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What we're talking about?

Deep Learning
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Combinatorial Optimization
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Travelling Scientist Problem (TSP)
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Kool et al., 2019



: B
i ) O ;o

. m

F - & -

Travelling Scientist Problem (TSP)
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Neural
Information
Processing
Systems
Conference

Tweets sent to this
account are not
actively monitored.
To contact us please
goto
http://neurips.cc/Hel

p/Contact
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simply wandering; each poster had a clearly marked presenter spot to easily

spot the presenter; people could teleport directly to the poster of their

choice from the NeurIPS website, and a coordinate systems allowed people

to locate a poster of interest once they were in a room.

https://neuripsconf.medium.com/neurips-2020-online-experiments-
gather-town-poster-sessions-and-mementor-ac1573d61c8a
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‘Predicting’ translations

Sentence
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Neural
Machine
Translation

Translation
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‘Predicting’ solutions

Problem
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Neural
Combinatorial
Optimization

Solution
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It’s not the same!

Machine i Combinatorial
Translation Optimization
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It’s not the same!

Machine Translation i Combinatorial Optimization
Learning problem
\
Scoring translations (learning a model) Scoring solution (objective function)
Finding a good translation (inference) Finding a good solution (optimization)

N "

Computational problem
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It’s not the same!

Machine Translation

Maximize quality

(computation is 2nd)

—+

Combinatorial Optimization

Minimize cost

with minimum computation



Maximize quality
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It’s not the same!

Machine Translation

\

Minimize cost

(computation is 2nd)

—+

Combinatorial Optimization

with minimum computation



If we have infinite computation...

Combinatorial Optimization

Exhaustive search

(Artificially)
intelligent algorithm

With infinite computation,
the task is trivial!

Minimize cost

with minimum computation
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The goal

To find better solutions

Minimize cost

...with less computation!

with minimum computation
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How?

Using neural networks...

Adding computation...
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...to make better (heuristic) decisions!

...to reduce computation!

Pay-off




Impact vs. computation (of your neural network)
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Example:
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Decoder
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sampling using Attention Model (Kool et al., 2019)
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Example: sampling/BS using Heatmap Model (Joshi et al., 2019)

Graph
ConvNet
Model

\ 4

Input 2D graph

Picture by Joshi et al., 2019

Y

Edge prediction heat-map
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Beam
Search
Decoder

eX

\ 4

Valid TSP tour
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Example: sampling/BS using Heatmap Model (Joshi et al., 2019)
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Dynamic Programming
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Held-Karp DP for TSP (Held & Karp, 1962; Bellman, 1962)

Cost/distance

/ from j to i
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Held-Karp DP for TSP (Held & Karp, 1962; Bellman, 1962) N
Brute-force (forward view) DP (top-down or backward view) ’
O(h!) or factorial

oo ORTEC

Artwork by Vaidehi Joshi, https://medium.com/basecs/speeding-up-the-traveling-salesman-using-dynamic-programming-b76d7552e8dd



https://medium.com/basecs/speeding-up-the-traveling-salesman-using-dynamic-programming-b76d7552e8dd
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Held-Karp DP for TSP (Held & Karp, 1962; Bellman, 1962)

Brute-force

O(n 1) or factorial

Forward view

»

Still impractical!

0@ expmestid.
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Held-Karp DP for TSP (Held & Karp, 1962; Bellman, 1962)

Beam search /’<: —°

O(Bn) or linear A

22
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We need a
good policy
to restrict the
search space!

Restricted DP
O(Bn) or linear

Forward view _

»

Malandraki & Dial, 1996
Gromicho et al., 2012
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Deep Policy Dynamic Programming (DPDP)

DPDP
O(Bn) or linear
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For each iteration

* Expand solutions

* Remove dominated solutions

* Select top B according to policy
* Repeat

. Potential
Forward view avoids

Policy: select top B solutions that maximize the score.

SCORE = HEAT + POTENTIAL

/ \

Heat of edges Estimate for

in solution unvisited nodes
based on remaining edges

»

N | — ‘skipped
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Heat
hij € (0,1)

Picture by Joshi et al., 2019 ] o ORTEC


https://arxiv.org/abs/2102.11756

Deep Policy Dynamic Programming (DPDP)

DP is flexible framework for many VRP variants e.g. time windows

Suitable for GPU implementation

Natural trade-off compute vs. performance -> asymptotically optimal
Supervised training based on example solutions

Test time: only evaluate NN once!
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https://arxiv.org/abs/2102.11756

| hear you thinking...

Show me the pay-off!
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Results )

Travelling Salesman Problem Vehicle Routing Problem

Table 2. Main results for VRP with 100 nodes.
Table 1. Main results for TSP with 100 nodes.

METHOD CosT GAP TIME METHOD Cost GAP TIME
CONCORDE 7.765 0.000 % 6M LKH 15.647 0.000 % 12H59M
LKH 7.765 0.000 % 42M XIN ET AL. (2020) 16.49 4.99 % 39s
GUROBI 7.776 0.15 % 31M KOOL ET AL. (2019) 16.23 3.72 % 2H
CHEN & TIAN (2019) 16.10 2.90 % 1H
KOOL ET AL. (2019) 7.94 2.26 % 1H PENG ET AL. (2019) 16.27  3.96 % 6H
JOSHI ET AL. (2019A) 7.87 1.39 % 40M WU ET AL. (2019) 16.03 2.47 % 5H
DA COSTA ET AL. (2020) 7.83 0.87 % 41M HOTTUNG & TIERNEY (2019) 15.99 1.02 % 1H
LUET AL. (2020 15.57* - 4000H
FU ET AL. (2020) 7.764%  0.04 % ‘%\I (2020)
DPDP 10K 15.832  1.183 % 210;‘;
10M + 1}5 M
DPDP 10K 7765 0.009% | 06m DPDP 100K 15694  0305% gt
10M + 10M +
DPDP 100K 7765 0.004% i DPDP 1M 15.627 -0.127% gt
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Quality vs. computation

Difference with 1 run of lkh

vrpl00, beam size 10K - 2.5M, |kh(u) 1 - 10 runs
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Ablations

Difference with 1 run of |kh

vrpl00, beam size 1 - 100K, scoring policies
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That’s it! So remember...

Count your flops...

and make them count!




