Deep Learning for

Combinatorial Optimization

Count your flops and make them count!

Wouter Kool

Herke van Hoof

Joaquim Gromicho

Max Welling

What we're talking about?

Deep Learning

Combinatorial Optimization

Travelling Scientist Problem (TSP)

Kool et al., 2019

Travelling Scientist Problem (TSP)

Vinyals et al., 2015 Bello et al., 2016 Kool et al., 2019

Neural Information Processing Systems Conference

Tweets sent to this account are not actively monitored. To contact us please go to http://neurips.cc/Hel p/Contact

Follow

simply wandering; each poster had a clearly marked presenter spot to easily spot the presenter; people could teleport directly to the poster of their choice from the NeurIPS website, and a coordinate systems allowed people to locate a poster of interest once they were in a room.

https://neuripsconf.medium.com/neurips-2020-online-experimentsgather-town-poster-sessions-and-mementor-ac1573d61c8a

'Predicting' translations

Neural Machine Translation

Sentence

Translation

'Predicting' solutions

Problem

Neural Combinatorial Optimization

Solution

Machine Translation

Combinatorial Optimization

Machine Translation

Combinatorial Optimization

Learning problem

Scoring translations (learning a model)

Finding a good translation (inference)

No problem

Scoring solution (objective function)

Finding a good solution (optimization)

Computational problem

Machine Translation

#

Combinatorial Optimization

Maximize quality

Minimize cost

(computation is 2nd)

with minimum computation

Machine Translation

(computation is 2nd)

Maximize quality

If we have infinite computation...

Combinatorial Optimization

The goal

To find better solutions

Using neural networks...

Adding computation...

...to make better (heuristic) decisions!

...to reduce computation!

Pay-off

Impact vs. computation (of your neural network)

Example: sampling using Attention Model (Kool et al., 2019)

Example: sampling/BS using Heatmap Model (Joshi et al., 2019)

Picture by Joshi et al., 2019

Example: sampling/BS using Heatmap Model (Joshi et al., 2019)

Dynamic Programming

 $(k!)^4$

π

Brute-force (forward view)

DP (top-down or backward view)

Brute-force

O(n!) or factorial

Dominate Dominate Forward view

Still impractical!

DP

O(2"n2) exponential

Beam search

O(Bn) or linear

We need a good policy

to restrict the search space!

Forward view

Restricted DP

O(Bn) or linear

Malandraki & Dial, 1996 Gromicho et al., 2012

Deep Policy Dynamic Programming (DPDP)

https://arxiv.org/abs/2102.11756

π

DPDP

O(Bn) or linear

For each iteration

- Expand solutions
- Remove dominated solutions
- Select top B according to policy
- Repeat

 $(k!)^4$

Policy: select top *B* solutions that maximize the score.

Deep Policy Dynamic Programming (DPDP)

- DP is flexible framework for many VRP variants e.g. time windows
- Suitable for GPU implementation
- Natural trade-off compute vs. performance -> asymptotically optimal
- Supervised training based on example solutions
- Test time: only evaluate NN once!

I hear you thinking...

Show me the pay-off!

Results

Travelling Salesman Problem

Table 1. Main results for TSP with 100 nodes.

Метнор	Cost	Gap	Тіме
Concorde LKH Gurobi	7.765 7.765 7.776	0.000 % 0.000 % 0.15 %	6м 42м 31м
KOOL ET AL. (2019) JOSHI ET AL. (2019A) DA COSTA ET AL. (2020) FU ET AL. (2020)	7.94 7.87 7.83 7.764*	2.26 % 1.39 % 0.87 % 0.04 %	1H 40M 41M 4M + 11M
DPDP 10K DPDP 100K	7.765 7.765	0.009 % 0.004 %	10M + 1H06M 10M + 2H35M

Vehicle Routing Problem

Table 2. Main results for VRP with 100 nodes.

Метнор	Cost	GAP	Тіме
LKH	15.647	0.000 %	12н59м
XIN ET AL. (2020) KOOL ET AL. (2019) CHEN & TIAN (2019) PENG ET AL. (2019) WU ET AL. (2019) HOTTUNG & TIERNEY (2019) LU ET AL. (2020)	16.49 16.23 16.10 16.27 16.03 15.99 15.57*	4.99 % 3.72 % 2.90 % 3.96 % 2.47 % 1.02 %	39s 2н 1н 6н 5н 1н 4000н
DPDP 10K DPDP 100K	15.832 15.694	1.183 % 0.305 %	10m + 2H24M 10m + 5H48M
DPDP 1M	15.627	- 0.127 %	10м + 48н27м

Quality vs. computation

(k!)4

π

Ablations

vrp100, beam size 1 - 100K, scoring policies

(k!)4

e^x

π

That's it! So remember...

Count your flops...

and make them count!

