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omplex networks are ubiquitous
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Partially observed

complex networks are ubiquitous

* Networked representations of real-world
phenomena are often partially observed

« Acquiring more network data is often
expensive and/or hard

* Even when your data is complete, you
may not have the computational resources
to examine all of it

Mwitte ARIk vs Twitter Firehose

itter AP

SEARCH API: You want to
search historically for what




Working with incomplete data can skew
analyses
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Partially observed network Fully observed network

Average degree =2 |E| / |V]



Working with incomplete data can skew
analyses

The data that you
are missing are not

missing at random,




The network discovery question

Given a query budget for identifying
additional nodes and edges, how can
one get a more accurate representation
of the fully observed network?
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Task-driven network discovery



Selective harvesting

Given a seed network G, and a budget b, grow the network to
discover as many nodes of a particular type as possible
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Selective harvesting

Given a seed network G, and a budget b, grow the network to
discover as many nodes of a particular type as possible

Access mechanism

_ Seed Network G
* Query a node that is observed

but whose label is not known Undiscovered
N
(boundary set) odes

* Query returns the label of the
node and all of its neighbors
(but not their labels)

Goal: Learn how to select an appropriate
boundary node to query

Boundary Set /5



Some issues that make the problem difficult

» Sparse signals: you see relatively few examples of the relevant
structure

* Network effects: relevant features/structures become evident
INn aggregate

» Context-specific relevance: there are multi-faceted notions of
relevance

« Complexity of invariant features: you need to observe many
variations of topology to understand relevant features



Selective harvesting via reinforcement learning

State S,: Graph G,

Reward R,
_______ N —
Ry Se1
_ Environment: contains
A Action 4, : all possible graphs
probe the chosen node

* Learn through an interaction paradigm

 (State/action, reward) pairs versus (node, label) pairs



Selective harvesting as a MDP ar

State space S: Set of all intermediate networks "t
defined over a set of vertices V, a set of random I
graph models {M'}, and a labeling function St ~St41
C) e {0, 1, "}
(S, A, T, R,7)

S=Unilse =G} Gi={V/, Et}

G} (g — Gl @@



Selective harvesting as a MDP

Action space A: Nodes on the boundary set Tt
T

A ={a;} = {v;} where v; € B s, .

<S7 A? T? R? /}/>

Undiscovered
Nodes

Seed
Network GO

Boundary Set B



Selective harvesting as a MDP

Transition function T: T(s;, a;, S¢41) = P(Se41|St @)




Selective harvesting as a MDP

l/
Reward function R: R: SxA - R "t
* In our case: reward for discovering a node |
with the relevant type >t ik
<S7 A? T? R? /7>

U
! /
GG = (3%% G

y
Tt‘|‘1(G;,,—|—1’Gt7 U) =0 G;,+1




Policy function

at = V¢ () st = Gy
* Policy m: XA - R “ /
K « A
St41 — Gt+1
* (s,a) = P(als) e \
* A trajectory 7, is an instantiation of a policy drst = v
over horizon h /
St+2 = Gryo
* Tp = Uae, Gre1) Qi1 Geaa) Qe n—1, Gesn) ‘\/<
] 42 = Vit2 (
* Our budget b imposes an upper bound on \
u [ ’/ v \‘
the length of these trajectories sirs = Guys




Modeling future reward: Return function

* Return function R;: Cumulative discounted reward
over a trajectory of length A

Zk—i—l Vk 1Tt+k
Discount Factor / \ Reward

« Example: y =05, h =3

1 1 1 \
Re=1-0+2-0+7-1=7 4 Current
T T T State s
a1 Clz Cl3



Value function

 Value function V™ (s;) of a state s, is the expected
discounted sum of future rewards, starting at s; and

following policy m and using discount factor y € [0,1]:

V7 (st) = Exlregr + yrese + 7 rees + ..o |Se]

* The goal is to maximize the value function

*

™ = argmax, V" (s;)

St41 = Gt—l—l

7
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Q function

* The value function assumes access to a transition function (with
knowledge of the system dynamics)

* We optimize by decomposing the state value into action specific values:

St QW(Sta a’l)

1 1 /
St+1 St+1

St

/!
St41

* Action-Value (Q) Function

QW(Sa CL) = Ex [Z;OZO /Ykrt—l—k—kl ‘57 a]

QW(St, az)

2 T(a;8)Q7 (s, a)

n(s,a) = P(als)



What are current approaches missing?

* Online methods explore one possible path
over the space of potential graphs

* Insufficient training samples to capture the
complexity of relevant graph features

* Risk missing the appropriate structure given

S 7
the sparse signal ’\lk/'
& J Y Label L

« Can not rely on models or access to history,

so they are too suspectable to: State

(Vertex
Features)

* Phase shifts in reward signals

* Tunnel vision over longer explorations



Our perspective: offline + online learning

« Can we learn useful strategies by practicing offline on various
tasks and topologies?



State space representation

* Network state spaces are combinatorically large and require
strategies for efficient exploration

« Assumption: Some states are more useful in helping us
estimate the value/policy functions

« Questions

1. Can graph embedding(s) of the state space reduce its complexity?

2. What kind of embedding(s) are better for planning over graphs for the
given task?



Map network states into canonical
representations

1. Embed the graph representing s; using embed(G))

2. Re-order rows of G,’s adjacency matrix based on embedding distance
to node(s) with label of interest

» Closer nodes get ranked higher = a prioritized set of boundary nodes
3. Truncate the reordered adjacency matrix to retain the graph induced by
the top k nodes

* Hyperparameter k defines the graph for computing potential
trajectories and long-term reward



Training set generation for offline learning

« Background Models Training instance generation
« Stochastic Block Model (SBM) 1. Generate background instance by
« Lancichinetti-Fortunato-Radicchi randomly selecting a background
(LFR) model & its parameters
» Block Two-level Erdés-Renyi 2. Generate foreground (target)
(BTER) iInstances by randomly selecting a

foreground model & its parameters

3. Insert several foreground
instances a few hops a way in the
background instance

Foreground Model
« Erdds-Renyi (ER)
« Barabasi-Albert (BA)



Episodic training

* Learn by growing and discovering similar network instances,
where we have access to ground truth node labels

T = {Sg, Ay, 1y, S1, A1, 71, S2, A2, T, S3, «ue }

 Build a training set of {X=(state, action), Y=reward} tuples

X ={(so,a0),(s1,a1), ..., (s, a)},
where L = learning episode length

Y —_ {7‘0, Rl' ...,RL},
where R; =1y + yry + y21y + - ylr;



The learning objective

Learn a policy that maximizes our objective function

J©) = ) 1ry() ) mp(5,0) (qu(s, SEDRNE a)) + cH (s, (s, 0))

SES a€eA aeA
\ J] | J
| |
Exploitation Exploration

Estimated advantage of
action a from state s
given policy mg

Optimization algorithm: we use a gradient-based proximal policy
method (PPO)



Our model: Network Actor Critic (NAC)

2
L(¢p) = “)’t — Qcp(xt)”z

L Critic W
Estimated advantage: Generate samples:
Qg (st ar) ZQ¢ st,a) T = {So, ap, 70, S1, - }

Actor

H < arg maxJ (0)
0



Our model: Network Actor Critic (NAC)

2
L(@®) = |lye — Qp@|,

L Critic W
Estimated advantage: Generate samples:
Qd’(stvat)_ZQq‘)(Staa)- T = {SO, Ao, 70, S1, }
acA

Actor
W Side note: The Fotic:j and value
functions are learned via CNNs

with 3 convolutional Lajers, &4
hidden channels, and a final
«fu.i.i.-j connected layer.

6 < arg max]J (0)
6




Experiments: Baselines & competitors

« Competitors:

 Directed Diversity Dynamic Thompson Sampling (D3TS) [Murai et al, Data Mining and
Knowledge Discovery 2017]

« Multi-armed bandit approach that leverages different node classifiers and Thompson sampling
to diversify the selection of a boundary nodes

» Network Online Learning (NOL) [LaRock et al, Applied Network Science 2020]

 Learns an online regression function that maximizes discovery of previously unobserved
nodes for a given number of queries

» Baselines:
« Maximum Observed Degree (MOD) [Avrachenkov et al, INFOCOM Workshops 2014]

» Selects the node with the highest number of observed neighbors that have the desired label

» Personalized Page Rank (PPR)

» Selects the highest scored node via PPR



Experiments: Results on synthetic data

Better 90 90
— NAC
80 80 D3TS
—— NOL
70 70 MOD
—— PPR
© 60 © 60
2 2
& 50 & 50 -
g g
% 40 - % 40 -
g £
20 20 /
10 10 /
0 0
0 100 200 300 400 500 0 100 200 300 400 500
Number of Queries Number of Queries
* 2 embedded cliques (40 vertices each) * 2 embedded dense subgraphs (40 vertices each)
e Cliques are on average 3 hops away e Subgraphs are on average 3 hops away

from each other from each other



Experiments: Results on synthetic data

Better 90 90

—— NAC —— NAC

80 4 —— D3TS 80 4 —— D3TS
— NOL — NOL
70 4+ —— MOD = 70 4+ —— MOD
— PPR : — PPR

NAC can recover (ts f:ﬁerforn«ramre even when

search starts outside an anomalous graph
regLon
NAC gives consistent behavior across various

random graph models )

from each other from each other



Experiments: Results on real data
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*  Facebook pages dataset™: nodes are pages, edges are likes between the pages
* Number of nodes: 4000-6000 nodes
«  Sparse networks with high clustering clustering coefficient

- Embed small subgraphs with density of 0.8



Experiments: Results on real data

Politicians Network

Better TV-shows Network

90

—— NAC
804+ —— NOL
— MOD
70 + —— DTS

— NAC
80+ —— NOL
— MOD
70 4 —— D3TS

Even though NAC was frained on 53&1&@&5
ik aﬁ'h% ¢k generalizes to real nebwork faﬁﬁzaggeg

*  Facebook pages dataset™: nodes are pages, edges are likes between the pages
* Number of nodes: 4000-6000 nodes
«  Sparse networks with high clustering clustering coefficient

*  Embed small subgraphs with density of 0.8



Experiments: Results on real data

* Livedournal dataset 1000

—— NAC
NOL

* Nodes are users; edges are | oo
friendship relationships; attributes 7
are group memberships

600 A

 Target attribute is the top group

Cumalitive Reward

400 -

(new task)
e # of nodes = 3,997,962 200 -
» # of edges = 34,681,189 ;

0 200 400 600 800 1000 1200
Number of Queries

* Average degree = 17.35
 Size of target group ~= 1400



Which graph embedding to choice?

]

Target Network Seed Network Undiscovered Network

« Consistent embedding

« Compressible state space
B - Robustness to increasing signal complexity
B - Faster learning convergence time



Robustness to increasing signal complexity
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Robustness to increasing signal complexity
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Cumalitive Reward
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Wrap-up: Network Actor-Critic (NAC)

Given a query budget for identifying additional nodes and edges, how can
one get a more accurate representation of the fully observed network for

selective harvesting?

Method State Action Observ  Learning Learning Policy State
Space Space -ability Goal Framework Training Embedding

NOL [9] Large  Dynamic Partial Vertex Property MDP Online No

DTS [14] Large  Dynamic Partial Vertex Property Supervised  Online No

GCPN [16] Small  Fixed Full Graph Property MDP (())nfﬂ(i;r;sen Dataset No

NAC Large  Dynamic Partial Vertex Property MDP Ofiline & Onfine Yes

on Designed Dataset

NOL: LaRock et al, Applied Network Science 2020; D3TS: Murai et al, Data Mining and Knowledge Discovery 2017; GCPN: You et al, Neur/PS 2018.



Control of pandemics

Complex Network Effects Partial Observability Large Decision Space
80 T
Homogeneous: .
—_ mixing model i
é 75 ] e  Australia
] o Canada -
2 China i . \ > T
3 701 ’ e  Europe q\ w q\ IH‘ w °
"_E «  India . w
% 651 - . '
c Russia
.‘g South Africa *
o 601 United States .
3 ! -
o - !
55 1 i i L

15 16 17 18 19 20
R, = Average Number of Secondary Infections

« Same initial conditions lead to * Asymptomatic transmission * Limited resources available

diverse disease progression _
. Privacy concerns  Uncertain consequences

« Variance in secondary infections
* Lack of sensing

Left figure adapted from Mistry, D., Litvinova, M., Pastore y Piontti, A. et al. Inferring high-resolution human mixing patterns for disease modeling. Nat Commun 12, 323 (2021).
https://doi.org/10.1038/s41467-020-20544-y
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Problem and high-level overview of our system:
COANET

Multi-scale Mobility Network

Problem: Given a budget on CEY e
% x\ Mobility
available resources and/or
associated cost, obtain an optimal Network-SEIR model
Susceptibl | 3 Exposed O | Infectious Recovered
oo e )

sequence of interventions that
reduces the rate of spread

\

Network-based Decision-Making Capability

Environment
Mobility
Network

[LL, NEU, Stanford]

Disease

1
Se+1
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