Scaling Up Exact Neural Network Compression by ReLU Stability

Thiago Serra Bucknell University

Joint work with:

Abhinav Kumar

Michigan State University

Srikumar Ramalingam

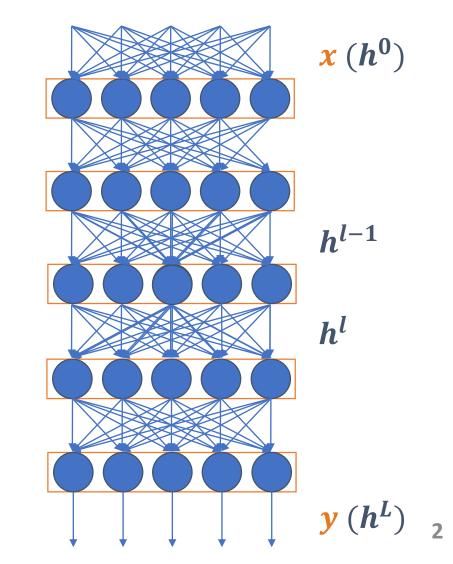
Google Research

Notation and Scope

A feedforward neural network models a function from x to y

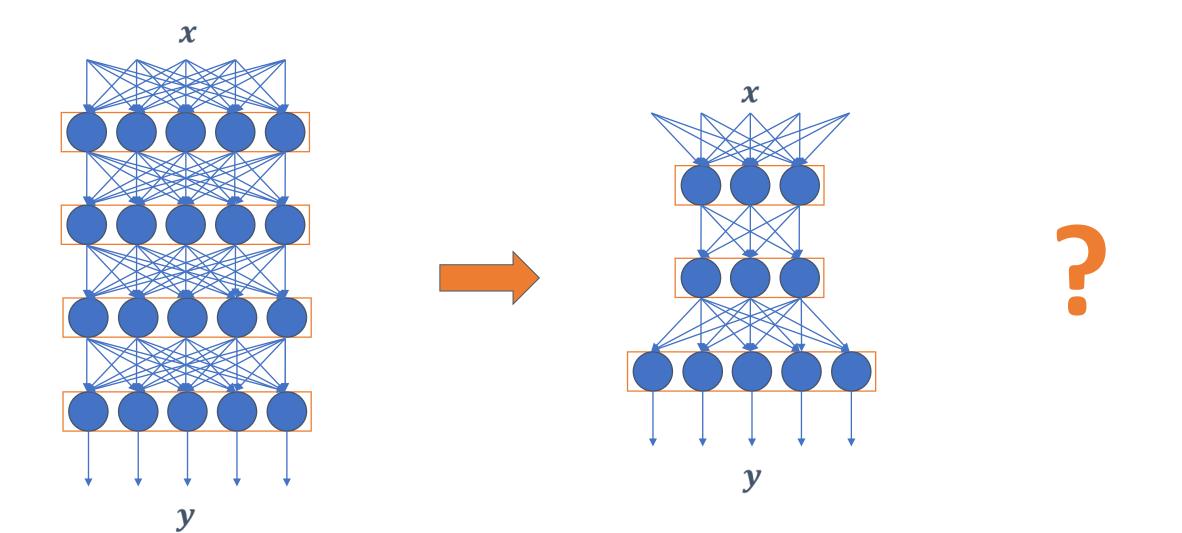
Let us assume that every neuron is a **Rectified Linear Unit (ReLU)**

$$h_i^l = max \{ 0, W_i^l h^{l-1} + b_i^l \}$$
Inactive Active



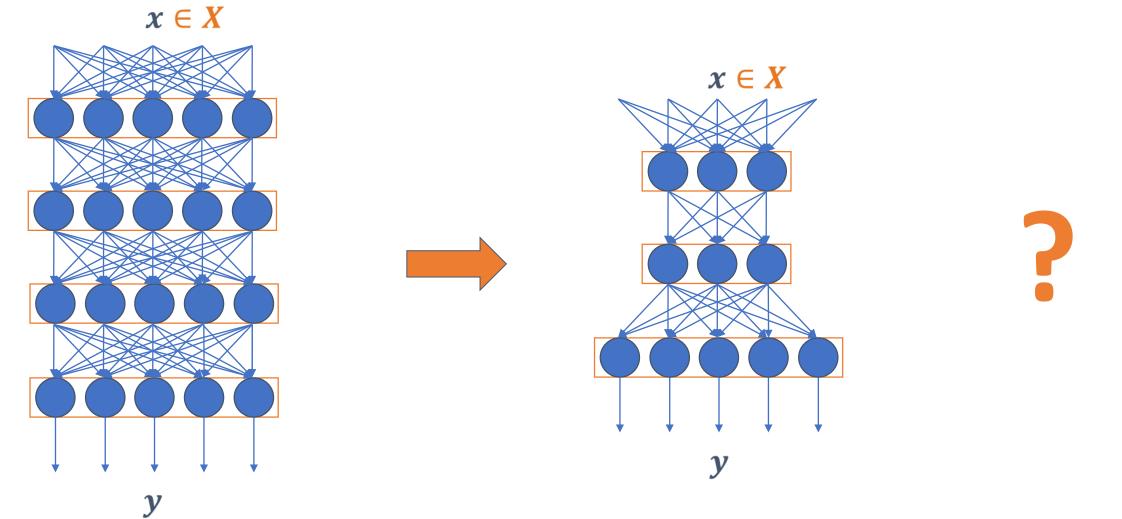
Exact Compression of Rectifier Networks

Can we find a smaller neural network that models the exact same function?



Exact Compression of Rectifier Networks

Can we find a smaller neural network that models the exact same function, at least for the inputs that are relevant for a given application?



Exact Compression of Rectifier Networks

For networks trained on MNIST, we only need equivalence for $x \in [0, 1]^{784}$

00	0	0	0	0	0	0	D	٥	0	0	0	0	0	0
11	١	١	١	1	1	(/	1	١	1	1	١	/	1
22	2	2	ð	J	2	2	ደ	2	2	2	2	2	2	ン
3 3	3	3	3	3	3	3	3	3	3	3	3	3	3	З
44	٤	Y	4	4	Ч	4	4	4	4	4	9	Ч	4	4
55	5	5	5	\$	5	б	5	5	5	5	5	5	5	5
66	6	1	1	r	,							-		
$\psi \psi$	Ű	6	6	6	6	6	6	6	Q	6	6	6	6	b
¥ 7									-			-		
	7	7	7	7	Ч	7	7	7	7	7	7	7	7	7

Related Work

Extensive literature on inexact compression

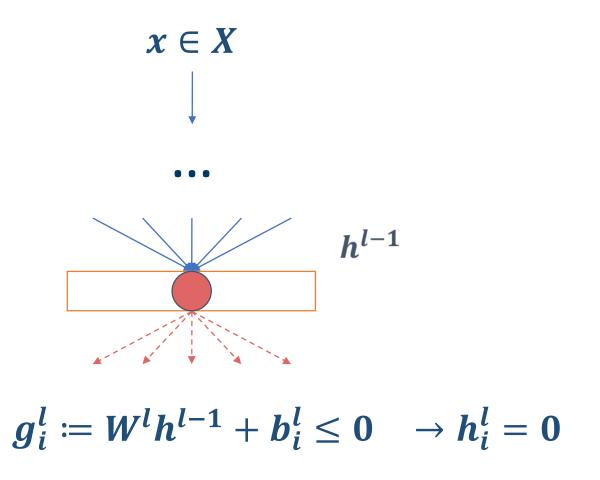
- Embedding neural networks in smaller devices
- **Denil et al. (2013)**: Redundancy between network parameters
- Arora et al. (2018): Better generalization bounds
- Blalock et al. (2020): Trade-off between compression and accuracy
- Hooker et al. (2019): Compressed networks are less robust; loss in accuracy is disproportionally distributed across classes
- ElAraby, Wolf & Carvalho (2020): MILP for inexact compression

Exact compression is relatively unexplored

- Avoids side effects above; and does not require retraining
- Sourek, Zelezny, Kuzelka (2021): Symmetry in graph neural networks
- Serra, Kumar & Ramalingam (2020): Small rectifier networks

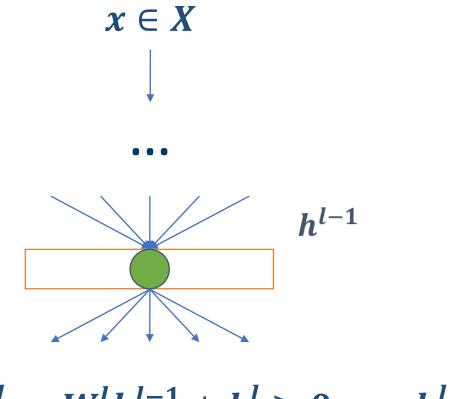
Neuron Stability with Respect to a Domain

A neuron is **stably inactive** if it <u>never</u> produces a positive output



Neuron Stability with Respect to a Domain

A neuron is stably active if it <u>always</u> produces a nonnegative output



$$g_i^l \coloneqq W^l h^{l-1} + b_i^l \ge 0 \quad \rightarrow h_i^l = g_i^l$$

In both cases, the absence of nonlinearity may help us simplify the network without changing the function that it models

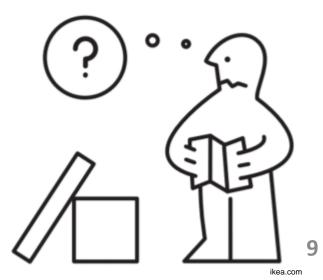
But... How!?

We can identify stable neurons with **optimization**!

If $\max_{x \in X} g_i^l \coloneqq W_i^l h^{l-1} + b_i^l \leq 0$, then the neuron is stably inactive

If
$$\min_{x \in X} g_i^l \coloneqq W_i^l h^{l-1} + b_i^l \ge 0$$
, then the neuron is stably active

We formulate a **Mixed-Integer Linear Program (MILP)** to map inputs to outputs of a trained neural network



Mapping Inputs to Outputs

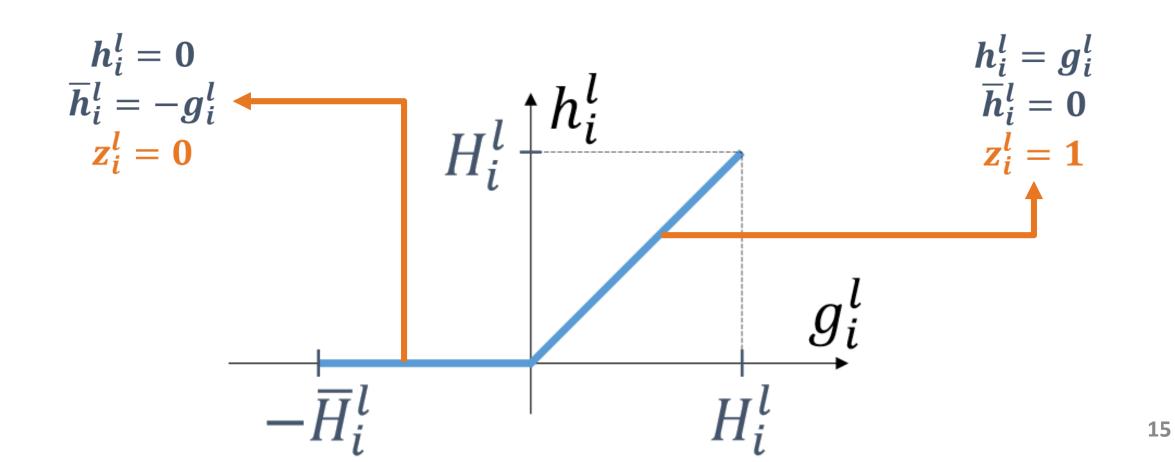
The following constraints represent a ReLU *i* in layer *l*:

$$W_i^l h^{l-1} + b_i^l = g_i^l$$
$$g_i^l = h_i^l - \overline{h}_i^l$$
$$h_i^l \ge 0$$
$$\overline{h}_i^l \ge 0$$
$$z_i^l \in \{0, 1\}$$
$$h_i^l \le H_i^l z_i^l$$
$$\overline{h}_i^l \le \overline{H}_i^l (1 - z_i^l)$$

- \overline{h}_{i}^{l} is the output of a fictitious complementary unit
- z_i^l is a binary variable modeling if the unit is active
- H_i^l and \overline{H}_i^l are sufficiently large and positive constants (bounded inputs) 14

Mapping Inputs to Outputs

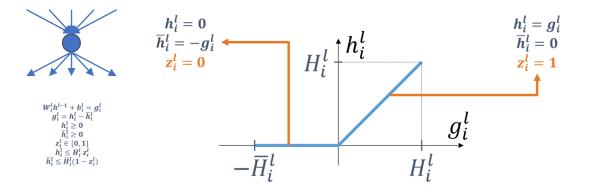
The binary variable changes the mapping according to unit activity



Wait...

If
$$\max_{x\in X} g_i^l \coloneqq W_i^l h^{l-1} + b_i^l \leq 0$$
,

If $\min_{x\in X} g_i^l\coloneqq W_i^lh^{l-1}+b_i^l\geq 0$,



https://giphy.com/gifs/Friends-friends-season-5-episode-106-TglfmNLgdMPE5NfLKS

Solving two MILPs per neuron is not that cheap!

Well...

Stopping with **negative upper bounds for max** or **positive lower bounds for min**, this is the **runtime to identify all stable neurons**:

Hidden Layers	Runtime (~ s)
2 x 25	30
2 x 50	100
2 x 100	400

https://giphy.com/gifs/friends-ross-geller-i-know-XZ0yPco3eynUAGU0i3

A Couple of Insights on the Compression Problem

- We are solving all these problems over the same feasible set
 I.e., every network input is mapped to the corresponding output
- 2. It is easy to certify that a neuron is <u>not</u> stable

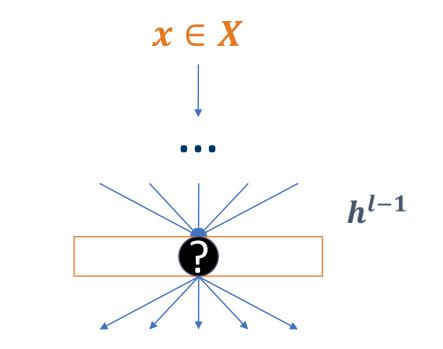
We just need two network inputs:

- One for which the neuron is active
- Another one for which the neuron is inactive

In fact, one network input may be used to certify multiple neurons

Rethinking the Optimization Problem

Find an input that certifies as many neurons of unknown status as possible



 $g_i^l := W^l h^{l-1} + b_i^l \ge 0$? \longrightarrow *P*: Neurons that have not been active yet

 $g_i^l := W^l h^{l-1} + b_i^l \le 0$? $\longrightarrow Q$: Neurons that have not been inactive yet

19

Rethinking the Optimization Problem

Find an input that certifies as many neurons of unknown status as possible

- **P**: Neurons that have not been active yet
- **Q**: Neurons that have not been inactive yet
- Binary variables p_i^l and q_i^l for every neuron in P and Q

$$c(P,Q) \coloneqq \max_{x \in X} \sum_{(l,i) \in P} p_i^l + \sum_{(l,i) \in Q} q_i^l$$

If c(P, Q) = 0, then every neuron in P is stably inactive and every neuron in Q is stably active

If c(P, Q) > 0, we are one step closer to identifying stable neurons 20

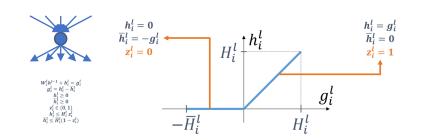
One Solve to Find Them All!

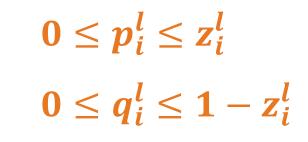
We only need to solve this problem to optimality if c(P, Q) = 0:

- Any solution with a positive value helps
- For every solution $(\overline{p}, \overline{q})$, fix $p_i^l = 0$ if $\overline{p}_i^l = 1$ (and likewise with q)

Relax new binary variables by using the integrality of \boldsymbol{z}

$$c(P,Q) \coloneqq \max_{x \in X} \sum_{(l,i) \in P} p_i^l + \sum_{(l,i) \in Q} q_i^l$$





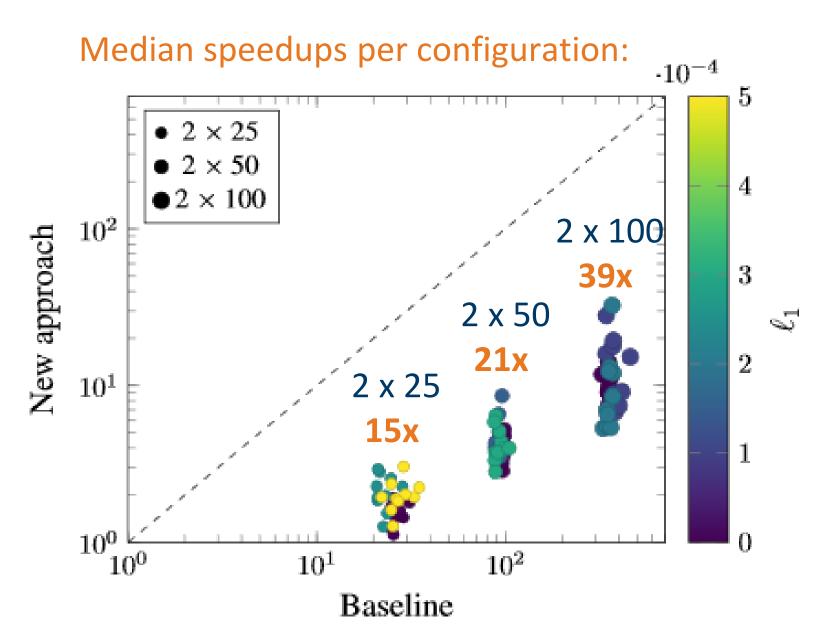
An Insight on the MILP Formulation

Finding feasible solutions for these MILPs is easy
 Fischetti & Jo (2018): Any valid input defines a feasible solution

Use the input \widetilde{x} associated with solving the linear relaxation

- The restriction $x = \tilde{x}$ yields one feasible MILP solution
- This solution is somewhat guided by the objective function
- We can get one of those at every node of the branch-and-bound tree

How About the Runtimes Now?



https://giphy.com/gifs/Friends-season-5-episode-7-friends-tv-iHskdY9SMLFZuQ2u5c

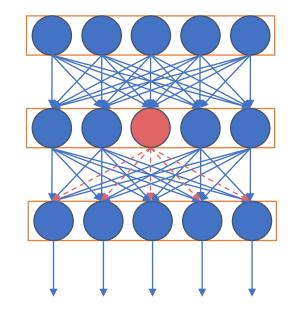
But how can we make these networks smaller?

https://deadline.com/2020/02/honey-i-shrunk-the-kids-reboot-rick-moranis-1202858344/

24

What happens when a neuron is stably inactive?

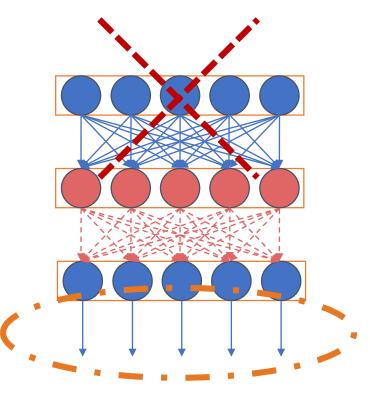
 $h_i^l = 0$



Since the output of the neuron is always zero, we can easily remove it from the neural network

What happens when an entire layer is stably inactive?

 $h^l = 0$

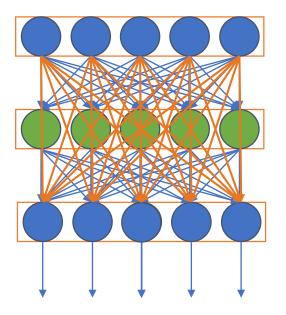


The network output is constant and defined by the parameters in subsequent layers

All hidden layers can be removed

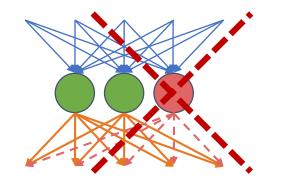
What happens when an entire layer is stably active?

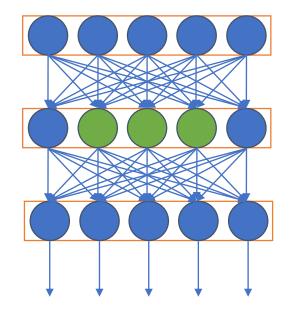
$$h^l = W^l h^{l-1} + b^l$$



$$g_j^{l+1} = W^{l+1} (W^l h^{l-1} + b^l) + b_j^{l+1}$$
$$= (W^{l+1} W^l) h^{l-1} + (W^{l+1} b^l + b_j^{l+1})$$

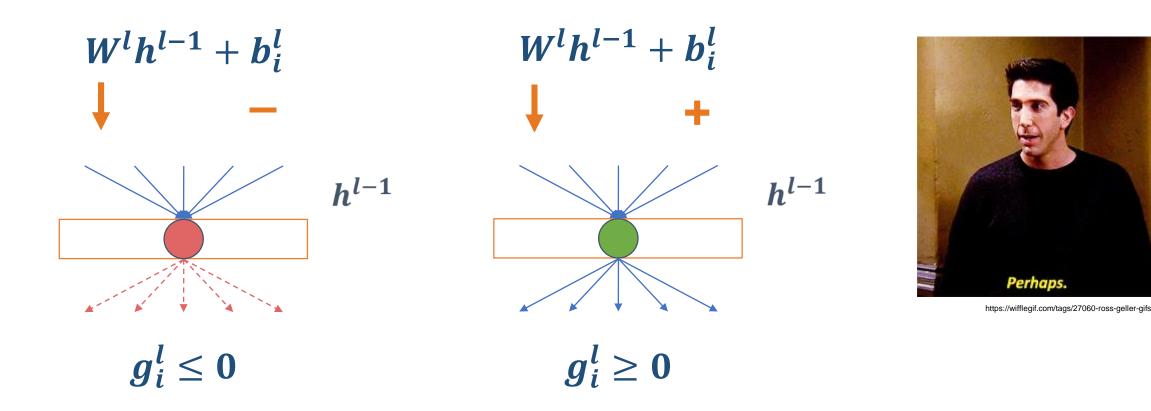
What happens when <u>some</u> neurons are stably active?





If $\mathbf{r} \coloneqq rank(W_S^l) < |S|$, we can define the same affine transformation with r neurons

Tjeng, Xiao & Tedrake (2019): **Stability** can be induced with ℓ_1 regularization



Some (but not too much) training regularization: better accuracy

Neurons Removed in MNIST Classifiers

We chose $\ell_1 = \overline{\ell}$ to yield the same training accuracy as $\ell_1 = 0$

• $\ell_1 = \overline{\ell}/2$ has better accuracy while being compressible

Hidden Layers	$\ell_1 = 0$	$\ell_1 = \overline{\ell}/2$	$\ell_1 = \overline{\ell}$
2 x 100	0% _{97.93%}	13% 98.14%	23% 97.89%
3 x 100	0% _{98.05%}	14% 98.23%	26% 98.05%
4 x 100	0% _{98.12%}	16% 98.18%	25% 98.12%
5 x 100	0% _{98.13%}	17% 98.42%	27% 98.12%

Neurons Removed in MNIST Classifiers

We chose $\ell_1 = \overline{\ell}$ to yield the same training accuracy as $\ell_1 = 0$

• $\ell_1 = \overline{\ell}/2$ has better accuracy while being compressible

Hidden Layers	$\ell_1 = 0_{_{Accuracy}}$	$\ell_1 = \overline{\ell}/2$	$\ell_1 = \overline{\ell}$
2 x 100	0% _{97.93%}	13% 98.14%	23% 97.89%
2 x 200	0% _{98.17%}	13% 98.33%	26% 98.17%
2 x 400	0% _{98.25%}	8% 98.35%	24% 98.24%
2 x 800	0% 98.28%	_	22% 98.29%

31

Runtime in MNIST Classifiers

We chose $\ell_1 = \overline{\ell}$ to yield the same training accuracy as $\ell_1 = 0$

• $\ell_1 = \overline{\ell}/2$ has better accuracy while being compressible

Hidden Layers	$\ell_1 = 0_{_{Accuracy}}$	$\ell_1 = \overline{\ell}/2$	$\ell_1 = \overline{\ell}$
2 x 100	10 s _{97.93%}	14 s 98.14%	11 s 97.89%
3 x 100	54 s 98.05%	80 s 98.23%	50 s 98.05%
4 x 100	220 s 98.12%	2,000 s 98.18%	180 s 98.12%
5 x 100	840 s 98.13%	3,370 s 98.42%	510 s 98.12%

Runtime in MNIST Classifiers

We chose $\ell_1 = \overline{\ell}$ to yield the same training accuracy as $\ell_1 = 0$

• $\ell_1 = \overline{\ell}/2$ has better accuracy while being compressible

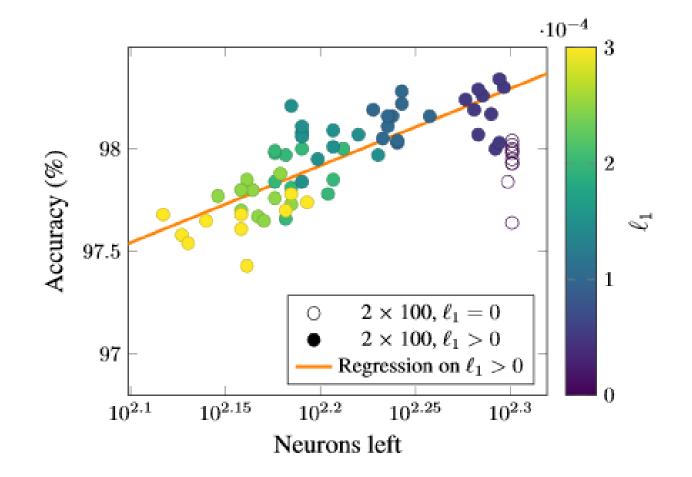
Hidden Layers	$\ell_1 = 0_{_{Accuracy}}$	$\ell_1 = \overline{\ell}/2$	$\ell_1 = \overline{\ell}$
2 x 100	10 s _{97.93%}	14 s 98.14%	11 s 97.89%
2 x 200	45 s 98.17%	120 s 98.33%	26 s 98.17%
2 x 400	400 s 98.25%	1,800 s 98.35%	130 s 98.24%
2 x 800	3,500 s _{98.28%}	_	1,000 s _{98.29%}

The Impact of ℓ_1 Regularization on Runtimes

		Harder	Easier
Hidden Layers	$\ell_1 = 0$	$\ell_1 = \overline{\ell}/2$	$\ell_1 = \overline{\ell}$
2 x 100	10 s	14 s	11 s
2 x 200	45 s	120 s	26 s
2 x 400	400 s	1,800 s	130 s
2 x 800	3,500 s		1,000 s

The Impact of ℓ_1 Regularization on Compression

When regularization is used, compression is related to accuracy ($R^2 = 0.64$)



Neurons Removed in MNIST Autoencoders

With <u>way more</u> regularization:

• First two hidden layers fold before loss doubles

Hidden Layers	$\ell_1 = 0$	$\ell_1 = 0.00002$	$\ell_1 = 0.0002$
	Loss	Loss	Loss
100 10 100	0% _{0.045}	13% _{0.047}	95% 0.077
100 25 100	0% 0.035	14% _{0.047}	90% 0.076
100 50 100	0% _{0.031}	17% _{0.048}	90% 0.071

Neurons Removed in MNIST Autoencoders

With <u>way more</u> regularization:

• First two hidden layers fold before loss doubles

Hidden Layers	$\ell_1 = 0$	$\ell_1 = 0.00002$	$\ell_1 = 0.0002$
	Loss	Loss	Loss
50 10 50	0% 0.047	14% 0.051	89% 0.081
100 10 100	0% 0.045	13% _{0.047}	95% 0.077
200 10 200	0% 0.041	14% _{0.043}	95% 0.076
400 10 400	0% 0.040	15% _{0.040}	89% 0.073

Runtime in MNIST Autoencoders

With <u>way more</u> regularization:

- First two hidden layers fold before loss doubles
- Runtimes drop abruptly

Hidden Layers		$\ell_1 = 0.00002$	
	Loss	Loss	Loss
100 10 100	130 s 0.045	120 s 0.047	3 s 0.077
100 25 100	500 s 0.035	800 s	3 s 0.076
100 50 100	230 s 0.031	600 s 0.048	3 s 0.071

Neurons Removed in MNIST Autoencoders

With <u>way more</u> regularization:

- First two hidden layers fold before loss doubles
- Runtimes drop abruptly

Hidden Layers	$\ell_1 = 0_{\text{Loss}}$	$\ell_1 = 0.00002_{Loss}$	$\ell_1 = 0.0002$
50 10 50	33 s _{0.047}		1 S 0.081
100 10 100	130 s 0.045	120 s	3 s 0.077
200 10 200	1000 s _{0.041}	700 s	5 S 0.076
400 10 400	2700 s _{0.040}	1300 s	10 s 0.073

Fim

We presented a general-purpose exact compression method which:

- Scales to networks large enough for practical use
- Runs faster than training the network

In a nutshell:

- What? Remove and merge neurons, fold layers, or collapse the network
- When? Neural networks are trained with ℓ_1 regularization
- Why? They have stable neurons with linear behavior
- How? Solving an optimization problem

MIP is there for you!

References

Serra, Kumar, Ramalingam: "Scaling Up Exact Neural Network Compression by ReLU Stability" – arXiv preprint

https://arxiv.org/abs/2102.07804

Serra, Kumar, Ramalingam: "Lossless Compression of Deep Neural Networks" – CPAIOR 2020

https://arxiv.org/abs/2001.00218

Related work on linear regions:

Serra, Ramalingam: "Empirical Bounds on Linear Regions of Deep Rectifier Networks" – AAAI 2020 https://arxiv.org/abs/1810.03370

Serra*, Tjandraatmadja*, Ramalingam: "Bounding and Counting Linear Regions of Deep Neural Networks" – ICML 2018

https://arxiv.org/abs/1711.02114

Serra: "My Neural Network is a Piecewise Linear Regression, but Which One?" – ThiagoSerra.com/blog https://thiagoserra.com/2020/02/05/my-neural-network-is-a-piecewise-linear-regression-but-which-one-a-glimpse-ofour-aaai-20-paper-on-empirical-bounds/