
Solving SDPs by using sparse PCA

Santanu S. Dey1 Aleksandr M. Kazachkov2 Andrea Lodi3

Gonzalo Muñoz4

1Georgia Institute of Technology.

2University of Florida. 3École Polytechnique de Montréal.

4Universidad de O’Higgins.

Thanks to A. M. Kazachkov for all the figures in the slides.

Feb 2021

Solving SDPs︸ ︷︷ ︸
Related to Comb. Opt.

by using sparse PCA︸ ︷︷ ︸
Mach. Learning/Statistics

Santanu S. Dey1 Aleksandr M. Kazachkov2 Andrea Lodi3

Gonzalo Muñoz4

1Georgia Institute of Technology.

2University of Florida. 3École Polytechnique de Montréal.

4Universidad de O’Higgins.

Thanks to A. M. Kazachkov for all the figures in the slides.

Feb 2021

1
The challenge – creating lightweight outer approximation
of SDPs

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Semi-definite programming

min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (SDP)

X ∈ Sn
+,

where C and the Ai ’s are n × n matrices, 〈M,N〉 := ∑
i,j MijNij ,

and

Sn
+ = {X ∈ Rn×n |X = X T , u>Xu ≥ 0, ∀u ∈ Rn}.

I Polynomial-time algorithm – but often challenging to solve in
practice.

I In many applications (Combinatorial optimization, non-convex
quadratic problems), the SDP is a relaxation of a more
challenging nonconvex problem, which needs to be solved using
the (spacial) branch-and-bound algorithm. We do not want to
maintain a SDP relaxation – since it would have to solved at each
node — but maintain a linear programming relaxation.

4

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Semi-definite programming

min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (SDP)

X ∈ Sn
+,

where C and the Ai ’s are n × n matrices, 〈M,N〉 := ∑
i,j MijNij ,

and

Sn
+ = {X ∈ Rn×n |X = X T , u>Xu ≥ 0, ∀u ∈ Rn}.

I Polynomial-time algorithm – but often challenging to solve in
practice.

I In many applications (Combinatorial optimization, non-convex
quadratic problems), the SDP is a relaxation of a more
challenging nonconvex problem, which needs to be solved using
the (spacial) branch-and-bound algorithm. We do not want to
maintain a SDP relaxation – since it would have to solved at each
node — but maintain a linear programming relaxation.

5

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Semi-definite programming

min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (SDP)

X ∈ Sn
+,

where C and the Ai ’s are n × n matrices, 〈M,N〉 := ∑
i,j MijNij ,

and

Sn
+ = {X ∈ Rn×n |X = X T , u>Xu ≥ 0, ∀u ∈ Rn}.

I Polynomial-time algorithm – but often challenging to solve in
practice.

I In many applications (Combinatorial optimization, non-convex
quadratic problems), the SDP is a relaxation of a more
challenging nonconvex problem, which needs to be solved using
the (spacial) branch-and-bound algorithm. We do not want to
maintain a SDP relaxation – since it would have to solved at each
node — but maintain a linear programming relaxation.

6

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Semi-definite programming

min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (SDP)

X ∈ Sn
+,

where C and the Ai ’s are n × n matrices, 〈M,N〉 := ∑
i,j MijNij ,

and

Sn
+ = {X ∈ Rn×n |X = X T , u>Xu ≥ 0, ∀u ∈ Rn}.

I Polynomial-time algorithm – but often challenging to solve in
practice.

I In many applications (Combinatorial optimization, non-convex
quadratic problems), the SDP is a relaxation of a more
challenging nonconvex problem, which needs to be solved using
the (spacial) branch-and-bound algorithm. We do not want to
maintain a SDP relaxation – since it would have to solved at each
node — but maintain a linear programming relaxation.

7

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Semi-definite programming: solving via linear cutting-planes
1. Construct a linear programming relaxation:

min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (LP-Relax-of-SDP)

X ∈ Sn
+

2. Let optimal solution be X̃ . If X̃ ∈ Sn
+, then we have solved

the SDP.
3. Else,

X̃ =
n∑

i=1

λiv i(v i)T and, say λ1 < 0,

4. Let V = v1(v1)>. Then

〈V , X̃ 〉 = λ1 < 0, but 〈V ,X 〉 ≥ 0 for all X ∈ Sn
+

5. Update, (LP-Relax-of -SDP) as:

min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m}

〈V ,X 〉 ≥ 0.

Go to Step 2.

8

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Semi-definite programming: solving via linear cutting-planes
1. Construct a linear programming relaxation:

min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (LP-Relax-of-SDP)

X ∈ Sn
+

2. Let optimal solution be X̃ . If X̃ ∈ Sn
+, then we have solved

the SDP.

3. Else,

X̃ =
n∑

i=1

λiv i(v i)T and, say λ1 < 0,

4. Let V = v1(v1)>. Then

〈V , X̃ 〉 = λ1 < 0, but 〈V ,X 〉 ≥ 0 for all X ∈ Sn
+

5. Update, (LP-Relax-of -SDP) as:

min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m}

〈V ,X 〉 ≥ 0.

Go to Step 2.

9

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Semi-definite programming: solving via linear cutting-planes
1. Construct a linear programming relaxation:

min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (LP-Relax-of-SDP)

X ∈ Sn
+

2. Let optimal solution be X̃ . If X̃ ∈ Sn
+, then we have solved

the SDP.
3. Else,

X̃ =
n∑

i=1

λiv i(v i)T and, say λ1 < 0,

4. Let V = v1(v1)>. Then

〈V , X̃ 〉 = λ1 < 0, but 〈V ,X 〉 ≥ 0 for all X ∈ Sn
+

5. Update, (LP-Relax-of -SDP) as:

min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m}

〈V ,X 〉 ≥ 0.

Go to Step 2.

10

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Semi-definite programming: solving via linear cutting-planes
1. Construct a linear programming relaxation:

min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (LP-Relax-of-SDP)

X ∈ Sn
+

2. Let optimal solution be X̃ . If X̃ ∈ Sn
+, then we have solved

the SDP.
3. Else,

X̃ =
n∑

i=1

λiv i(v i)T and, say λ1 < 0,

4. Let V = v1(v1)>. Then

〈V , X̃ 〉 = λ1 < 0, but 〈V ,X 〉 ≥ 0 for all X ∈ Sn
+

5. Update, (LP-Relax-of -SDP) as:

min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m}

〈V ,X 〉 ≥ 0.

Go to Step 2.

11

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Semi-definite programming: solving via linear cutting-planes
1. Construct a linear programming relaxation:

min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (LP-Relax-of-SDP)

X ∈ Sn
+

2. Let optimal solution be X̃ . If X̃ ∈ Sn
+, then we have solved

the SDP.
3. Else,

X̃ =
n∑

i=1

λiv i(v i)T and, say λ1 < 0,

4. Let V = v1(v1)>. Then

〈V , X̃ 〉 = λ1 < 0, but 〈V ,X 〉 ≥ 0 for all X ∈ Sn
+

5. Update, (LP-Relax-of -SDP) as:

min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m}

〈V ,X 〉 ≥ 0.

Go to Step 2.
12

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Lets see an example of this at work...
I Box QP:

min x>Qx + c>x

s.t. x ∈ [0, 1]n

I SDP (+ McCormick) relaxation:

min 〈Q, xxT 〉+ c>x

s.t. x ∈ [0, 1]n

min 〈Q,X 〉+ c>x

s.t. x ∈ [0, 1]n,X = xxT

min 〈Q,X 〉+ c>x

s.t. max{0, xi + xj − 1} ≤ Xij ≤ min{xi , xj} i, j ∈ [n][
1 x>

x X

]
∈ Sn

+.

I spar125-025-1 (https://github.com/sburer/BoxQPinstances):
n = 125 and Q has 25% non-zeros.

13

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Lets see an example of this at work...
I Box QP:

min x>Qx + c>x

s.t. x ∈ [0, 1]n

I SDP (+ McCormick) relaxation:

min 〈Q, xxT 〉+ c>x

s.t. x ∈ [0, 1]n

min 〈Q,X 〉+ c>x

s.t. x ∈ [0, 1]n,X = xxT

min 〈Q,X 〉+ c>x

s.t. max{0, xi + xj − 1} ≤ Xij ≤ min{xi , xj} i, j ∈ [n][
1 x>

x X

]
∈ Sn

+.

I spar125-025-1 (https://github.com/sburer/BoxQPinstances):
n = 125 and Q has 25% non-zeros.

14

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Lets see an example of this at work...
I Box QP:

min x>Qx + c>x

s.t. x ∈ [0, 1]n

I SDP (+ McCormick) relaxation:

min 〈Q, xxT 〉+ c>x

s.t. x ∈ [0, 1]n

min 〈Q,X 〉+ c>x

s.t. x ∈ [0, 1]n,X = xxT

min 〈Q,X 〉+ c>x

s.t. max{0, xi + xj − 1} ≤ Xij ≤ min{xi , xj} i, j ∈ [n][
1 x>

x X

]
∈ Sn

+.

I spar125-025-1 (https://github.com/sburer/BoxQPinstances):
n = 125 and Q has 25% non-zeros.

15

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Lets see an example of this at work...
I Box QP:

min x>Qx + c>x

s.t. x ∈ [0, 1]n

I SDP (+ McCormick) relaxation:

min 〈Q, xxT 〉+ c>x

s.t. x ∈ [0, 1]n

min 〈Q,X 〉+ c>x

s.t. x ∈ [0, 1]n,X = xxT

min 〈Q,X 〉+ c>x

s.t. max{0, xi + xj − 1} ≤ Xij ≤ min{xi , xj} i, j ∈ [n][
1 x>

x X

]
∈ Sn

+.

I spar125-025-1 (https://github.com/sburer/BoxQPinstances):
n = 125 and Q has 25% non-zeros.

16

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Gap closed vs. time

10

0

10

20

30

40

50

60

70

80

90

0 600 1200 1800 2400 3000 3600

G
ap

 c
lo

se
d

(%
)

Time (s)

Eigenvector cut performance (spar125-025-1)

“Tailing off” at 75%
gap closed

 gap closed (%)

17

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Gap closed vs. time

11

0

20

40

60

80

100

120

140

160

180

0

10

20

30

40

50

60

70

80

90

0 600 1200 1800 2400 3000 3600

Ti
m

e
(s

)

G
ap

 c
lo

se
d

(%
)

Time (s)

Eigenvector cut performance (spar125-025-1)

“Tailing off” at 75%
gap closed

 iteration time (s) LP solve time (s)

Time to solve the
LP is about 94%

of the time taken
for each iteration

What if we can
drastically reduce

solving time?

 gap closed (%)

18

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Gap closed vs. time

11

0

20

40

60

80

100

120

140

160

180

0

10

20

30

40

50

60

70

80

90

0 600 1200 1800 2400 3000 3600

Ti
m

e
(s

)

G
ap

 c
lo

se
d

(%
)

Time (s)

Eigenvector cut performance (spar125-025-1)

“Tailing off” at 75%
gap closed

 iteration time (s) LP solve time (s)

Time to solve the
LP is about 94%

of the time taken
for each iteration

What if we can
drastically reduce

solving time?

 gap closed (%)

19

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Why are the LPs becoming so difficult to solve?

I n = 125. So LP has 7875 variables.

I

X̃ =
n∑

i=1

λiv i (v i)T and, say λ1 < 0,

Typically, the eigenvector (v1) corresponding to the negative
eigenvalue is dense.

I Therefore, the inequality

〈V ,X 〉 ≥ 0,

is a completely dense inequality in an LP which is already
“largish".

I As these dense inequalities keep getting added, the LP solve
times increase.

I On the other hand, LP solvers love sparsity (Many linear algebra
routine can exploit sparsity)!

20

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Why are the LPs becoming so difficult to solve?

I n = 125. So LP has 7875 variables.
I

X̃ =
n∑

i=1

λiv i (v i)T and, say λ1 < 0,

Typically, the eigenvector (v1) corresponding to the negative
eigenvalue is dense.

I Therefore, the inequality

〈V ,X 〉 ≥ 0,

is a completely dense inequality in an LP which is already
“largish".

I As these dense inequalities keep getting added, the LP solve
times increase.

I On the other hand, LP solvers love sparsity (Many linear algebra
routine can exploit sparsity)!

21

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Why are the LPs becoming so difficult to solve?

I n = 125. So LP has 7875 variables.
I

X̃ =
n∑

i=1

λiv i (v i)T and, say λ1 < 0,

Typically, the eigenvector (v1) corresponding to the negative
eigenvalue is dense.

I Therefore, the inequality

〈V ,X 〉 ≥ 0,

is a completely dense inequality in an LP which is already
“largish".

I As these dense inequalities keep getting added, the LP solve
times increase.

I On the other hand, LP solvers love sparsity (Many linear algebra
routine can exploit sparsity)!

22

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Why are the LPs becoming so difficult to solve?

I n = 125. So LP has 7875 variables.
I

X̃ =
n∑

i=1

λiv i (v i)T and, say λ1 < 0,

Typically, the eigenvector (v1) corresponding to the negative
eigenvalue is dense.

I Therefore, the inequality

〈V ,X 〉 ≥ 0,

is a completely dense inequality in an LP which is already
“largish".

I As these dense inequalities keep getting added, the LP solve
times increase.

I On the other hand, LP solvers love sparsity (Many linear algebra
routine can exploit sparsity)!

23

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Why are the LPs becoming so difficult to solve?

I n = 125. So LP has 7875 variables.
I

X̃ =
n∑

i=1

λiv i (v i)T and, say λ1 < 0,

Typically, the eigenvector (v1) corresponding to the negative
eigenvalue is dense.

I Therefore, the inequality

〈V ,X 〉 ≥ 0,

is a completely dense inequality in an LP which is already
“largish".

I As these dense inequalities keep getting added, the LP solve
times increase.

I On the other hand, LP solvers love sparsity (Many linear algebra
routine can exploit sparsity)!

24

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Conclusion

I It is no enough to just explore linear programming relaxations of
SDPs.

I What we really want is sparse linear programming relaxations to
SDPs.

I Lets decide a sparsity level k << n: If X̃ 6∈ Sn
+, then find a vector

v such that

v>X̃v < 0, ‖v‖0 ≤ k ,

then V = vv> will be sparse.
I Questions:

1. How to find such “sparse eigenvectors"?
2. Will such sparse linear approximation of SDPs work?

I Some previous papers dealing with the same topic: [A. Qualizza,
P. Belotti, and F. Margot (2012)], [R. Baltean-Lugojan, P. Bonami,
R. Misener, and A. Tramontani (2018)]

25

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Conclusion

I It is no enough to just explore linear programming relaxations of
SDPs.

I What we really want is sparse linear programming relaxations to
SDPs.

I Lets decide a sparsity level k << n: If X̃ 6∈ Sn
+, then find a vector

v such that

v>X̃v < 0, ‖v‖0 ≤ k ,

then V = vv> will be sparse.
I Questions:

1. How to find such “sparse eigenvectors"?
2. Will such sparse linear approximation of SDPs work?

I Some previous papers dealing with the same topic: [A. Qualizza,
P. Belotti, and F. Margot (2012)], [R. Baltean-Lugojan, P. Bonami,
R. Misener, and A. Tramontani (2018)]

26

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Conclusion

I It is no enough to just explore linear programming relaxations of
SDPs.

I What we really want is sparse linear programming relaxations to
SDPs.

I Lets decide a sparsity level k << n: If X̃ 6∈ Sn
+, then find a vector

v such that

v>X̃v < 0, ‖v‖0 ≤ k ,

then V = vv> will be sparse.

I Questions:
1. How to find such “sparse eigenvectors"?
2. Will such sparse linear approximation of SDPs work?

I Some previous papers dealing with the same topic: [A. Qualizza,
P. Belotti, and F. Margot (2012)], [R. Baltean-Lugojan, P. Bonami,
R. Misener, and A. Tramontani (2018)]

27

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Conclusion

I It is no enough to just explore linear programming relaxations of
SDPs.

I What we really want is sparse linear programming relaxations to
SDPs.

I Lets decide a sparsity level k << n: If X̃ 6∈ Sn
+, then find a vector

v such that

v>X̃v < 0, ‖v‖0 ≤ k ,

then V = vv> will be sparse.
I Questions:

1. How to find such “sparse eigenvectors"?

2. Will such sparse linear approximation of SDPs work?

I Some previous papers dealing with the same topic: [A. Qualizza,
P. Belotti, and F. Margot (2012)], [R. Baltean-Lugojan, P. Bonami,
R. Misener, and A. Tramontani (2018)]

28

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Conclusion

I It is no enough to just explore linear programming relaxations of
SDPs.

I What we really want is sparse linear programming relaxations to
SDPs.

I Lets decide a sparsity level k << n: If X̃ 6∈ Sn
+, then find a vector

v such that

v>X̃v < 0, ‖v‖0 ≤ k ,

then V = vv> will be sparse.
I Questions:

1. How to find such “sparse eigenvectors"?
2. Will such sparse linear approximation of SDPs work?

I Some previous papers dealing with the same topic: [A. Qualizza,
P. Belotti, and F. Margot (2012)], [R. Baltean-Lugojan, P. Bonami,
R. Misener, and A. Tramontani (2018)]

29

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Conclusion

I It is no enough to just explore linear programming relaxations of
SDPs.

I What we really want is sparse linear programming relaxations to
SDPs.

I Lets decide a sparsity level k << n: If X̃ 6∈ Sn
+, then find a vector

v such that

v>X̃v < 0, ‖v‖0 ≤ k ,

then V = vv> will be sparse.
I Questions:

1. How to find such “sparse eigenvectors"?
2. Will such sparse linear approximation of SDPs work?

I Some previous papers dealing with the same topic: [A. Qualizza,
P. Belotti, and F. Margot (2012)], [R. Baltean-Lugojan, P. Bonami,
R. Misener, and A. Tramontani (2018)]

30

2
Our key technique - Sparse PCA : a well studied problem
in statistics/ML literature

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Principal component analysis (PCA) and sparse PCA

I Let X̄ ∈ Sn
+ (covariance matrix), the PCA problem:

w∗ ∈ argmaxw w>X̄w
s.t. ‖w‖2 ≤ 1

}
PCA

I The optimal objective function of the above problem is the largest
eigen value of X̄ .

I Given X̄ is covariance matrix – the optimal solution of the above
problem can be interpreted as the the direction that captures the
maximum variance.

I If w∗ is dense, this this is no ideal from interpretability.

I

w̃ := argmaxw w>X̄w
s.t. ‖w‖2 ≤ 1

‖w‖0 ≤ k

 Sparse PCA

32

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Principal component analysis (PCA) and sparse PCA

I Let X̄ ∈ Sn
+ (covariance matrix), the PCA problem:

w∗ ∈ argmaxw w>X̄w
s.t. ‖w‖2 ≤ 1

}
PCA

I The optimal objective function of the above problem is the largest
eigen value of X̄ .

I Given X̄ is covariance matrix – the optimal solution of the above
problem can be interpreted as the the direction that captures the
maximum variance.

I If w∗ is dense, this this is no ideal from interpretability.

I

w̃ := argmaxw w>X̄w
s.t. ‖w‖2 ≤ 1

‖w‖0 ≤ k

 Sparse PCA

33

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Principal component analysis (PCA) and sparse PCA

I Let X̄ ∈ Sn
+ (covariance matrix), the PCA problem:

w∗ ∈ argmaxw w>X̄w
s.t. ‖w‖2 ≤ 1

}
PCA

I The optimal objective function of the above problem is the largest
eigen value of X̄ .

I Given X̄ is covariance matrix – the optimal solution of the above
problem can be interpreted as the the direction that captures the
maximum variance.

I If w∗ is dense, this this is no ideal from interpretability.

I

w̃ := argmaxw w>X̄w
s.t. ‖w‖2 ≤ 1

‖w‖0 ≤ k

 Sparse PCA

34

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

How does SPCA help?
Goal (given X̃):

Find v : such that v>X̃v < 0, ‖v‖2 ≤ 1, ‖v‖0 ≤ k

SPCA (assuming X̄ ∈ Sn
+) :

Solve : max v>X̄v : ‖v‖2 ≤ 1, ‖v‖0 ≤ k

X̃ → − X̃ (Not necessarily PSD)→ −X̃ + λmax (X̃)I︸ ︷︷ ︸
X̄

Proposition (Sparse separation via SPCA)

I If
max

{
v>
(
−X̃ + λmax (X̃)I

)
v : ‖v‖2 ≤ 1, ‖v‖0 ≤ k

}
≤ λmax (X̃),

then there is no sparse inequality.
I If

max
{

v>
(
−X̃ + λmax (X̃)I

)
v : ‖v‖2 ≤ 1, ‖v‖0 ≤ k

}
> λmax (X̃),

then if v∗ is the optimal solution then 〈v∗(v∗)>,X 〉 ≥ 0 is a
sparse separating hyperplane.

35

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

How does SPCA help?
Goal (given X̃):

Find v : such that v>X̃v < 0, ‖v‖2 ≤ 1, ‖v‖0 ≤ k

SPCA (assuming X̄ ∈ Sn
+) :

Solve : max v>X̄v : ‖v‖2 ≤ 1, ‖v‖0 ≤ k

X̃ →

− X̃ (Not necessarily PSD)→ −X̃ + λmax (X̃)I︸ ︷︷ ︸
X̄

Proposition (Sparse separation via SPCA)

I If
max

{
v>
(
−X̃ + λmax (X̃)I

)
v : ‖v‖2 ≤ 1, ‖v‖0 ≤ k

}
≤ λmax (X̃),

then there is no sparse inequality.
I If

max
{

v>
(
−X̃ + λmax (X̃)I

)
v : ‖v‖2 ≤ 1, ‖v‖0 ≤ k

}
> λmax (X̃),

then if v∗ is the optimal solution then 〈v∗(v∗)>,X 〉 ≥ 0 is a
sparse separating hyperplane.

36

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

How does SPCA help?
Goal (given X̃):

Find v : such that v>X̃v < 0, ‖v‖2 ≤ 1, ‖v‖0 ≤ k

SPCA (assuming X̄ ∈ Sn
+) :

Solve : max v>X̄v : ‖v‖2 ≤ 1, ‖v‖0 ≤ k

X̃ → − X̃ (Not necessarily PSD)

→ −X̃ + λmax (X̃)I︸ ︷︷ ︸
X̄

Proposition (Sparse separation via SPCA)

I If
max

{
v>
(
−X̃ + λmax (X̃)I

)
v : ‖v‖2 ≤ 1, ‖v‖0 ≤ k

}
≤ λmax (X̃),

then there is no sparse inequality.
I If

max
{

v>
(
−X̃ + λmax (X̃)I

)
v : ‖v‖2 ≤ 1, ‖v‖0 ≤ k

}
> λmax (X̃),

then if v∗ is the optimal solution then 〈v∗(v∗)>,X 〉 ≥ 0 is a
sparse separating hyperplane.

37

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

How does SPCA help?
Goal (given X̃):

Find v : such that v>X̃v < 0, ‖v‖2 ≤ 1, ‖v‖0 ≤ k

SPCA (assuming X̄ ∈ Sn
+) :

Solve : max v>X̄v : ‖v‖2 ≤ 1, ‖v‖0 ≤ k

X̃ → − X̃ (Not necessarily PSD)→ −X̃ + λmax (X̃)I︸ ︷︷ ︸
X̄

Proposition (Sparse separation via SPCA)

I If
max

{
v>
(
−X̃ + λmax (X̃)I

)
v : ‖v‖2 ≤ 1, ‖v‖0 ≤ k

}
≤ λmax (X̃),

then there is no sparse inequality.
I If

max
{

v>
(
−X̃ + λmax (X̃)I

)
v : ‖v‖2 ≤ 1, ‖v‖0 ≤ k

}
> λmax (X̃),

then if v∗ is the optimal solution then 〈v∗(v∗)>,X 〉 ≥ 0 is a
sparse separating hyperplane.

38

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

How does SPCA help?
Goal (given X̃):

Find v : such that v>X̃v < 0, ‖v‖2 ≤ 1, ‖v‖0 ≤ k

SPCA (assuming X̄ ∈ Sn
+) :

Solve : max v>X̄v : ‖v‖2 ≤ 1, ‖v‖0 ≤ k

X̃ → − X̃ (Not necessarily PSD)→ −X̃ + λmax (X̃)I︸ ︷︷ ︸
X̄

Proposition (Sparse separation via SPCA)

I If
max

{
v>
(
−X̃ + λmax (X̃)I

)
v : ‖v‖2 ≤ 1, ‖v‖0 ≤ k

}
≤ λmax (X̃),

then there is no sparse inequality.
I If

max
{

v>
(
−X̃ + λmax (X̃)I

)
v : ‖v‖2 ≤ 1, ‖v‖0 ≤ k

}
> λmax (X̃),

then if v∗ is the optimal solution then 〈v∗(v∗)>,X 〉 ≥ 0 is a
sparse separating hyperplane.

39

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Sparse PCA is “mathematically hopeless" to solve — what
about “in practice"?

I Approximation algorithm with multiplicative guarantee: [S. On
Chan, D. Papailliopoulos, A. Rubinstein, 2016], [M.
Magdon-Ismail, (2017)] NP-hardness of approximation to within
(1− ε), for some small constant ε > 0.

The best approximation
guarantee of n

1
3 .

I Fixed parameter tractable: [D. Papailiopoulos, A. G. Dimakis, S.
Korokythakis (2014)] [A. Del Pia (2019)] Poly-time algorithm
under fixed rank of matrix.

I Exact/near exact mathematical programming methods: [SSD.,
Rahul Mazumder, Wang (2018)], [Yongchun Li, Weijun Xie
(2020)]. Can scale up to matrices of size 1000× 1000 in a few
hours.

ML community has come up with some fantastic heuristics:
I [X.-T. Yuan and T. Zhang (2013)] “Truncated power method"
I [M. Journee, Y. Nesterov, P. Richtarik, and R. Sepulchre, (2010)]

40

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Sparse PCA is “mathematically hopeless" to solve — what
about “in practice"?

I Approximation algorithm with multiplicative guarantee: [S. On
Chan, D. Papailliopoulos, A. Rubinstein, 2016], [M.
Magdon-Ismail, (2017)] NP-hardness of approximation to within
(1− ε), for some small constant ε > 0. The best approximation
guarantee of n

1
3 .

I Fixed parameter tractable: [D. Papailiopoulos, A. G. Dimakis, S.
Korokythakis (2014)] [A. Del Pia (2019)] Poly-time algorithm
under fixed rank of matrix.

I Exact/near exact mathematical programming methods: [SSD.,
Rahul Mazumder, Wang (2018)], [Yongchun Li, Weijun Xie
(2020)]. Can scale up to matrices of size 1000× 1000 in a few
hours.

ML community has come up with some fantastic heuristics:
I [X.-T. Yuan and T. Zhang (2013)] “Truncated power method"
I [M. Journee, Y. Nesterov, P. Richtarik, and R. Sepulchre, (2010)]

41

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Sparse PCA is “mathematically hopeless" to solve — what
about “in practice"?

I Approximation algorithm with multiplicative guarantee: [S. On
Chan, D. Papailliopoulos, A. Rubinstein, 2016], [M.
Magdon-Ismail, (2017)] NP-hardness of approximation to within
(1− ε), for some small constant ε > 0. The best approximation
guarantee of n

1
3 .

I Fixed parameter tractable: [D. Papailiopoulos, A. G. Dimakis, S.
Korokythakis (2014)] [A. Del Pia (2019)] Poly-time algorithm
under fixed rank of matrix.

I Exact/near exact mathematical programming methods: [SSD.,
Rahul Mazumder, Wang (2018)], [Yongchun Li, Weijun Xie
(2020)]. Can scale up to matrices of size 1000× 1000 in a few
hours.

ML community has come up with some fantastic heuristics:
I [X.-T. Yuan and T. Zhang (2013)] “Truncated power method"
I [M. Journee, Y. Nesterov, P. Richtarik, and R. Sepulchre, (2010)]

42

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Sparse PCA is “mathematically hopeless" to solve — what
about “in practice"?

I Approximation algorithm with multiplicative guarantee: [S. On
Chan, D. Papailliopoulos, A. Rubinstein, 2016], [M.
Magdon-Ismail, (2017)] NP-hardness of approximation to within
(1− ε), for some small constant ε > 0. The best approximation
guarantee of n

1
3 .

I Fixed parameter tractable: [D. Papailiopoulos, A. G. Dimakis, S.
Korokythakis (2014)] [A. Del Pia (2019)] Poly-time algorithm
under fixed rank of matrix.

I Exact/near exact mathematical programming methods: [SSD.,
Rahul Mazumder, Wang (2018)], [Yongchun Li, Weijun Xie
(2020)]. Can scale up to matrices of size 1000× 1000 in a few
hours.

ML community has come up with some fantastic heuristics:
I [X.-T. Yuan and T. Zhang (2013)] “Truncated power method"
I [M. Journee, Y. Nesterov, P. Richtarik, and R. Sepulchre, (2010)]

43

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Sparse PCA is “mathematically hopeless" to solve — what
about “in practice"?

I Approximation algorithm with multiplicative guarantee: [S. On
Chan, D. Papailliopoulos, A. Rubinstein, 2016], [M.
Magdon-Ismail, (2017)] NP-hardness of approximation to within
(1− ε), for some small constant ε > 0. The best approximation
guarantee of n

1
3 .

I Fixed parameter tractable: [D. Papailiopoulos, A. G. Dimakis, S.
Korokythakis (2014)] [A. Del Pia (2019)] Poly-time algorithm
under fixed rank of matrix.

I Exact/near exact mathematical programming methods: [SSD.,
Rahul Mazumder, Wang (2018)], [Yongchun Li, Weijun Xie
(2020)]. Can scale up to matrices of size 1000× 1000 in a few
hours.

ML community has come up with some fantastic heuristics:
I [X.-T. Yuan and T. Zhang (2013)] “Truncated power method"
I [M. Journee, Y. Nesterov, P. Richtarik, and R. Sepulchre, (2010)]

44

3
Experiments

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Back to experiemental results with k = 0.25n, One cut per
iteration

17

0

10

20

30

40

50

60

70

80

90

0 600 1200 1800 2400 3000 3600

G
ap

 c
lo

se
d

(%
)

Time (s)

Percent gap closed with respect to QP optimum (spar125-025-1)

 dense

 sparse

Sparsity	level		
𝒌=𝟎.𝟐𝟓(𝒏+𝟏)

46

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Back to experiemental results with k = 0.25n, One cut per
iteration

18

0

10

20

30

40

50

60

70

80

90

0 600 1200 1800 2400 3000 3600

G
ap

 c
lo

se
d

(%
)

Time (s)

?
Sparse cuts may eventually
surpass the performance of

dense cuts, avoiding
tailing off, but when?

For smaller instances, this
crossing point can be

reached within an hour

For larger instances such as
this, dense cuts have too

much of a head start

47

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Need to add multiple cuts in each iteration

After trying out various ideas, we settled on the following scheme:
I We add multiple cuts in each iteration generated as follows:

I X̃ , we find v0 such that (v0)>X̃v0 = λ0 < 0.
I Update

X̃ 1 := X̃ − λ0(v0)>v0,

and we find v1 such that (v1)>X̃ 1v1 = λ1 < 0.
I Repeat...
I v0, v1, ... are used to generate cuts.

48

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Need to add multiple cuts in each iteration

After trying out various ideas, we settled on the following scheme:
I We add multiple cuts in each iteration generated as follows:

I X̃ , we find v0 such that (v0)>X̃v0 = λ0 < 0.

I Update
X̃ 1 := X̃ − λ0(v0)>v0,

and we find v1 such that (v1)>X̃ 1v1 = λ1 < 0.
I Repeat...
I v0, v1, ... are used to generate cuts.

49

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Need to add multiple cuts in each iteration

After trying out various ideas, we settled on the following scheme:
I We add multiple cuts in each iteration generated as follows:

I X̃ , we find v0 such that (v0)>X̃v0 = λ0 < 0.
I Update

X̃ 1 := X̃ − λ0(v0)>v0,

and we find v1 such that (v1)>X̃ 1v1 = λ1 < 0.
I Repeat...
I v0, v1, ... are used to generate cuts.

50

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Need to add multiple cuts in each iteration

After trying out various ideas, we settled on the following scheme:
I We add multiple cuts in each iteration generated as follows:

I X̃ , we find v0 such that (v0)>X̃v0 = λ0 < 0.
I Update

X̃ 1 := X̃ − λ0(v0)>v0,

and we find v1 such that (v1)>X̃ 1v1 = λ1 < 0.
I Repeat...

I v0, v1, ... are used to generate cuts.

51

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Need to add multiple cuts in each iteration

After trying out various ideas, we settled on the following scheme:
I We add multiple cuts in each iteration generated as follows:

I X̃ , we find v0 such that (v0)>X̃v0 = λ0 < 0.
I Update

X̃ 1 := X̃ − λ0(v0)>v0,

and we find v1 such that (v1)>X̃ 1v1 = λ1 < 0.
I Repeat...
I v0, v1, ... are used to generate cuts.

52

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

More experiments (multiple cuts per iteration):

29

0

10

20

30

40

50

60

70

80

90

0 600 1200 1800 2400 3000 3600

G
ap

 c
lo

se
d

(%
)

Time (s)

Percent gap closed with respect to QP optimum (spar125-025-1)

 dense

 sparse

 new sparse

Max	sparse	cuts	
per	itera1on	
𝑲=𝟓𝒏

Sparsity	level		
𝒌=𝟎.𝟐𝟓(𝒏+𝟏)

53

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

More experiments (multiple cuts per iteration):

31

0

20

40

60

80

100

120

140

0 600 1200 1800 2400 3000 3600

LP
 so

lv
e

tim
e

(s
)

Time (s)

Time to solve LP relaxation per iteration (spar125-025-1)
 dense

 sparse

Sparsity	level		
𝒌=𝟎.𝟐𝟓(𝒏+𝟏)

 new sparse

The	LP	is	slowed	by	the	
large	number	of	cuts	
being	added,	but	it	is	
s1ll	significantly	faster	
than	using	dense	cuts	

Max	sparse	cuts	
per	itera1on	
𝑲=𝟓𝒏

54

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Strength of sparse cuts

Theorem (G. Blekherman, SSD., M. Molinaro, K. Shu, S. Sun
(2020))

max distF (X ,Sn
+)

s.t. ‖X‖F ≤ 1
every k × k
principal submatrix
of X is PSD.

 ≤ max

{
1− k

n
,

(n − k)3/2√
(n − k)2 + (n − 1)k2

}

I Lets add some dense cuts in the first iteration.

55

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Strength of sparse cuts

Theorem (G. Blekherman, SSD., M. Molinaro, K. Shu, S. Sun
(2020))

max distF (X ,Sn
+)

s.t. ‖X‖F ≤ 1
every k × k
principal submatrix
of X is PSD.

 ≤ max

{
1− k

n
,

(n − k)3/2√
(n − k)2 + (n − 1)k2

}

I Lets add some dense cuts in the first iteration.

56

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

More experiments (multiple cuts per iteration, dense cuts in
first iteration):

35

0

10

20

30

40

50

60

70

80

90

0 600 1200 1800 2400 3000 3600

G
ap

 c
lo

se
d

(%
)

Time (s)

Percent gap closed with respect to QP optimum (spar125-025-1)

 dense

 sparse

 new sparse
 hybrid

Max	sparse	cuts	
per	itera1on	
𝑲=𝟓𝒏

Sparsity	level		
𝒌=𝟎.𝟐𝟓(𝒏+𝟏)

57

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

More experiments (multiple cuts per iteration, dense cuts in
first iteration):

36

0

20

40

60

80

100

120

140

0 600 1200 1800 2400 3000 3600

LP
 so

lv
e

tim
e

(s
)

Time (s)

Time to solve LP relaxation per iteration (spar125-025-1)
 dense

 sparse

 new sparse

 hybrid

Max	sparse	cuts	
per	itera1on	
𝑲=𝟓𝒏

Sparsity	level		
𝒌=𝟎.𝟐𝟓(𝒏+𝟏)

58

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

More experiments (multiple cuts per iteration, dense cuts in
first iteration):

39

95

96

97

98

99

100

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000 75000 80000

G
ap

 c
lo

se
d

(%
)

Time (s)

Percent gap closed with respect to SDP + McCormicks optimum (g05_100.0)

 dense
 hybrid

Max	sparse	cuts	
per	itera1on	
𝑲=𝟓𝒏

Sparsity	level		
𝒌=𝟎.𝟐𝟓(𝒏+𝟏)

QCQP instance!

59

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

More experiments (multiple cuts per iteration, dense cuts in
first iteration):

0

5

10

15

20

25

30

35

40

45

50

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000 75000 80000

G
ap

 c
lo

se
d

(%
)

Time (s)

40

Percent gap closed with respect to SDP + McCormicks optimum (t2g10_5555)

 dense

 hybrid

Max	sparse	cuts	
per	itera1on	
𝑲=𝟓𝒏

Sparsity	level		
𝒌=𝟎.𝟐𝟓(𝒏+𝟏)

QCQP instance!

60

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Results

Results on 111 BoxQP instances for SPARSE, DENSE, and HYBRID. Results
are averages over instances grouped by size, under a time limit of 1 hour.

Gap closed (%) Last LP time (s)

Instance group # SPARSE DENSE HYBRID SPARSE DENSE HYBRID

n ∈ [20, 30] 18 98.50 100.00 100.00 0.10 2.93 2.93
n ∈ [40, 50] 33 98.83 99.90 99.89 0.64 10.73 7.34
n ∈ [60, 80] 21 98.45 96.24 98.17 6.49 28.27 11.69
n ∈ [90, 125] 27 94.62 90.68 95.48 48.09 106.54 49.08
n ∈ [200, 250] 12 75.16 84.70 83.92 520.24 764.30 506.98

6.3.1 BoxQP

In Table 4, we summarize the performance of the SPARSE, DENSE, and HYBRID

algorithms. We group instances by size, and the second column states the
number of instances in each group. The next three columns give the percent
gap closed, and the final three columns provide the time to solve the last LP.

The gap closed by the three methods is similar for smaller instances, and for
n ≤ 125 the relaxations obtained by all the methods are quite strong. The limit
HybridSwitchingTime is never reached for the instances with n < 40, i.e.,
only dense cuts are used, and DENSE and HYBRID have identical performance,
while SPARSE closes less gap, though with a corresponding final solving time for
the LP of 0.1 seconds, compared to nearly 3 seconds for the other two methods.

For the instances with n ∈ [40, 50], we see that HYBRID closes a little less of
the gap than DENSE, but with a 30% improvement in the LP solution time. Upon
a closer observation of this group, we observed that HYBRID encounters the limit
HybridSwitchingTime for 16 of the 33 instances, but it only adds sparse cuts
for 4 of the instances. In the other 12 cases, HYBRID (via Algorithm 1) finds no
sparse cuts to add, terminating with fewer iterations, and a slightly lower gap
closed, than DENSE, but with a correspondingly lighter LP.

For the next two groups, n ∈ [60, 80] ∪ [90, 125], we see that sparse cuts,
even in isolation, outperform dense ones, whereas the gap closed by HYBRID is
comparable to that closed by SPARSE. As n grows, the importance of including
dense cuts increases, and eventually HYBRID dominates both SPARSE and DENSE.
Curiously, this holds even when accounting for the last LP time, showing that
it is possible to have the best of both worlds, i.e., both strength and speed,
especially by combining dense and sparse inequalities. This is more emphatic
in the n ∈ [90, 125] set: HYBRID closes nearly 5% more of the gap than DENSE

with an LP that solves over twice as quickly.
In the final and largest set of instances, in terms of gap closed, sparse cuts

alone now lag severely behind either of the procedures involving dense cuts, and
the LP time for HYBRID is the best of the three algorithms. We do observe a
degradation in the gap closed by HYBRID relative to DENSE, which we investigate

21

Commercial SDP solver (Mosek) for n ∈ [200, 250] needs
approximately 35 GB memory, needs > 1 hour to solve.

61

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Results

Results on 135 Biq instances for SPARSE, DENSE, and HYBRID. Results are
averages over instances grouped by size, under a time limit of 1 hour.

Gap closed (%) Last LP time (s)

Instance group # SPARSE DENSE HYBRID SPARSE DENSE HYBRID

n ∈ [20, 90] 18 98.70 99.47 99.81 1.33 15.14 7.26
n = 100 31 94.92 82.53 95.00 31.33 91.35 34.82
n ∈ [120, 150] 41 90.18 89.35 92.61 125.87 262.56 132.43
n ∈ [200, 250] 45 54.72 65.72 64.06 479.61 830.75 519.96

and HYBRID do not substantially slow down relative to the statistics after one
hour and show sustained progress in the objective value.

6.3.2 Biq

In Table 5, we summarize the performance of SPARSE, DENSE, and HYBRID for
the 135 Biq instances. The structure of the table is the same as Table 4.

We have similar conclusions as for the BoxQP instances. For the smallest set
of Biq instances, all three methods yield strong relaxations, with SPARSE closing
about 1% less gap than HYBRID, but having an 80% reduction in solving time,
while HYBRID already comes with a 50% faster LP than DENSE, on average. In
the next group, with n = 100, we see that HYBRID and SPARSE dominate DENSE,
both closing around 12.5% more of the gap on average while requiring only
34–38% of the time to solve the final LP compared to DENSE. This is a marked
difference in gap closed, showing a substantially larger benefit to using sparse
cuts in moderate-sized Biq instances, compared to the more modest advantages
we observed in the BoxQP family. Just as for the BoxQP instances, the
relative performance, in terms of gap closed, of DENSE starts to improve again
for larger n, while accordingly the quality of SPARSE deteriorates, and HYBRID

retains its status as a happy compromise of the two.

6.3.3 MaxCut

Analogously to the other families, Table 6 summarizes our results for the 151
MaxCut instances. The high-level trends remain the same as with the other
two families, but there are a few notable differences for the largest group of
instances. The gap closed is considerably less than for the other two families,
with all methods closing only 5–6% of the gap. The reason is that the LP
relaxation quickly becomes very heavy, and fewer than 15 iterations are able to
be performed within the time limit.

In Figure 3, we take as a case study the MaxCut instance pm1s 100.1, and
we show the detailed evolution of all three methods over the course of the one
hour time limit, with respect to gap closed (left panel) and LP solution time
(right panel). For the time comparison in the right panel, the relative ordering

24

62

Solving SDPs by using
sparse PCA

Dey, Kazachkov, Lodi,
Muñoz

Creating lightweight
outer approximation of
SDPs

Sparse priniciple
component analysis

Experiements

Results

Results on 151 MaxCut instances for SPARSE, DENSE, and HYBRID. Results
are averages over instances grouped by size, under a time limit of 1 hour.

Gap closed (%) Last LP time (s)

Instance group # SPARSE DENSE HYBRID SPARSE DENSE HYBRID

n = 60 10 97.45 98.73 98.86 3.20 13.69 10.98
n = 80 30 93.61 93.43 96.65 18.59 47.48 24.07
n = 100 99 79.36 77.44 82.66 60.09 107.76 86.74
n ∈ [150, 225] 12 6.00 5.13 5.85 717.56 775.20 704.32

0 500 1000 1500 2000 2500 3000 3500
Time (s)

0

20

40

60

80

100

G
ap

cl
os

ed
(%

)

HYBRID

DENSE

SPARSE

0 500 1000 1500 2000 2500 3000 3500
Time (s)

0

20

40

60

80

100

120

L
P

ti
m

e
(s

)

HYBRID

DENSE

SPARSE

Figure 3: Progress of gap closed (left) and LP time (right) for MaxCut instance
pm1s 100.1 for the three methods over one hour.

of the algorithms is the same as for the BoxQP instance plotted in Figure 2,
with SPARSE requiring the least amount of time throughout, followed by HYBRID,
and then DENSE. As we did for spar125-025-1, here too we used an extended
time limit of 1 day to observe the longer-run behavior: at the end of the day
(not plotted), the LP solution was computed by for SPARSE, DENSE, and HYBRID

in 58.5, 193.0, and 73.5 seconds, respectively.
However, the story for gap closed is different: while HYBRID continues to

do well, picking up on the early momentum afforded by dense cuts and then
continually increasing its relative advantage with respect to DENSE, the SPARSE

algorithm seems to have much slower convergence than for the BoxQP setting.
Indeed, after one day of computation time, SPARSE still trails DENSE in gap
closed, with 92.6% of the gap closed by SPARSE, compared to 92.9% gap closed
by DENSE. In the meantime, HYBRID improves from the one-hour mark gap closed
of 89.6% to a final gap closed of 97.0%.

25

63

Thank You.

I Santanu S. Dey, Aleksandr M. Kazachkov, Andrea Lodi, Gonzalo Muñoz,
"Cutting Plane Generation Through Sparse Principal Component
Analysis" http://www.optimization-online.org/DBHTML/2021/02/8259.html

I Grigoriy Blekherman, Santanu S. Dey, Marco Molinaro, Shengding Sun,
"Sparse PSD approximation of the PSD cone," Mathematical
Programming, 2020.

I Grigoriy Blekherman, Santanu S. Dey, Kevin Shu, Shengding Sun,
"Hyperbolic relaxation of k-Locally positive semidefinite matrices"
arXiv:2012.04031.

	Creating lightweight outer approximation of SDPs
	Sparse priniciple component analysis
	Experiements

