Ecole: A Gym-like Library for Machine Learning
in Combinatorial Optimization Solvers

Maxime Gasse

Deep Learning and Combinatorial Optimization
IPAM Workshops, Feb. 24

$

A A\ DATA SCIENCE
" FOR REAL-TIME

DECISION-MAKING
NS

i POLYTECHNIQUE
- MONTREAL N

N

[/

Combinatorial Optimization Solvers

Mixed-Integer Linear Program (MILP) . s

» c e R" the objective coefficients
arg min c'x

X

subject to Ax < b, » b e R™ the constraint right-hand-sides

» A e R™X" the constraint coefficient matrix

x€ZP x R"™P, » p < ninteger variables

Mixed-Integer Linear Program (MILP)

» c e R" the objective coefficients

: T
argxmln ¢ X > A e R™*" the constraint coefficient matrix
subject to Ax < b, » b e R™ the constraint right-hand-sides
X € ZP x R"™P, » p < n integer variables

A versatile CO modeling tool

NP-hard !

Exact solving 7

Initial
The primal side: finding solutions solution
= Upper bound U
The dual side: proving optimality
— Lower bound L
Optimal
solution
Stopping criterion: value
> L = U (optimality certificate)
» L = oo (infeasibility certificate)
» L - U < threshold (regret certificate) Initial
LP dual
bound

A

Primal integral

Instance

solved

Dual integral

Exact algorithms: branch-and-bound, cutting planes, others (application-specific). . .

Branch-and-bound recursively decomposes the problem into smaller ones.

></><\><
VAV

x1<4 x312>5

Lower bound (L): minimal
among leaf nodes

Upper bound (U): minimal R

among integral leaf nodes ,
X
x1

Decision task: which node to process next ? on which variable(s) to split ?

Primal heuristics (generic search routines) are run at the leaf nodes.

Decision task: which heuristics to run 7 When ? (heuristics are costly)

T. Berthold (2006). Primal heuristics for mixed integer programs.

Cuts can be added to the sub-MILPs to tighten the bounds. (Branch-and-cut)

min

Cuts can be added to the sub-MILPs to tighten the bounds. (Branch-and-cut)

min

Cuts can be added to the sub-MILPs to tighten the bounds. (Branch-and-cut)

min

Decision task: which cuts to add to the LP ? Not all cuts are good, some are
redundant. Adding too many cuts can lead numerical instabilities.

Preprocessing routines can be run before the solving starts (usually several,
sequentially), to simplify and / or tighten the problem formulation.

2 i
original fixed to 3
X2 X,
original active
original aggregated
X, X, /x}: 1
original ") aggregated

Decision task: which routines to run ? How many times 7

T. Achterberg (2004). SCIP - A Framework to Integrate Constraint and Mixed Integer Programming.

Solver Design: a Complex Control Problem

Many intertwined decisions:

» node selection U
variable selection
cutting planes
primal heuristics
preprocessing
simplex initialization L

VVYVYyYVYYVYYy
bound

time

Solver Design: a Complex Control Problem

Many intertwined decisions:

» node selection u
variable selection
cutting planes
primal heuristics
preprocessing
simplex initialization L
> ... solved
|

vVvyvyyvyy
bound

Many evaluation metrics:

> B&B tree size

» solving time: reach U=L fast

» primal-dual integral: U - L\ fast
» dual integral: L fast

» primal integral: U\ fast

time

Solver Design: a Complex Control Problem

Many intertwined decisions:

» node selection u
variable selection
cutting planes
primal heuristics
preprocessing
simplex initialization L
> ... solved
|

vVvyvyyvyy
bound

Many evaluation metrics: time
> B&B tree size
solving time: reach U=L fast

>

> primal-dual integral: U - L ™\ fast State of affairs: expert rules + benchmarks.
» dual integral: L fast
>

primal integral: U \ fast

Ecole: Extensible Combinatorial Optimization Learning
Environments

Why Ecole 7

ML4CO: a growing field

Node selection

> [He et al., 2014]
» [Song, Lanka, Zhao, et al., 2018]

Variable selection

» [Khalil, Le Bodic, et al., 2016]
» [Hansknecht et al., 2018]

» [Balcan et al., 2018]

> [Gasse et al., 2019]

» [Gupta et al., 2020]

» [Nair et al., 2020]

Cutting planes selection

» [Baltean-Lugojan et al., 2018]
> [Tang et al., 2019]

Primal heuristic selection

» [Khalil, Dilkina, et al., 2017]
> [Hendel et al., 2018]

Formulation selection
» [Bonami et al., 2018]

Neighborhood search heuristics
> [Ding et al., 2019
> [Song, Lanka, Yue, et al., 2020]
» [Addanki et al., 2020]

Diving heuristics
» [Song, Lanka, Zhao, et al., 2018]
> [Yilmaz et al., 2020]
> [Nair et al., 2020]

Why Ecole ?
Poor reproducibility in the field

» closed-source solvers
» problem benchmarks
» evaluation metrics

High bar of entry for newcomers
» low-level C/C++ code
» highly technical APIs even for OR experts

Gap between the ML and OR communities

» amputated solvers raise criticism in the OR community
» OR experts employ basic ML models

— need for a standard, open platform based on a state-of-the-art solver

A. Prouvost et al. (2020). Ecole: A Gym-like Library for Machine Learning in Combinatorial Optimization
Solvers.

Why Ecole ?
Poor reproducibility in the field

> closed-source solvers Remove technical obstacles,
» problem benchmarks so that we can focus on the
> evaluation metrics interesting challenges !

High bar of entry for newcomers
» low-level C/C++ code
» highly technical APIs even for OR experts

Gap between the ML and OR communities

» amputated solvers raise criticism in the OR community
» OR experts employ basic ML models

— need for a standard, open platform based on a state-of-the-art solver

A. Prouvost et al. (2020). Ecole: A Gym-like Library for Machine Learning in Combinatorial Optimization
Solvers.

The PO-MDP Formulation

Sequential control problem = Markov decision process

—»[Agent Ji
4[Environment]<—

State = state of the branch-and-bound process (solver)
Actions = variables, nodes, primal heuristics, cuts, preprocessing routines to select

Statese S Actionae A

Episode = solving an instance to completion

00
T~ Pinit(SO) H 7"'(31&|5t) Ptrans(5t+1|3t75t)

~~
next state

initial state t=0 next action

The PO-MDP Formulation

Sequential control problem = Markov decision process

—»[Agent Ji

Statese S Action ae A

4[Environment]<—

State = state of the branch-and-bound process (solver)
Actions = variables, nodes, primal heuristics, cuts, preprocessing routines to select
Episode = solving an instance to completion

0o

T~ Pinit(SO) H 7T(at|5t) Ptrans(5t+1|3t75t)
e t=0 . v,
initial state next action next state

PO-MDP: state s € S — observation o € O

OpenAl Gym API

import gym

env gym.make ("SpaceInvaders-v0"

for episode in range (1000
observation, done env.reset

while not done
action policy(observation

observation,] reward, done, info env.step(action
LYYy
e
OIQ. — m— R

Ecole API

import ecole

Solved multiple
env ecole.environment.Branching times

for episode in range (1000 <§/

obs, action_set, reward, done env.reset("path/to/problem"

Solver while not done
statistics action policy(observation, action_set
obs action_set‘\ reward, done, info env.step(action

-.'.. r] .
Branching eers Number of Instance ~ Branching

candidates b nodes solved variable
LLL LN]

Ecole features

Open: BSD-3 license

Easy: plug-and-play Python interface, one-line install via conda

Fast: full C++/PyBind11 implementation, thread-safe

Extensible: expand the library in C++ and/or Python via PySCIPOpt

Modular: compose from existing rewards, observations, and environments

env ecole.environment.Branching
reward_function=(LpIterations 2 3* NNodes
observation_function=NodeBipartite

scip params={"presolving/maxrestarts": 2

What's in Ecole now ?

Environments:
» Configuring: tune solver parameters (bandit)
» Branching: B&B variable selection
Rewards:
» Solving Time
» NNodes (B&B tree size)
> LP Iterations

Observations:
» Node Bipartite [Gasse et al., 2019]
» Khalil2016 [Khalil, Le Bodic, et al., 2016]

» Strong Branching Scores
» Pseudocosts

Instance Generators:

>

| 2

Minimum Set Covering [Balas
et al., 1980]

Combinatorial Auction
[Leyton-Brown et al., 2000]
Capacitated Facility Location
[Cornuejols et al., 1991]
Maximum Independent Set
[Bergman et al., 2016]

Go check https://doc.ecole.ai now !

https://doc.ecole.ai

Conclusions

Ecole exposes key control problems arising in exact CO solvers
» simple Gym-like API for learning
» modern open-source solver SCIP

» standard benchmarks, metrics and feature sets for reproducibility

What next
» new environments: learning to cut, local search
» new reward functions: primal/dual integral
» real-world instance collections
» ML4CO competition based on Ecole

Ecole: A Gym-like Library for Machine Learning
in Combinatorial Optimization Solvers

Thank you!

Ecole contributors

VA. Prouvost M. Gasse D. Chételat J. Dumouchelle L. Scavuzﬁo

A note on NP-Hardness

No Free Lunch Theorems for Optimization [Wolpert et al., 1997]:
[...] for any algorithm, any elevated performance over one class of problems is
offset by performance over another class.

General-purpose solvers ? Gurobi, IBM CPLEX, FICO Xpress, SCIP...

A note on NP-Hardness

No Free Lunch Theorems for Optimization [Wolpert et al., 1997]:
[...] for any algorithm, any elevated performance over one class of problems is
offset by performance over another class.

General-ptrpose solvers 7 Gurobi, IBM CPLEX, FICO Xpress, SCIP...

= Tailored to their own (internal) industrial benchmark.

A note on NP-Hardness

Phoenix, AZ

2/10

Mixed-Integer Linear Program (MILP)

x* =argmin c'x
X

subject to Ax < b,

x € ZP x R"™P

Mixed-tnteger Linear Program (LP)

& =argmin c¢'x

X

subject to Ax < b,
| <x<u,

x e R",

Efficient algorithms (e.g., simplex).

Mixed-tnateger Linear Program (LP)

& =argmin c¢'x

X

subject to Ax < b,
| <x<u,
x e R".
Efficient algorithms (e.g., simplex).

Lower bound to the original MILP

Mixed-tnateger Linear Program (LP)

& =argmin c¢'x
X

subject to Ax < b,
| <x<u,

x e R".
Efficient algorithms (e.g., simplex).

Lower bound to the original MILP

K* € ZP x R"P (lucky)
— problem solved

Branch-and-bound

Recursively: pick a fractional variable and partition the LP

Example: £ =362¢7Z — x;, <3=[X"|] V x>4=[%].

Lower bound (L): minimal
among leaf nodes

N
VAN

x1 <5 x312>6

.
Lower bound (L): minimal B
among leaf nodes O o a . .
Upper bound (U): minimal
among integral leaf nodes
x2 (]

x1

X1<4

Lower bound (L): minimal
among leaf nodes

Upper bound (U): minimal
among integral leaf nodes

x2

x1

“ton, o
1 Optmizat*

\ /\
/\

x2<4 x22>5
. .
Lower bound (L): minimal
among leaf nodes O A a . .
Upper bound (U): minimal
among integral leaf nodes
x2 (]

Problem solved ! x1

Branch-and-bound

Sequential decisions: X

> select an open leaf / \
> select a fractional variable / \ / \
» select an open leaf X X

» select a fractional variable

> .. y
. _ -
Stopping criterion: %
» L = U (optimality certificate) 2 .
> L = oo (infeasibility certificate) solvled

» L - U < threshold (early stopping) time

Branch-and-bound

Sequential decisions: X

> select an open leaf / \
> select a fractional variable / \ / \
» select an open leaf X X

» select a fractional variable

> .. y
Stopping criterion: g
» L = U (optimality certificate) < .
> L = oo (infeasibility certificate) solvled
» L - U < threshold (early stopping) time

To speed up things, other stuff also happens at each leaf (= sub-MILP).

	Combinatorial Optimization Solvers
	Ecole: Extensible Combinatorial Optimization Learning Environments
	
	
	Appendix

