
Thiago Serra
Bucknell University

Joint work with:

Abhinav Kumar
Michigan State University

Srikumar Ramalingam
Google Research

https://www.claimcompass.eu/blog/how-to-pack-a-carry-on/

Scaling Up Exact Neural Network
Compression by ReLU Stability

Notation and Scope

A feedforward neural network models a function from x to y

Let us assume that every neuron is a

Rectified Linear Unit (ReLU)

2

𝒙 (𝒉𝟎)

𝒚 (𝒉𝑳)

𝒉𝒍−𝟏

𝒉𝒍

Inactive Active

Exact Compression of Rectifier Networks

3

?

Can we find a smaller neural network that models the exact same function?

Exact Compression of Rectifier Networks

4

?

Can we find a smaller neural network that models the exact same function,
at least for the inputs that are relevant for a given application?

Exact Compression of Rectifier Networks

5
Josef Steppan - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=37508909

Related Work
Extensive literature on inexact compression

• Embedding neural networks in smaller devices

• Denil et al. (2013): Redundancy between network parameters

• Arora et al. (2018): Better generalization bounds

• Blalock et al. (2020): Trade-off between compression and accuracy

• Hooker et al. (2019): Compressed networks are less robust; loss in
accuracy is disproportionally distributed across classes

• ElAraby, Wolf & Carvalho (2020): MILP for inexact compression

Exact compression is relatively unexplored

• Avoids side effects above; and does not require retraining

• Sourek, Zelezny, Kuzelka (2021): Symmetry in graph neural networks

• Serra, Kumar & Ramalingam (2020): Small rectifier networks 6

Neuron Stability with Respect to a Domain

A neuron is stably inactive if it never produces a positive output

7

…

𝒙 ∈ 𝑿

𝒈𝒊
𝒍 ≔𝑾𝒍𝒉𝒍−𝟏 + 𝒃𝒊

𝒍 ≤ 𝟎 → 𝒉𝒊
𝒍 = 𝟎

Neuron Stability with Respect to a Domain

8

…

𝒙 ∈ 𝑿

𝒈𝒊
𝒍 ≔𝑾𝒍𝒉𝒍−𝟏 + 𝒃𝒊

𝒍 ≥ 𝟎 → 𝒉𝒊
𝒍 = 𝒈𝒊

𝒍

A neuron is stably active if it always produces a nonnegative output

In both cases, the absence of nonlinearity may help us simplify
the network without changing the function that it models

ikea.com

But… How!?
We can identify stable neurons with optimization!

If 𝐦𝐚𝐱
𝒙∈𝑿

𝒈𝒊
𝒍 ≔𝑾𝒊

𝒍𝒉𝒍−𝟏 + 𝒃𝒊
𝒍 ≤ 𝟎, then the neuron is stably inactive

If 𝐦𝐢𝐧
𝒙∈𝑿

𝒈𝒊
𝒍 ≔𝑾𝒊

𝒍𝒉𝒍−𝟏 + 𝒃𝒊
𝒍 ≥ 𝟎, then the neuron is stably active

We formulate a Mixed-Integer Linear Program (MILP)

to map inputs to outputs of a trained neural network

9

Mapping Inputs to Outputs

14

Mapping Inputs to Outputs

The binary variable changes the mapping according to unit activity

15

Wait…

If 𝐦𝐚𝐱
𝒙∈𝑿

𝒈𝒊
𝒍 ≔𝑾𝒊

𝒍𝒉𝒍−𝟏 + 𝒃𝒊
𝒍 ≤ 𝟎, then the neuron is stably inactive

If 𝐦𝐢𝐧
𝒙∈𝑿

𝒈𝒊
𝒍 ≔𝑾𝒊

𝒍𝒉𝒍−𝟏 + 𝒃𝒊
𝒍 ≥ 𝟎, then the neuron is stably active

16

https://giphy.com/gifs/Friends-friends-season-5-episode-106-TglfmNLgdMPE5NfLKS

Solving two MILPs per neuron is not that cheap!

Well…

Stopping with negative upper bounds for
max or positive lower bounds for min, this is
the runtime to identify all stable neurons:

17

https://giphy.com/gifs/friends-ross-geller-i-know-XZ0yPco3eynUAGU0i3

Hidden Layers Runtime (~ s)

2 x 25 30

2 x 50 100

2 x 100 400

A Couple of Insights on the Compression Problem

1. We are solving all these problems over the same feasible set

I.e., every network input is mapped to the corresponding output

2. It is easy to certify that a neuron is not stable

We just need two network inputs:

• One for which the neuron is active

• Another one for which the neuron is inactive

In fact, one network input may be used to certify multiple neurons

18

Rethinking the Optimization Problem
Find an input that certifies as many neurons of unknown status as possible

19

𝒈𝒊
𝒍 ≔𝑾𝒍𝒉𝒍−𝟏 + 𝒃𝒊

𝒍 ≥ 𝟎 ?

?

𝒈𝒊
𝒍 ≔𝑾𝒍𝒉𝒍−𝟏 + 𝒃𝒊

𝒍 ≤ 𝟎 ?

𝑷: Neurons that have not been active yet

𝑸: Neurons that have not been inactive yet

…

𝒙 ∈ 𝑿

Rethinking the Optimization Problem
Find an input that certifies as many neurons of unknown status as possible

• 𝑷: Neurons that have not been active yet

• 𝑸: Neurons that have not been inactive yet

• Binary variables 𝒑𝒊
𝒍 and 𝒒𝒊

𝒍 for every neuron in 𝑷 and 𝑸

20

𝒄 𝑷,𝑸 ≔ 𝐦𝐚𝐱
𝒙∈𝑿

෍

𝒍,𝒊 ∈𝑷

𝒑𝒊
𝒍 + ෍

𝒍,𝒊 ∈𝑸

𝒒𝒊
𝒍

If 𝒄 𝑷,𝑸 = 𝟎, then every neuron in P is stably inactive

and every neuron in Q is stably active

If 𝒄 𝑷,𝑸 > 𝟎, we are one step closer to identifying stable neurons

One Solve to Find Them All!
We only need to solve this problem to optimality if 𝒄 𝑷,𝑸 = 𝟎:

• Any solution with a positive value helps

• For every solution (ഥ𝒑, ഥ𝒒), fix 𝒑𝒊
𝒍 = 𝟎 if ഥ𝒑𝒊

𝒍 = 𝟏 (and likewise with 𝒒)

Relax new binary variables by using the integrality of 𝒛

21

By Peter J. Yost, CC BY-

SA 4.0

https://en.wikipedia.org/wi

ki/One_Ring#/media/File:

One_Ring_Blender_Rend

er.png

𝟎 ≤ 𝒑𝒊
𝒍 ≤ 𝒛𝒊

𝒍

𝟎 ≤ 𝒒𝒊
𝒍 ≤ 𝟏 − 𝒛𝒊

𝒍

𝒄 𝑷,𝑸 ≔ 𝐦𝐚𝐱
𝒙∈𝑿

෍

𝒍,𝒊 ∈𝑷

𝒑𝒊
𝒍 + ෍

𝒍,𝒊 ∈𝑸

𝒒𝒊
𝒍

https://www.google.com/imgres?imgurl=https%3A%2F%2Fupload.wikimedia.org%2Fwikipedia%2Fcommons%2Fd%2Fd4%2FOne_Ring_Blender_Render.png&imgrefurl=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FOne_Ring&tbnid=HT-AKjY3bZPHsM&vet=12ahUKEwi3uZLEufbuAhUGYK0KHRY1BVoQMygNegUIARDKAQ..i&docid=NAiiUq7heaBAGM&w=1947&h=1827&itg=1&q=rule%20them%20all&ved=2ahUKEwi3uZLEufbuAhUGYK0KHRY1BVoQMygNegUIARDKAQ

An Insight on the MILP Formulation

3. Finding feasible solutions for these MILPs is easy

Fischetti & Jo (2018): Any valid input defines a feasible solution

Use the input ෥𝒙 associated with solving the linear relaxation

• The restriction 𝒙 = ෥𝒙 yields one feasible MILP solution

• This solution is somewhat guided by the objective function

• We can get one of those at every node of the branch-and-bound tree

22

How About the Runtimes Now?
Median speedups per configuration:

23

2 x 25
15x

2 x 50
21x

2 x 100
39x

https://giphy.com/gifs/Friends-season-5-episode-7-friends-tv-iHskdY9SMLFZuQ2u5c

C
o

m
p

re
ss

io
n

But how can we make these networks smaller?

24

https://deadline.com/2020/02/honey-i-shrunk-the-kids-reboot-rick-moranis-1202858344/

Conditions for Exact Compression

What happens when a neuron is stably inactive?

25

Since the output of the neuron is always zero,

we can easily remove it from the neural network

Conditions for Exact Compression

What happens when an entire layer is stably inactive?

26

The network output is constant and defined

by the parameters in subsequent layers

All hidden layers can be removed

Conditions for Exact Compression

What happens when an entire layer is stably active?

27

𝒉𝒍 = 𝑾𝒍 𝒉𝒍−𝟏 + 𝒃𝒍

𝒈𝒋
𝒍+𝟏 = 𝑾𝒍+𝟏 (𝑾𝒍𝒉𝒍−𝟏 + 𝒃𝒍) + 𝒃𝒋

𝒍+𝟏

𝒈𝒋
𝒍+𝟏 = (𝑾𝒍+𝟏𝑾𝒍)𝒉𝒍−𝟏 + (𝑾𝒍+𝟏𝒃𝒍 + 𝒃𝒋

𝒍+𝟏)

𝒉𝑺
𝒍 = 𝑾𝑺

𝒍 𝒉𝒍−𝟏 + 𝒃𝑺
𝒍

Conditions for Exact Compression

What happens when some neurons are stably active?

28

If 𝐫 ≔ 𝒓𝒂𝒏𝒌 𝑾𝑺
𝒍 < |𝑺|, we can define the

same affine transformation with r neurons

Are There Stable Neurons?

29

Tjeng, Xiao & Tedrake (2019): Stability can be induced with ℓ𝟏 regularization

https://wifflegif.com/tags/27060-ross-geller-gifs

𝑾𝒍𝒉𝒍−𝟏 + 𝒃𝒊
𝒍

–

𝑾𝒍𝒉𝒍−𝟏 + 𝒃𝒊
𝒍

+

Some (but not too much) training regularization: better accuracy

𝒈𝒊
𝒍 ≤ 𝟎 𝒈𝒊

𝒍 ≥ 𝟎

Neurons Removed in MNIST Classifiers

We chose ℓ1 = തℓ to yield the same training accuracy as ℓ1 = 0

• ℓ1 = തℓ/2 has better accuracy while being compressible

30

Hidden
Layers

ℓ𝟏 = 𝟎 ℓ𝟏 = തℓ/2 ℓ𝟏 = തℓ

2 x 100 0% 13% 23%

3 x 100 0% 14% 26%

4 x 100 0% 16% 25%

5 x 100 0% 17% 27%

Accuracy Accuracy Accuracy

97.93% 98.14% 97.89%

98.05% 98.23% 98.05%

98.12% 98.18% 98.12%

98.13% 98.42% 98.12%

Neurons Removed in MNIST Classifiers

We chose ℓ1 = തℓ to yield the same training accuracy as ℓ1 = 0

• ℓ1 = തℓ/2 has better accuracy while being compressible

31

Hidden
Layers

ℓ𝟏 = 𝟎 ℓ𝟏 = തℓ/2 ℓ𝟏 = തℓ

2 x 100 0% 13% 23%

2 x 200 0% 13% 26%

2 x 400 0% 8% 24%

2 x 800 0% – 22%

Accuracy Accuracy Accuracy

97.93% 98.14% 97.89%

98.17% 98.33% 98.17%

98.25% 98.35% 98.24%

98.28% – 98.29%

Runtime in MNIST Classifiers

We chose ℓ1 = തℓ to yield the same training accuracy as ℓ1 = 0

• ℓ1 = തℓ/2 has better accuracy while being compressible

32

Hidden
Layers

ℓ𝟏 = 𝟎 ℓ𝟏 = തℓ/2 ℓ𝟏 = തℓ

2 x 100 10 s 14 s 11 s

3 x 100 54 s 80 s 50 s

4 x 100 220 s 2,000 s 180 s

5 x 100 840 s 3,370 s 510 s

Accuracy Accuracy Accuracy

97.93% 98.14% 97.89%

98.05% 98.23% 98.05%

98.12% 98.18% 98.12%

98.13% 98.42% 98.12%

Runtime in MNIST Classifiers

We chose ℓ1 = തℓ to yield the same training accuracy as ℓ1 = 0

• ℓ1 = തℓ/2 has better accuracy while being compressible

33

Hidden
Layers

ℓ𝟏 = 𝟎 ℓ𝟏 = തℓ/2 ℓ𝟏 = തℓ

2 x 100 10 s 14 s 11 s

2 x 200 45 s 120 s 26 s

2 x 400 400 s 1,800 s 130 s

2 x 800 3,500 s – 1,000 s

Accuracy Accuracy Accuracy

97.93% 98.14% 97.89%

98.17% 98.33% 98.17%

98.25% 98.35% 98.24%

98.28% – 98.29%

The Impact of ℓ1 Regularization on Runtimes

34

Harder Easier

Hidden
Layers

ℓ𝟏 = 𝟎 ℓ𝟏 = തℓ/2 ℓ𝟏 = തℓ

2 x 100 10 s 14 s 11 s

2 x 200 45 s 120 s 26 s

2 x 400 400 s 1,800 s 130 s

2 x 800 3,500 s – 1,000 s

The Impact of ℓ1 Regularization on Compression

When regularization is used, compression is related to accuracy (𝑅2 = 0.64)

35

Neurons Removed in MNIST Autoencoders

With way more regularization:

• First two hidden layers fold before loss doubles

36

Hidden Layers ℓ𝟏 = 𝟎 ℓ𝟏 = 𝟎. 𝟎𝟎𝟎𝟎𝟐 ℓ𝟏 = 𝟎. 𝟎𝟎𝟎𝟐

100 | 10 | 100 0% 13% 95%

100 | 25 | 100 0% 14% 90%

100 | 50 | 100 0% 17% 90%

Loss Loss Loss

0.045 0.047 0.077

0.035 0.047 0.076

0.031 0.048 0.071

Neurons Removed in MNIST Autoencoders

With way more regularization:

• First two hidden layers fold before loss doubles

37

Hidden Layers ℓ𝟏 = 𝟎 ℓ𝟏 = 𝟎. 𝟎𝟎𝟎𝟎𝟐 ℓ𝟏 = 𝟎. 𝟎𝟎𝟎𝟐

50 | 10 | 50 0% 14% 89%

100 | 10 | 100 0% 13% 95%

200 | 10 | 200 0% 14% 95%

400 | 10 | 400 0% 15% 89%

Loss Loss Loss

0.047 0.051 0.081

0.045 0.047 0.077

0.041 0.043 0.076

0.040 0.040 0.073

Runtime in MNIST Autoencoders

With way more regularization:

• First two hidden layers fold before loss doubles

• Runtimes drop abruptly

38

Hidden Layers ℓ𝟏 = 𝟎 ℓ𝟏 = 𝟎. 𝟎𝟎𝟎𝟎𝟐 ℓ𝟏 = 𝟎. 𝟎𝟎𝟎𝟐

100 | 10 | 100 130 s 120 s 3 s

100 | 25 | 100 500 s 800 s 3 s

100 | 50 | 100 230 s 600 s 3 s

Loss Loss Loss

0.045 0.047 0.077

0.035 0.047 0.076

0.031 0.048 0.071

Neurons Removed in MNIST Autoencoders

With way more regularization:

• First two hidden layers fold before loss doubles

• Runtimes drop abruptly

39

Hidden Layers ℓ𝟏 = 𝟎 ℓ𝟏 = 𝟎. 𝟎𝟎𝟎𝟎𝟐 ℓ𝟏 = 𝟎. 𝟎𝟎𝟎𝟐

50 | 10 | 50 33 s 50 s 1 s

100 | 10 | 100 130 s 120 s 3 s

200 | 10 | 200 1000 s 700 s 5 s

400 | 10 | 400 2700 s 1300 s 10 s

Loss Loss Loss

0.047 0.051 0.081

0.045 0.047 0.077

0.041 0.043 0.076

0.040 0.040 0.073

Easiest

Fim
We presented a general-purpose exact compression method which:

• Scales to networks large enough for practical use

• Runs faster than training the network

In a nutshell:

• What? Remove and merge neurons, fold layers, or collapse the network

• When? Neural networks are trained with ℓ1 regularization

• Why? They have stable neurons with linear behavior

• How? Solving an optimization problem

40

MIP is there for you!
https://giphy.com/gifs/Friends-season-9-episode-19-friends-tv-S6qkS0ETvel6EZat45

References
Serra, Kumar, Ramalingam: “Scaling Up Exact Neural Network Compression
by ReLU Stability” – arXiv preprint

https://arxiv.org/abs/2102.07804

Serra, Kumar, Ramalingam: “Lossless Compression of Deep Neural
Networks” – CPAIOR 2020

https://arxiv.org/abs/2001.00218

Related work on linear regions:

Serra, Ramalingam: “Empirical Bounds on Linear Regions of Deep Rectifier Networks” – AAAI 2020
https://arxiv.org/abs/1810.03370

Serra*, Tjandraatmadja*, Ramalingam: “Bounding and Counting Linear Regions of Deep Neural Networks”
– ICML 2018

https://arxiv.org/abs/1711.02114

Serra: “My Neural Network is a Piecewise Linear Regression, but Which One?” – ThiagoSerra.com/blog

https://thiagoserra.com/2020/02/05/my-neural-network-is-a-piecewise-linear-regression-but-which-one-a-glimpse-of-
our-aaai-20-paper-on-empirical-bounds/

41

