
Solving Mixed Integer Programs
Using Neural Networks

https://arxiv.org/pdf/2012.13349.pdf

Vinod Nair
vinair@google.com

DeepMind

24th February 2021

https://arxiv.org/pdf/2012.13349.pdf

Sergey Bartunov*1, Felix Gimeno*1, Ingrid von Glehn*1, Pawel Lichocki*2, Ivan
Lobov*1, Brendan O’Donoghue*1, Nicolas Sonnerat*1,

Christian Tjandraatmadja*2, Pengming Wang*1,

Ravichandra Addanki1 , Tharindi Hapuarachchi1, Thomas Keck1,
James Keeling1 , Pushmeet Kohli1 , Ira Ktena1 , Yujia Li1 , Oriol Vinyals1 , Yori Zwols1

*Equal contributors
1DeepMind
2Google Research

Collaborators

Mixed Integer Programming (MIP)

● Integer programming: One of Karp’s 21 NP-complete problems

● “Mixed” → x can also contain continuous variables
● Many real-world applications!

Objective
function

Linear constraints

Integrality
constraint

Why Learning?

Learn to
optimize

Run
optimizer

Distribution of
MIP instances

Training
instances

Test
instances

Neural
Optimizer

Test time:
- Fast running time
- High solution

quality

● Exploit distribution-specific structure to construct better optimizers

Related Work

● Lots of work on learning for MIPs!

● Learning primal heuristics: Khalil et al., 2017, Hendel, 2018, Ding et al., 2020, Xavier

et al., 2020, Addanki et al., 2020, Hottung and Tierney, 2020, Song et al., 2020, …
● Learning branching policies: Khalil et al., 2016, Alvarez et al., 2017, Gasse et al.,

2019, Zarpellon et al., 2020, Gupta et al., 2020, …

● Learning to cut: Tang et al., 2020.

● Learning to configure MIP solvers: Hutter et al., 2011, Hutter et al., 2014, …

Solving a MIP

MIP
Solver

Input MIP

Best assignment found

Proof of lower bound

Our Approach

Neural MIP Solver

Input MIP

Best
assignment
found

Solve
sub-MIP 1...

Solve
sub-MIP K

Neural Diving
Partial assignments

Our Approach

Neural MIP Solver

Input MIP

Best
assignment
found

Lower
bound

Solve
sub-MIP 1...

Solve
sub-MIP K

Integer variable to
branch on

Neural Branching

Neural Diving

Leaf node

Partial assignments

Best solutions
so far

Graph Representation of a MIP

● Convert a mixed integer program into a bipartite graph
● Use GraphNets for learning

○ Handles permutation invariance and variable-sized instances

Mixed Integer Program Graph representation

Neural Diving

● Key idea: Learn a generative model of feasible assignments of discrete
variables x given a MIP G = {A, b, c}

● Use samples from the generative model to define partial assignments
○ Naturally lends itself to parallelization

...
Variables

Constraints

...x
1

x
n`

Multi-layer
Perceptron

μ
1

Multi-layer
Perceptron

μ
n

Node
embedding

...

Graph
Neural

Network

Generative Model

Input MIP

● Train the model on (MIP, assignment) pairs
generated using an existing solver on a
training set of MIPs.

Neural Branching

Agent Environment
Action = Branch on
 variable v

Observation = Summary of node to branch on

Reward = Progress towards target optimality gap

Select a variable at a leaf node Grow tree by
branching on
values of
variable v

v ~ P(Variable | Observation)

● Environment is built on SCIP, the SOTA non-commercial solver

● Branching as a sequential decision problem

Imitation Learning of Branching Policy

● Learn to imitate an expert policy
○ Fullstrong branching is a classical expert from optimization literature
○ We propose a scalable version of Fullstrong branching that uses GPUs

■ Based on Alternating Direction Method of Multipliers (ADMM)

● Imitation learning algorithms
○ Behavioral Cloning
○ Dataset Aggregation (Dagger), Ross et al., AISTATS, 2011.

Dataset Domain

Neural Network
Verification

Verifying a convnet on MNIST images

Electric Grid
Optimization

Planning daily operations of a US East Coast
regional grid

Google Production
Packing

Production packing problem for data centers

Google Production
Planning

Production planning problem for data centers

MIPLIB Public benchmark containing many different
applications

Application-
specific
datasets

Distribution of MIP Sizes (After Presolve)

Large-scale instances!

Evaluation

● Use learned policy to solve unseen MIP instances

● Metric: Average primal-dual gap vs. time

● Baseline: Tuned SCIP
○ Tune SCIP’s hyperparameters on each dataset
○ Run two SCIP instances with different seeds, use the best primal-dual

bound pair to compute the gap

● Neural solvers
○ Neural Diving + Neural Branching
○ Neural Branching or Neural Diving alone

Results

Results 1.5x better gap
than Tuned SCIP

Results 1.5x better gap
than Tuned SCIP

Reaches 10% gap 5x
faster than Tuned SCIP

Results 1.5x better gap
than Tuned SCIP

Reaches 10% gap 5x
faster than Tuned SCIP

> 104x better gap
than Tuned SCIP

Surprising Result

● Applied Neural Diving to singleton MIPs in MIPLIB
○ Create smaller MIPs from singleton MIP → Train → Apply model to

singleton MIP.

● Achieves best ever objective value on three of the open MIPs!

MIP Name New < previous best objective
value (lower = better)

Previous best solver

milo-v12-6-r1-75-1 1153756.398 < 1153880 CPLEX, Dec 2019

neos-1420790 3121.29 < 3121.42 CPLEX, Dec 2019

xmas10-2 -497 < -495 Gurobi 9.0, Feb 2020

https://miplib.zib.de/instance_details_milo-v12-6-r1-75-1.html
http://miplib2017.zib.de/instance_details_neos-1420790.html
http://miplib2017.zib.de/instance_details_xmas10-2.html

Conclusions and Next Steps

● First demonstration of learning beating SCIP on large-scale,
real-world datasets!
○ Learning is effective even on MIPLIB!

● Next: Better learned primal heuristics
○ Combine with classical techniques, e.g., domain propagation,

iterative LP solving, …
○ Neural Large Neighborhood Search (Addanki et al., LMCA

Workshop at NeurIPS 2020): Iteratively improve initial assignment
produced by Neural Diving.

Thanks!

