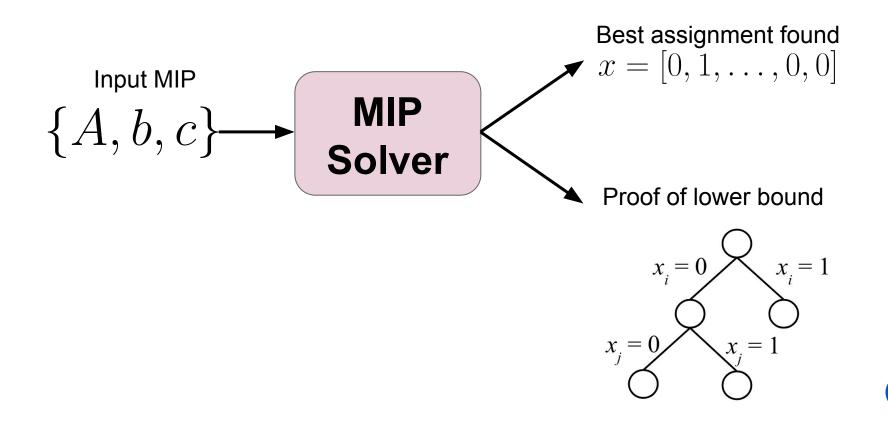


Related Work

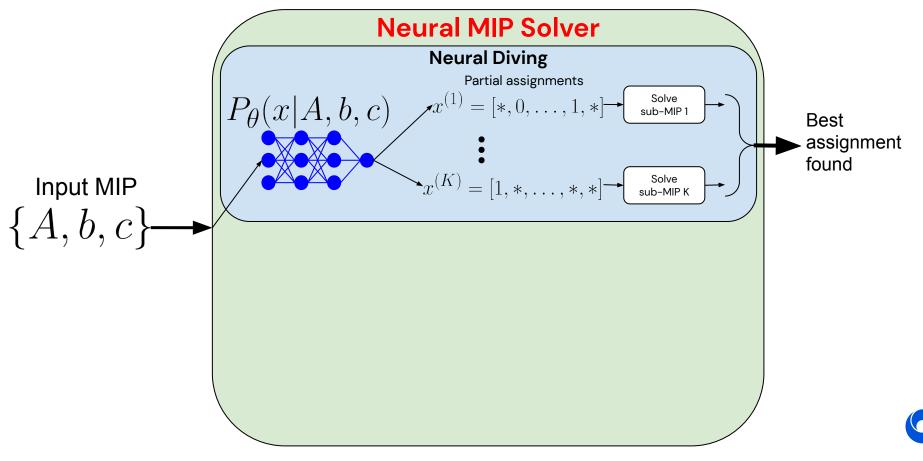
• Lots of work on learning for MIPs!

- Learning primal heuristics: Khalil et al., 2017, Hendel, 2018, Ding et al., 2020, Xavier et al., 2020, Addanki et al., 2020, Hottung and Tierney, 2020, Song et al., 2020, ...
- Learning branching policies: Khalil et al., 2016, Alvarez et al., 2017, Gasse et al., 2019, Zarpellon et al., 2020, Gupta et al., 2020, ...
- Learning to cut: Tang et al., 2020.
- Learning to configure MIP solvers: Hutter et al., 2011, Hutter et al., 2014, ...

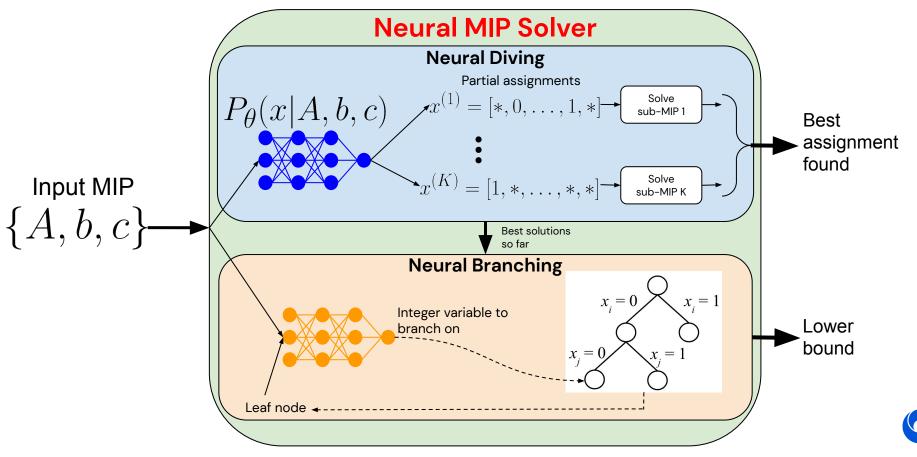
Solving a MIP



Our Approach

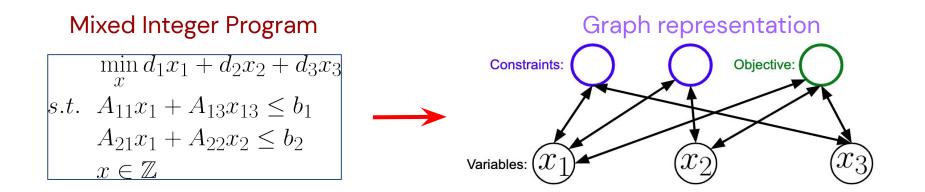


Our Approach



Graph Representation of a MIP

- Convert a mixed integer program into a bipartite graph
- Use GraphNets for learning
 - Handles permutation invariance and variable-sized instances



Neural Diving

• **Key idea:** Learn a generative model of feasible assignments of discrete variables *x* given a MIP *G* = {*A*, *b*, *c*}

$$P(x|G) = \begin{cases} \frac{\exp(-c^T x)}{Z(G)} & \text{if } x \text{ is feasible} \\ \\ 0 & \text{otherwise} \end{cases}$$

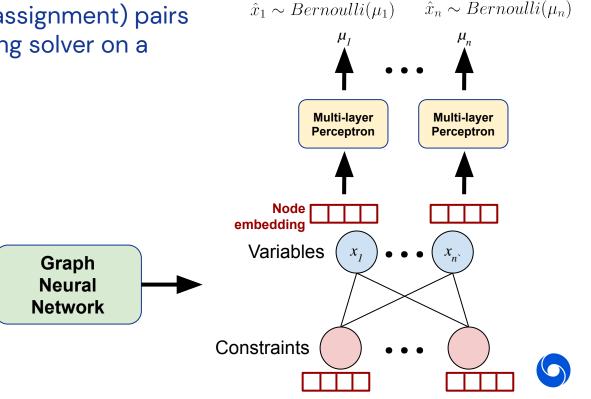
- Use samples from the generative model to define partial assignments
 - Naturally lends itself to parallelization

Generative Model

Input MIP

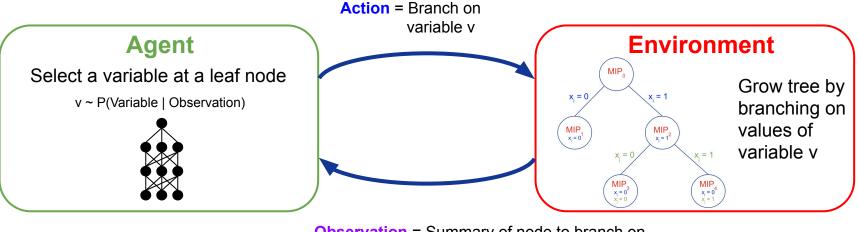
 $\{A, b, c\}$

• Train the model on (MIP, assignment) pairs generated using an existing solver on a training set of MIPs.



Neural Branching

• Branching as a sequential decision problem



Observation = Summary of node to branch on

Reward = Progress towards target optimality gap

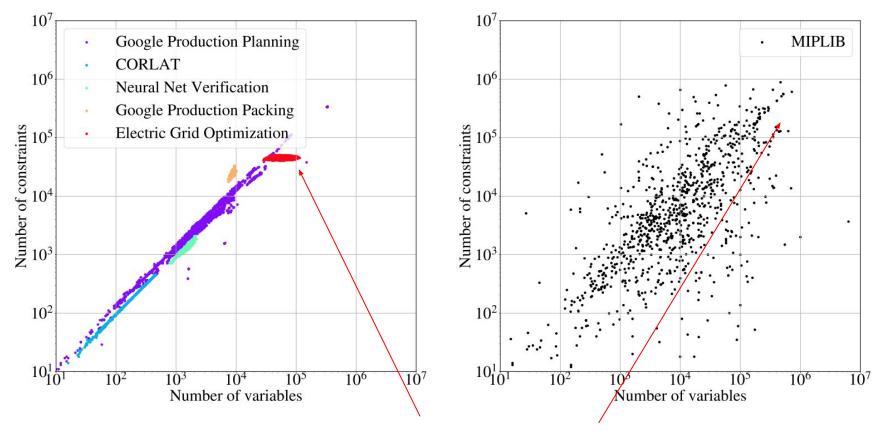
• Environment is built on SCIP, the SOTA non-commercial solver

Imitation Learning of Branching Policy

- Learn to imitate an expert policy
 - *Fullstrong branching* is a classical expert from optimization literature
 - We propose a scalable version of Fullstrong branching that uses GPUs
 - Based on Alternating Direction Method of Multipliers (ADMM)
- Imitation learning algorithms
 - Behavioral Cloning
 - Dataset Aggregation (Dagger), Ross et al., AISTATS, 2011.

Dataset	Domain	
Neural Network Verification	Verifying a convnet on MNIST images	Application-
Electric Grid Optimization	Planning daily operations of a US East Coast regional grid	
Google Production Packing	Production packing problem for data centers	datasets
Google Production Planning	Production planning problem for data centers	
MIPLIB	Public benchmark containing many different applications	

Distribution of MIP Sizes (After Presolve)



Large-scale instances!

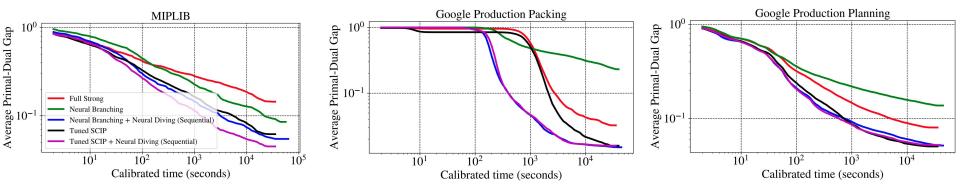
Evaluation

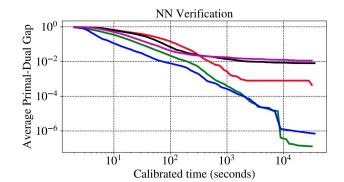
- Use learned policy to solve *unseen* MIP instances
- Metric: Average primal-dual gap vs. time
- Baseline: Tuned SCIP
 - Tune SCIP's hyperparameters on each dataset
 - Run two SCIP instances with different seeds, use the best primal-dual bound pair to compute the gap

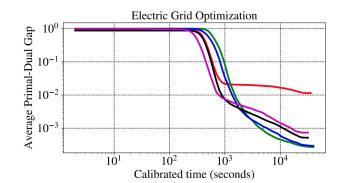
Neural solvers

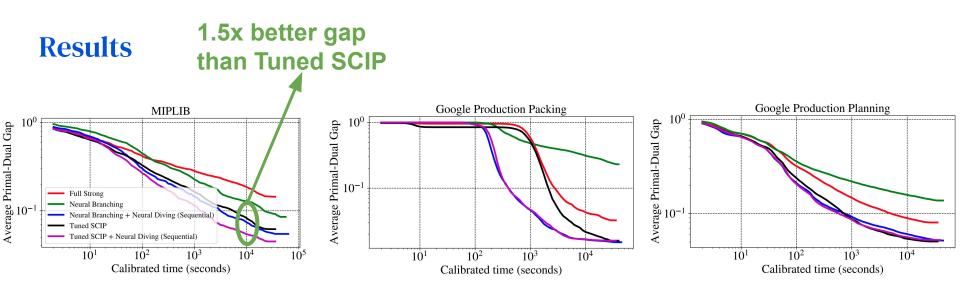
- Neural Diving + Neural Branching
- Neural Branching or Neural Diving alone

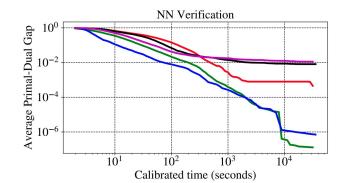
Results

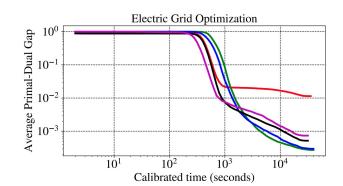


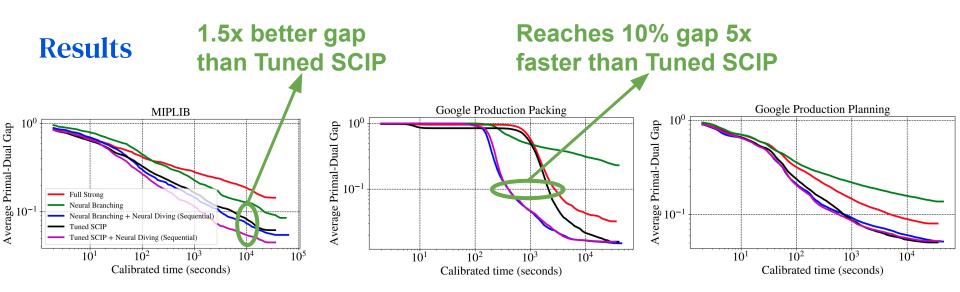


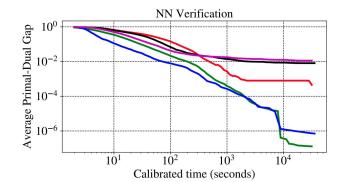


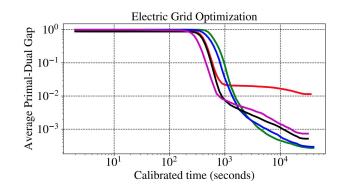


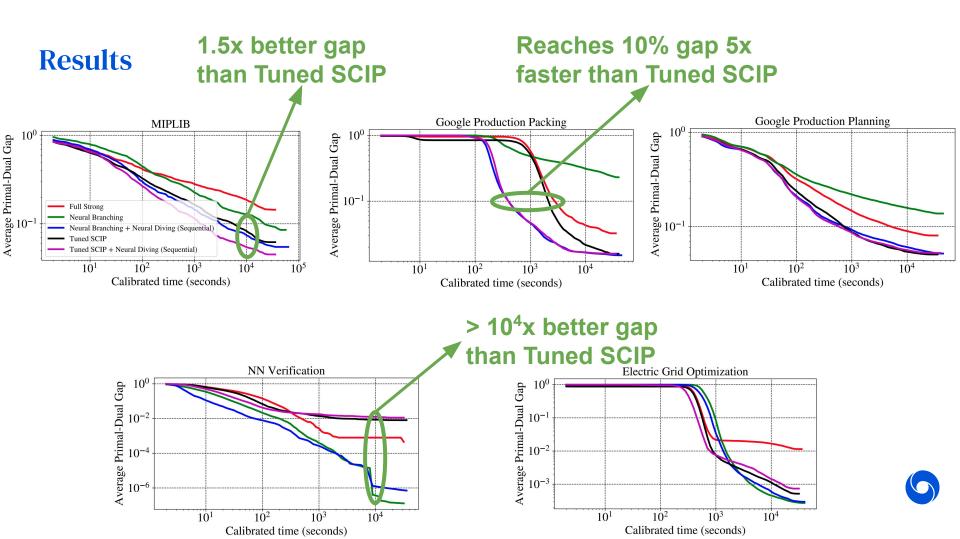












Surprising Result

- Applied Neural Diving to singleton MIPs in MIPLIB
 - \circ Create smaller MIPs from singleton MIP \rightarrow Train \rightarrow Apply model to singleton MIP.

• Achieves best ever objective value on three of the open MIPs!

MIP Name	New < previous best objective value (lower = better)	Previous best solver
<u>milo-v12-6-r1-75-1</u>	1153756.398 < 1153880	CPLEX, Dec 2019
<u>neos-1420790</u>	3121.29 < 3121.42	CPLEX, Dec 2019
<u>xmas10-2</u>	-497 < -495	Gurobi 9.0, Feb 2020

Conclusions and Next Steps

- First demonstration of learning beating SCIP on large-scale, real-world datasets!
 - Learning is effective even on MIPLIB!

- Next: Better learned primal heuristics
 - Combine with classical techniques, e.g., domain propagation, iterative LP solving, ...
 - Neural Large Neighborhood Search (Addanki et al., LMCA Workshop at NeurIPS 2020): Iteratively improve initial assignment produced by Neural Diving.

DeepMind

Thanks!

