Deep Learning for

Combinatorial Optimization

Herke van Hoof

Count your flops and make them count!

M Wouter Kool

UNIVERSITY OF AMSTERDAM
X

Joaquim Gromicho

Max Welling

AAAAAAAA
aaaaaaaaaaaaaaaaa

What we're talking about?

Deep Learning

== e
il "
\ _ Cofsee= T
©=[—
= 7T\
(/blT \—;:
/ G=
/1T\

z,"g__z,’?/ min_ c(x,y)
7T T YED (x)

Combinatorial Optimization

EBl UNIVERSITY O ? 1—'C
||
OF AMSTERDAM g i

Travelling Scientist Problem (TSP)

NG|
il

(kt)*

il

N
7
N

1)
1l
@
\\

Kool et al., 2019

: B
i) O ;o

. m

F - & -

Travelling Scientist Problem (TSP)

\

(kt)*

[mm R U]EOFENE;
e
I +

Vinyals et al., 2015
Bello et al., 2016
Kool et al., 2019

Neural
Information
Processing
Systems
Conference

Tweets sent to this
account are not
actively monitored.
To contact us please
goto
http://neurips.cc/Hel

p/Contact

Follow

S a
Q

A

al=

simply wandering; each poster had a clearly marked presenter spot to easily

spot the presenter; people could teleport directly to the poster of their

choice from the NeurIPS website, and a coordinate systems allowed people

to locate a poster of interest once they were in a room.

https://neuripsconf.medium.com/neurips-2020-online-experiments-
gather-town-poster-sessions-and-mementor-ac1573d61c8a

'gl UNIVERSITY
i@l OF AMSTERDAM

ORrT:EC

‘Predicting’ translations

Sentence

oy

r

&

Neural
Machine
Translation

Translation

EBl UNIVERSITY O C
| X]
AAAAAAAAAAA RT

‘Predicting’ solutions

Problem

oy

r

&

Neural
Combinatorial
Optimization

Solution

EBl UNIVERSITY O'{ C
| X]
AAAAAAAAAAA RT

It’s not the same!

Machine i Combinatorial
Translation Optimization

EBl UNIVERSITY O ? 1—'C
||
OF AMSTERDAM g i

It’s not the same!

Machine Translation i Combinatorial Optimization
Learning problem
\
Scoring translations (learning a model) Scoring solution (objective function)
Finding a good translation (inference) Finding a good solution (optimization)

N "

Computational problem

| X]
;g OF AMSTERDAM

Stahlberg & Byrne, 2019 o o ORTEC

It’s not the same!

Machine Translation

Maximize quality

(computation is 2nd)

—+

Combinatorial Optimization

Minimize cost

with minimum computation

Maximize quality

=
=

It’s not the same!

Machine Translation

\

Minimize cost

(computation is 2nd)

—+

Combinatorial Optimization

with minimum computation

If we have infinite computation...

Combinatorial Optimization

Exhaustive search

(Artificially)
intelligent algorithm

With infinite computation,
the task is trivial!

Minimize cost

with minimum computation

=
N

— optimal

OO computation

The goal

To find better solutions

Minimize cost

...with less computation!

with minimum computation

=
(°8)

t\—’

optimal

OO computation

How?

Using neural networks...

Adding computation...

(k|)4 [9
L

2v2
01

9801
Q-
L1

...to make better (heuristic) decisions!

...to reduce computation!

Pay-off

Impact vs. computation (of your neural network)

s»,
=
O
q)
Q.
£

High

Low

y

A

‘Neural
branching’

Learning to

(local) search

Sample
solutions
Predicting
solution
?
Low High

Computation

llllllllll
AAAAAAAAAAA

Example:
®
) ®
o °

O
Q.
&
A
y 4

Steps

Decoder

(kt)*

L

¥,

L

sampling using Attention Model (Kool et al., 2019)

(kh)*

2V

9801

Example: sampling/BS using Heatmap Model (Joshi et al., 2019)

Graph
ConvNet
Model

\ 4

Input 2D graph

Picture by Joshi et al., 2019

Y

Edge prediction heat-map

\ 4

Beam
Search
Decoder

eX

\ 4

Valid TSP tour

oo ORTEC

(kt)*

Example: sampling/BS using Heatmap Model (Joshi et al., 2019)

=

=

=

=

=

=

SIS YLS

@@@@@@
SNSRI RS

WYY YIRS

Steps

=

=

NIRRT

(k14 ° .)

22

9801

eX

Dynamic Programming

20 ety ORTEC

Held-Karp DP for TSP (Held & Karp, 1962; Bellman, 1962)

Cost/distance

/ from j to i
C(S,i1)) = min.C(S \ 1if,7) + c;
/> \) BB\ + g

Find best solution

Set of Current for each DP state

visited node
nodesin S nodes |
! \
\ J
|
DP state ® ®
@ ©) ® ®
@ Dominate @
(D (1)
) ©
@ > o ®

21 Ml UNIVERSITY 011—'
. (<8 OF AMSTERDAM g i C

(kt)*

Held-Karp DP for TSP (Held & Karp, 1962; Bellman, 1962) N
Brute-force (forward view) DP (top-down or backward view) ’
O(h!) or factorial

oo ORTEC

Artwork by Vaidehi Joshi, https://medium.com/basecs/speeding-up-the-traveling-salesman-using-dynamic-programming-b76d7552e8dd

https://medium.com/basecs/speeding-up-the-traveling-salesman-using-dynamic-programming-b76d7552e8dd

(kt)*

Held-Karp DP for TSP (Held & Karp, 1962; Bellman, 1962)

Brute-force

O(n 1) or factorial

Forward view

»

Still impractical!

0@ expmestid.

»

[[[[[[[[[[

22
9801

(kt)*

Held-Karp DP for TSP (Held & Karp, 1962; Bellman, 1962)

Beam search /’<: —°

O(Bn) or linear A

22
9801

We need a
good policy
to restrict the
search space!

Restricted DP
O(Bn) or linear

Forward view _

»

Malandraki & Dial, 1996
Gromicho et al., 2012

d)ﬁ:/\
?
o®

Deep Policy Dynamic Programming (DPDP)

DPDP
O(Bn) or linear

(k1)*
2v2

9807

eX

For each iteration

* Expand solutions

* Remove dominated solutions

* Select top B according to policy
* Repeat

. Potential
Forward view avoids

Policy: select top B solutions that maximize the score.

SCORE = HEAT + POTENTIAL

/ \

Heat of edges Estimate for

in solution unvisited nodes
based on remaining edges

»

N | — ‘skipped
“.\9\‘ nodes’
N]

~
-~

Heat
hij € (0,1)

Picture by Joshi et al., 2019] o ORTEC

https://arxiv.org/abs/2102.11756

Deep Policy Dynamic Programming (DPDP)

DP is flexible framework for many VRP variants e.g. time windows

Suitable for GPU implementation

Natural trade-off compute vs. performance -> asymptotically optimal
Supervised training based on example solutions

Test time: only evaluate NN once!

EBl UNIVERSITY O ? 1—'C
||
OF AMSTERDAM g i

https://arxiv.org/abs/2102.11756

| hear you thinking...

Show me the pay-off!

(kh)*

SITY
AAAAAAAAAAA

: (k1)* .

2v2

9801

Results)

Travelling Salesman Problem Vehicle Routing Problem

Table 2. Main results for VRP with 100 nodes.
Table 1. Main results for TSP with 100 nodes.

METHOD CosT GAP TIME METHOD Cost GAP TIME
CONCORDE 7.765 0.000 % 6M LKH 15.647 0.000 % 12H59M
LKH 7.765 0.000 % 42M XIN ET AL. (2020) 16.49 4.99 % 39s
GUROBI 7.776 0.15 % 31M KOOL ET AL. (2019) 16.23 3.72 % 2H
CHEN & TIAN (2019) 16.10 2.90 % 1H
KOOL ET AL. (2019) 7.94 2.26 % 1H PENG ET AL. (2019) 16.27 3.96 % 6H
JOSHI ET AL. (2019A) 7.87 1.39 % 40M WU ET AL. (2019) 16.03 2.47 % 5H
DA COSTA ET AL. (2020) 7.83 0.87 % 41M HOTTUNG & TIERNEY (2019) 15.99 1.02 % 1H
LUET AL. (2020 15.57* - 4000H
FU ET AL. (2020) 7.764% 0.04 % ‘%\I (2020)
DPDP 10K 15.832 1.183 % 210;‘;
10M + 1}5 M
DPDP 10K 7765 0.009% | 06m DPDP 100K 15694 0305% gt
10M + 10M +
DPDP 100K 7765 0.004% i DPDP 1M 15.627 -0.127% gt

EBl UNIVERSITY O ?rc
OF AMSTERDAM g i

X

(kh)*

Quality vs. computation

Difference with 1 run of lkh

vrpl00, beam size 10K - 2.5M, |kh(u) 1 - 10 runs

1.25% 1 —«- DP Heat + Potential (1 GPU)
) DP Heat + Potential (4 GPUs)
1.00% A Ikh, 32 cpus
, Ikh, 16 cpus
0.75% - Ikhu, 32 cpus
0500 Ikhu, 16 cpus
. 0
0.25% -
0.00% A
________________ -
-0.25% -
-050% T r | T —| ——————— .l
0 10 20 30 40 50

Duration (s/instance)

X
X

UNIVERSITY
OF AMSTERDAM

2v2

—
9801

eX

ORrT:EC

Ablations

Difference with 1 run of |kh

vrpl00, beam size 1 - 100K, scoring policies

(kh)*

—%¥— DP Cost (no heatmap)
30.0% - —4&— BS Heat + Potential
—&— DP Heat
25.0% A —»— DP Heat + Potential
: Heatmap generation time 0.06 s
20.0% 4 |
|
15.0% A :
|
10.0% A :
|
5.0% |
I
I
0.0%- —>
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Duration (s/instance)

X

€3

X

UNIVERSITY
OF AMSTERDAM

2v2

9801

eX

ORrT:EC

(kh)*

That’s it! So remember...

Count your flops...

and make them count!

