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The challenge — creating lightweight outer approximation
of SDPs
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and



Solving SDPs by using

sparse PCA Semi-definite programming

Dey, Kazachkov, Lodi,

Mufioz
S =T min  (C, X)
oG st. (ALX)<b Vie{l,...,m} (SDP)
X eS8t

where C and the A''s are n x n matrices, (M, N) := Y, M;Nj;,
and

ST={XeR™| X=X u"Xu>0, VueR"}.



Solving SDPs by using

sparse PCA Semi-definite programming

Dey, Kazachkov, Lodi,
Mufioz

BREE AT min  (C, X)
Sees st. (A X)<b Vie{l,....m} (SDP)

X eS8t

where C and the A''s are n x n matrices, (M, N) := Y, M;Nj;,
and

"= {XeR™"| X=X, u"Xu>0, VueR"}.

» Polynomial-time algorithm — but often challenging to solve in
practice.
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Semi-definite programming

min  (C, X)
st. (ALX)y<b Vie{l,....m} (SDP)
X eS8t

where C and the A''s are n x n matrices, (M, N) := Y, M;Nj;,
and

"= {XeR™"| X=X, u"Xu>0, VuecR"}.

» Polynomial-time algorithm — but often challenging to solve in
practice.

» In many applications (Combinatorial optimization, non-convex
quadratic problems), the SDP is a relaxation of a more
challenging nonconvex problem, which needs to be solved using
the (spacial) branch-and-bound algorithm. We do not want to
maintain a SDP relaxation — since it would have to solved at each
node — but maintain a linear programming relaxation.
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Semi-definite programming: solving via linear cutting-planes
1. Construct a linear programming relaxation:

min
s.t.

(C,X)
(AL X) < b Vie{l,...,m}
X5t

(LP-Relax-of-SDP)
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2. Let optimal solution be X. If X € S7, then we have solved
the SDP.



Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Mufioz

Creating lightweight
outer approximation of
SDPs

Semi-definite programming: solving via linear cutting-planes
1. Construct a linear programming relaxation:
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st. (AX)<b Vie{l,....m}  (LP-Relax-of-SDP)
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2. Let optimal solution be X. If X € S7, then we have solved
the SDP.
3. Else,

n
X=>"\v/(v)T and, say \s <0,

i=1
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Semi-definite programming: solving via linear cutting-planes
1. Construct a linear programming relaxation:
min (C, X)
st. (AX)<b Vie{l,....m}  (LP-Relax-of-SDP)
X5t

2. Let optimal solution be X. If X € S7, then we have solved
the SDP.
3. Else,
n
X=>"\v/(v)T and, say \s <0,
i=1
4. Let V=v'(v")T. Then
(V,X) =X <0,but (V,X) >0 forall XeS7?
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Semi-definite programming: solving via linear cutting-planes
1. Construct a linear programming relaxation:
min (C, X)
st. (AX)<b Vie{l,....m}  (LP-Relax-of-SDP)
X5t

2. Let optimal solution be X. If X € S7, then we have solved

the SDP.
3. Else,

n
X=>"\v/(v)T and, say \s <0,
i=1
4. Let V=v'(v')T. Then
(V,X) =X <0,but (V,X) >0 forall XeS7?
5. Update, (LP-Relax-of -SDP) as:

min (CX>
st. (AX)<b Vvie{l,...,m}
(V.X) = 0.

Go to Step 2.
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» Box QP:

min
s.t.

x'Qx+c'x
x €[0,1]"
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» Box QP:

min
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» SDP (+ McCormick) relaxation:

min
s.t.

(@Q,xx"y +c'x
x €[0,1]"
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Lets see an example of this at work...

» Box QP:

mn x' Qx+c'x
st. xel0,1]"

» SDP (+ McCormick) relaxation:

min
s.t.

min
s.t.

(@Q,xx"y +c'x
x €[0,1]"

(Q,X)+c'x
xe€[0,1", X = xx"
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Lets see an example of this at work...
» Box QP:
min x'Qx+c'x
st. xel0,1]"

» SDP (+ McCormick) relaxation:

min  (Q,xx") +¢c'x
st x€]0,1]"

min  (Q,X)+c'x
st. xe[0,1]", X = xx"

min  (Q,X)+c'x

st max{0,x +x — 1} < X; <min{x;, x;} i,j € [n]
1 xT
x X

» spar125-025-1 (https://github.com/sburer/BoxQPinstances):
n =125 and Q has 25% non-zeros.

16

}681.
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Why are the LPs becoming so difficult to solve?

» n=125. So LP has 7875 variables.

20
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Why are the LPs becoming so difficult to solve?

>

>

n = 125. So LP has 7875 variables.

X=> " xv'(v))" and, say A <0,

i=1

Typically, the eigenvector (v') corresponding to the negative
eigenvalue is dense.

24
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Why are the LPs becoming so difficult to solve?

>

>

n = 125. So LP has 7875 variables.

n
X=> " xv'(v))" and, say A <0,
i=1
Typically, the eigenvector (v') corresponding to the negative
eigenvalue is dense.

Therefore, the inequality

(V.X) >0,
is a completely dense inequality in an LP which is already
“largish".
As these dense inequalities keep getting added, the LP solve
times increase.

On the other hand, LP solvers love sparsity (Many linear algebra
routine can exploit sparsity)!

24
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Conclusion

» It is no enough to just explore linear programming relaxations of
SDPs.

» What we really want is sparse linear programming relaxations to
SDPs.

» Lets decide a sparsity level k << n: If X ¢ S7, then find a vector
v such that

viXv<0,|vlo <k,

then V = w will be sparse.

27
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Conclusion

» It is no enough to just explore linear programming relaxations of
SDPs.

» What we really want is sparse linear programming relaxations to
SDPs.

» Lets decide a sparsity level k << n: If X ¢ S7, then find a vector
v such that

v Xv <0,v]o <k,

then V = vv' will be sparse.
» Questions:
1. How to find such “sparse eigenvectors"?
2. Will such sparse linear approximation of SDPs work?
» Some previous papers dealing with the same topic: [A. Qualizza,
P. Belotti, and F. Margot (2012)], [R. Baltean-Lugojan, P. Bonami,
R. Misener, and A. Tramontani (2018)]

20
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Our key technique - Sparse PCA : a well studied problem
in statistics/ML literature
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Principal component analysis (PCA) and sparse PCA

» Let X € S” (covariance matrix), the PCA problem:

w* € argmax, w'Xw
st wla<1 § TCA
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Principal component analysis (PCA) and sparse PCA

» Let X € S” (covariance matrix), the PCA problem:

w* € argmax, w'Xw

st wla <1 } PCA

» The optimal objective function of the above problem is the largest
eigen value of X.

» Given X is covariance matrix — the optimal solution of the above
problem can be interpreted as the the direction that captures the
maximum variance.

» If w* is dense, this this is no ideal from interpretability.
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Principal component analysis (PCA) and sparse PCA

» Let X € S” (covariance matrix), the PCA problem:

w* € argmax, w'Xw

st wla <1 } PCA

» The optimal objective function of the above problem is the largest
eigen value of X.

» Given X is covariance matrix — the optimal solution of the above
problem can be interpreted as the the direction that captures the
maximum variance.

» If w* is dense, this this is no ideal from interpretability.

w:= argmax, w'Xw
s.t. w2 <1 Sparse PCA
[wllo < k

24



S e ren ™ How does SPCA help?
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Find v : suchthat v Xv <0, ||v|l2 <1,]|v|lo < k

Sparse priniciple SPCA (aSSUming )_( c Si) .

component analysis

Solve : max v' Xv:|v|2 <1,|[v]o < k
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How does SPCA help?

Goal (given X):

Find v : suchthat v Xv <0, |[v|]2 < 1,|v]lo < k

SPCA (assuming X € S7) :

Solve : max v' Xv:|v|2 <1,|[v]o < k

X — — X(Not necessarily PSD ) — —X + \™(X)/
—_—
X

9



S e ren ™ How does SPCA help?
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Find v : suchthat v' Xv <0, ||v|l2 < 1,||v]jo < k

Sparse priniciple SPCA (aSSUming )_( c Si) .

component analysis

Solve : max v' Xv:|v|2 <1,|[v]o < k

X — — X(Not necessarily PSD ) — —X + \™(X)/
—_—
X

Proposition (Sparse separation via SPCA)

> If
max {VT (J( + A"'aX(S()/) vilviz <1, vl < k} < A (X),
then there is no sparse inequality.

> If
max {vT (—5(+ )\’""’X(S()I) Vvl <1, vl < k} > Amax(X),
then if v* is the optimal solution then (v*(v*)", X) > 0 isa
sparse separating hyperplane.

20
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Sparse PCA is “mathematically hopeless" to solve — what
about “in practice"?

» Approximation algorithm with multiplicative guarantee: [S. On
Chan, D. Papailliopoulos, A. Rubinstein, 2016], [M.
Magdon-Ismail, (2017)] NP-hardness of approximation to within
(1 — &), for some small constant £ > 0.
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guarantee of ns.
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Sparse PCA is “mathematically hopeless" to solve — what
about “in practice"?

» Approximation algorithm with multiplicative guarantee: [S. On
Chan, D. Papailliopoulos, A. Rubinstein, 2016], [M.
Magdon-Ismail, (2017)] NP-hardness of approximation to within
(1 — &), for some small constant e > 0. The best approximation
guarantee of ns.

» Fixed parameter tractable: [D. Papailiopoulos, A. G. Dimakis, S.
Korokythakis (2014)] [A. Del Pia (2019)] Poly-time algorithm
under fixed rank of matrix.
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Sparse PCA is “mathematically hopeless" to solve — what
about “in practice"?

» Approximation algorithm with multiplicative guarantee: [S. On

Chan, D. Papailliopoulos, A. Rubinstein, 2016], [M.
Magdon-Ismail, (2017)] NP-hardness of approximation to within
(1 — &), for some small constant e > 0. The best approximation
guarantee of ns.

Fixed parameter tractable: [D. Papailiopoulos, A. G. Dimakis, S.
Korokythakis (2014)] [A. Del Pia (2019)] Poly-time algorithm
under fixed rank of matrix.

Exact/near exact mathematical programming methods: [SSD.,
Rahul Mazumder, Wang (2018)], [Yongchun Li, Weijun Xie
(2020)]. Can scale up to matrices of size 1000 x 1000 in a few
hours.
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Sparse PCA is “mathematically hopeless" to solve — what
about “in practice"?

» Approximation algorithm with multiplicative guarantee: [S. On
Chan, D. Papailliopoulos, A. Rubinstein, 2016], [M.
Magdon-Ismail, (2017)] NP-hardness of approximation to within
(1 — &), for some small constant e > 0. The best approximation
guarantee of ns.

» Fixed parameter tractable: [D. Papailiopoulos, A. G. Dimakis, S.
Korokythakis (2014)] [A. Del Pia (2019)] Poly-time algorithm
under fixed rank of matrix.

» Exact/near exact mathematical programming methods: [SSD.,
Rahul Mazumder, Wang (2018)], [Yongchun Li, Weijun Xie
(2020)]. Can scale up to matrices of size 1000 x 1000 in a few
hours.

ML community has come up with some fantastic heuristics:
» [X.-T. Yuan and T. Zhang (2013) ] “Truncated power method"
» [M. Journee, Y. Nesterov, P. Richtarik, and R. Sepulchre, (2010)]
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Experiments
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Back to experiemental results with k = 0.25n, One cut per
iteration

Gap closed (%)

600

1200 1800 2400 3000 3600
Time (s)

a7

Sparse cuts may eventually
surpass the performance of
dense cuts, avoiding
tailing off, but when?

For smaller instances, this
crossing point can be
reached within an hour

For larger instances such as
this, dense cuts have too
much of a head start
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Need to add multiple cuts in each iteration

After trying out various ideas, we settled on the following scheme:
» We add multiple cuts in each iteration generated as follows:
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[SFAEIEAD After trying out various ideas, we settled on the following scheme:
» We add multiple cuts in each iteration generated as follows:

» X, we find v0 such that (V)T X0 = A% < 0.
» Update

X' =X = X000 T WO,
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After trying out various ideas, we settled on the following scheme:
» We add multiple cuts in each iteration generated as follows:
» X, we find v0 such that (V)T X0 = A% < 0.
» Update . . B
X' =X = X000 T WO,
and we find v such that (v1) T XTv! = X' < 0.
> Repeat...
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Experiements

After trying out various ideas, we settled on the following scheme:
» We add multiple cuts in each iteration generated as follows:
» X, we find v0 such that (V)T X0 = A% < 0.
» Update . . B
X' =X = X000 T WO,
and we find v such that (v1) T XTv! = X' < 0.
> Repeat...
» V0, v! .. are used to generate cuts.

5D
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More experiments (multiple cuts per iteration):
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Time to solve LP relaxation per iteration (spar125-025-1)

Experiements o
The LP is slowed by the
large number of cuts
being added, but it is
still significantly faster
than using dense cuts
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Strength of sparse cuts

Theorem (G. Blekherman, SSD., M. Molinaro, K. Shu, S. Sun
(2020))

max distg(X, S7)

st [ X[lF <1 _ — K)3/2
every k x k gmax{1 k, (n—k) >
principal submatrix V(n—k)Z+(n—-1)k
of X is PSD.

|
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Strength of sparse cuts

(2020))

max distg(X, S7)

Theorem (G. Blekherman, SSD., M. Molinaro, K. Shu, S. Sun

st IX|lF <1 _
every k x k < max { 1-k (n
principal submatrix \/(” -

of X is PSD.

3

» Lets add some dense cuts in the first iteration.
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pey kazachian Lodi, first iteration):

Time to solve LP relaxation per iteration (spar125-025-1)
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Solving SDPs by using

sparse PCA More experiments (multiple cuts per iteration, dense cuts in
pey kazachian Lodi, first iteration):

Percent gap closed with respect to SDP + McCormicks optimum (g05_100.0)
QCQP instance!
Experiements

— hybrid

== dense
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e sroa . More experiments (multiple cuts per iteration, dense cuts in

sparse PCA
Dey. kazachkov Lodi, first iteration):
Mufioz
v Percent gap closed with respect to SDP + McCormicks optimum (t2g10_5555)
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Solving SDPs by using

sparse PCA Results

Dey, Kazachkov, Lodi,
Mufioz

Results on 111 BoxQP instances for SPARSE, DENSE, and HYBRID. Results
are averages over instances grouped by size, under a time limit of 1 hour.
Experiements

Gap closed (%) Last LP time (s)
Instance group # SPARSE DENSE HYBRID SPARSE DENSE HYBRID
n € [20, 30] 18 98.50  100.00  100.00 0.10 2.93 2.93
€ [40, 50] 33 98.83 99.90 99.89 0.64 10.73 7.34
€ (60, 80] 21 98.45 96.24 98.17 6.49 28.27 11.69

€l
€l

n € (90, 125] 27 94.62 90.68 95.48 48.09  106.54 49.08
€ [200, 250] 12 75.16 84.70 83.92 520.24  764.30 506.98

Commercial SDP solver (Mosek) for n € [200, 250] needs
approximately 35 GB memory, needs > 1 hour to solve.
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Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Mufioz

Experiements

Results

Results on 135 BIQ instances for SPARSE, DENSE, and HYBRID. Results are

averages over instances grouped by size, under a time limit of 1 hour.

Gap closed (%)

Last LP time (s)

Instance group # SPARSE DENSE HYBRID SPARSE DENSE HYBRID
n € [20,90] 18 98.70 9947  99.81 1.33 15.14 7.26
n =100 31 94.92 82.53 95.00 31.33 91.35 34.82
n € [120,150] 41  90.18  89.35  92.61  125.87 262.56 132.43
n € [200, 250] 45 54.72 65.72 64.06 479.61  830.75  519.96
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Solving SDPs by using
sparse PCA Results

Dey, Kazachkov, Lodi,

Mufioz

Experiements Results on 151 MAXCUT instances for SPARSE, DENSE, and HYBRID. Results

are averages over instances grouped by size, under a time limit of 1 hour.
Gap closed (%) Last LP time (s)

Instance group # SPARSE DENSE HYBRID SPARSE DENSE HYBRID
n = 60 10 9745  98.73  98.86 3.20 13.69 10.98
n =80 30 93.61 93.43  96.65 18.59 47.48 24.07
n = 100 99 7936 7744  82.66 60.09  107.76 86.74

n € [150, 225] 12 6.00 5.13 5.85 717.56  775.20  704.32
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Thank You.

» Santanu S. Dey, Aleksandr M. Kazachkov, Andrea Lodi, Gonzalo Mufioz,
"Cutting Plane Generation Through Sparse Principal Component
Analysis" http://www.optimization-online.org/DBHTML/2021/02/8259.html
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"Sparse PSD approximation of the PSD cone," Mathematical
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> Grigoriy Blekherman, Santanu S. Dey, Kevin Shu, Shengding Sun,
"Hyperbolic relaxation of k-Locally positive semidefinite matrices"
arXiv:2012.04031.



	Creating lightweight outer approximation of SDPs
	Sparse priniciple component analysis
	Experiements 

