How much data is sufficient to learn high-performing algorithms?

Ellen Vitercik Carnegie Mellon University

STOC'21

Travis Dick

Carl Kingsford

Tuomas Sandholm

Nina Balcan

Data-driven algorithm design

Algorithms often have **many tunable parameters** Significant impact on runtime, solution quality, ...

Hand-tuning is **time-consuming**, **tedious**, and **error prone**

Data-driven algorithm design

Goal: Automate algorithm configuration via machine learning **Algorithmically** find good parameter settings using a **set of "typical" inputs** from application at hand

Training set

Parameter setting should-ideally-be good on future inputs

Example: Sequence alignment

Goal: Line up pairs of strings **Applications:** Biology, natural language processing, etc.

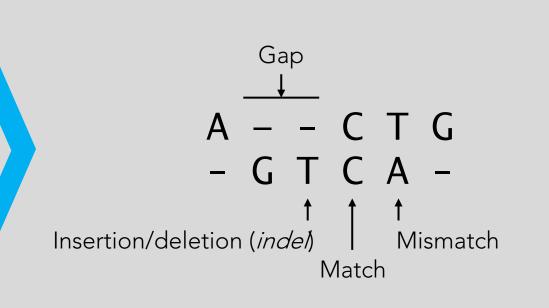
ritterchik

Did you mean: vitercik

Input: Two sequences *S* and *S'*

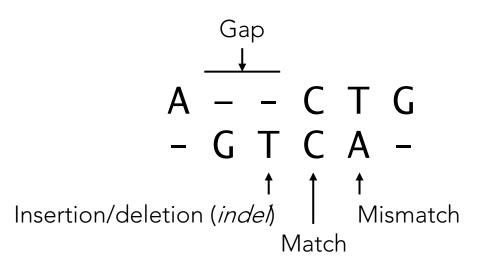
Output: Alignment of *S* and *S'*

S = A C T GS' = G T C A



Standard algorithm with parameters $\rho_1, \rho_2, \rho_3 \ge 0$: Return alignment maximizing: (# matches) - $\rho_1 \cdot$ (# mismatches) - $\rho_2 \cdot$ (# indels) - $\rho_3 \cdot$ (# gaps)

> S = A C T GS' = G T C A

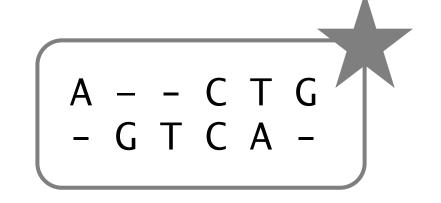


Can sometimes access ground-truth, reference alignment

E.g., in computational biology: Bahr et al., Nucleic Acids Res.'01; Raghava et al., BMC Bioinformatics '03; Edgar, Nucleic Acids Res.'04; Walle et al., Bioinformatics'04

Requires extensive manual alignments ...rather just run parameterized algorithm

How to tune algorithm's parameters? "There is **considerable disagreement** among molecular biologists about the **correct choice**" [Gusfield et al. '94]



-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA Ground-truth alignment of protein sequences

-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA Ground-truth alignment of protein sequences

GRTCP---KPDDLPFSTVVPLKTFYEPG<mark>EEITYSCKPGY</mark>VSRGGMRKFICPLTGLWP</mark>INTLKCTP EVKCPFPSRPDN-GFVNYPAKPTLYYK-DKATFGCHDGY-SLDGPEEIECTKLGNWS-AMPSCKA Alignment by algorithm with **poorly-tuned** parameters

-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA

Ground-truth alignment of protein sequences

GRTCP---KPDDLPFSTVVPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP EVKCPFPSRPDN-GFVNYPAKPTLYYK-DKATFGCHDGY-SLDGPEEIECTKLGNWS-AMPSCKA Alignment by algorithm with **poorly-tuned** parameters

GRTCPKPDDLPFSTV-VPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP EVKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGY-SLDGPEEIECTKLGNWSA-MPSCKA Alignment by algorithm with **well-tuned** parameters

- 1. Fix parameterized algorithm
- 2. Receive training set T of "typical" inputs

3. Find parameters with good performance on average over T

Runtime, solution quality, etc.

- 1. Fix parameterized algorithm
- 2. Receive training set T of "typical" inputs

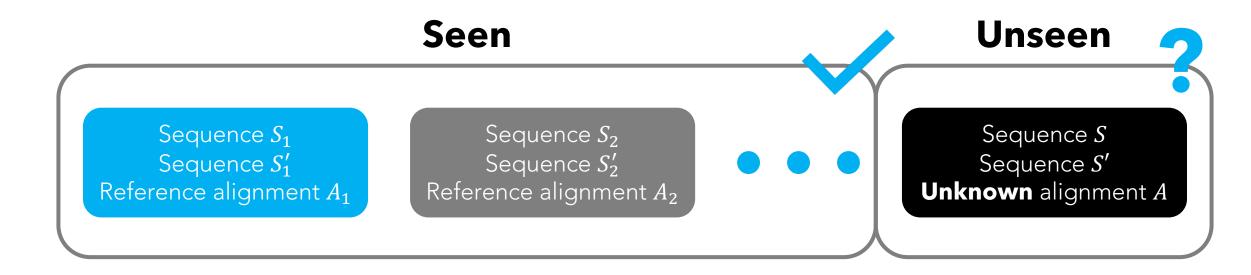
3. Find parameters with good performance on average over T

Output alignment is close to reference alignment

- 1. Fix parameterized algorithm
- 2. Receive training set T of "typical" inputs

3. Find parameters with good performance on average over TKey question (focus of talk):

Will those parameters have good **future** performance?



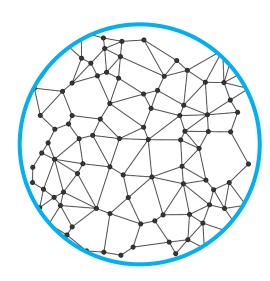
Key question (focus of talk):

Will those parameters have good **future** performance?

Model applies in **many** settings, including:

Constraint satisfaction problems, e.g.:

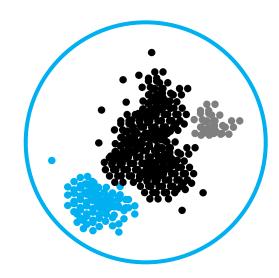
Horvitz, Ruan, Gomes, Krautz, Selman, Chickering Nudelman, Leyton-Brown, Hoos, Devkar, Shoham Sayag, Fine, Mansour Hutter, Hamadi, Hoos, Leyton-Brown Xu, Hutter, Leyton-Brown Xu, Hutter, Hoos, Leyton-Brown Xu, Hoos, Leyton-Brown Kleinberg, Leyton-Brown, Lucier Balcan, Dick, Sandholm, **Vitercik** Weisz, György, Szepesvári Kleinberg, Leyton-Brown, Lucier, Graham UAI'01 CP'04 STACS'06 CP'06 CP'07 JAIR'08 AAAI'10 IJCAI'17 ICML'18 ICML'18, '19 NeurIPS'19



Model applies in **many** settings, including:

Clustering, e.g.:

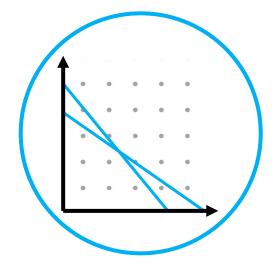
Balcan, Nagarajan, **Vitercik**, White Balcan, Dick, White Garg, Kalai Balcan, Dick, Lang COLT'17 NeurIPS'18 NeurIPS'18 ICLR'20



Model applies in **many** settings, including:

Integer and linear programming, e.g.:

Leyton-Brown, Nudelman, Andrew, McFadden, Shoham IJCAI'03, CP'03 Hutter, Hoos, Leyton-Brown, Stützle JAIR'09 Hutter, Hoos, Leyton-Brown LION'11, AIJ'14 Sandholm Handbook of Market Design'13 NeurIPS'14 He, Daume, Eisner Khalil, Le Bodic, Song, Nemhauser, Dilkina AAAI'16 Balcan, Nagarajan, Vitercik, White COT'17Balcan, Dick, Sandholm, Vitercik ICMI '18 Balcan, Dick, Vitercik FOCS'18 Balcan, Sandholm, Vitercik AAAI'20 Balcan, Sandholm, Vitercik ICML'20

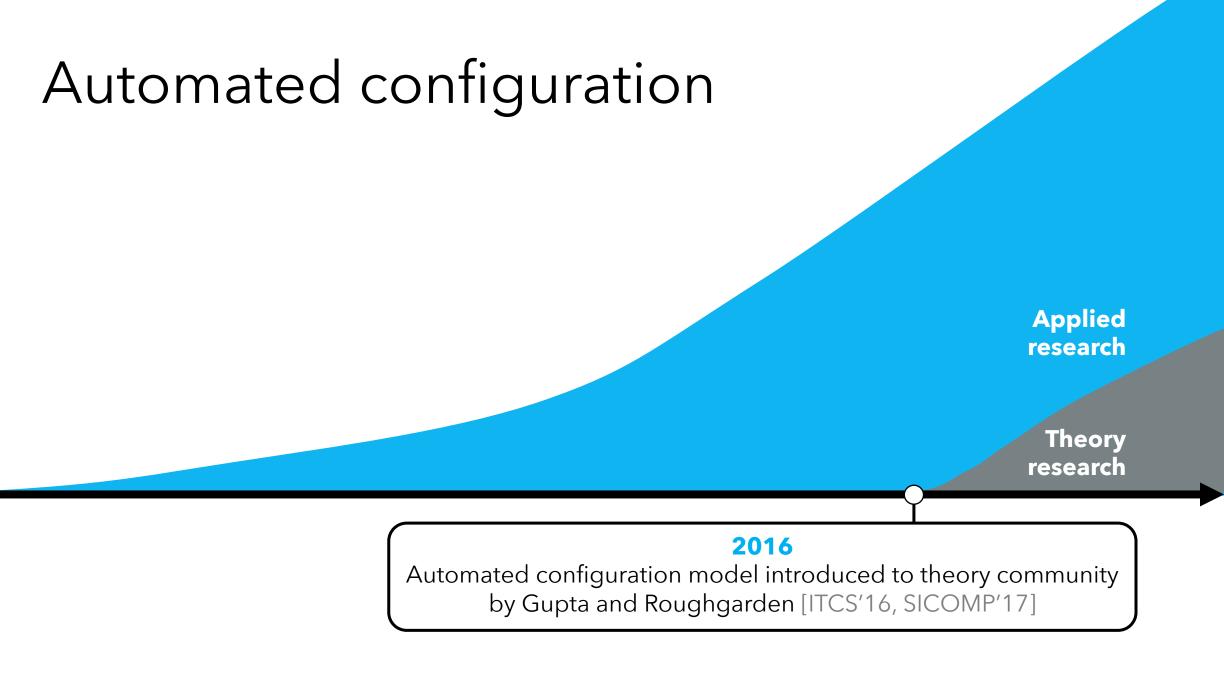


Model applies in **many** settings, including:

Computational biology, e.g.:

Majoros, Salzberg Chikhi, Medvedev May, Tamura, Noble DeBlasio, Kececioglu DeBlasio, Kim, Kingsford Balcan, DeBlasio, Dick, Kingsford, Sandholm, **Vitercik**
 X

Bioinformatics'04 Bioinformatics'13 J. of Proteome Research'17 Springer'18 WBC@ICML'19 '20



This talk: Main result

Key question (focus of talk): Good performance on **average** over **training set** implies good **future** performance?

Answer this question for any parameterized algorithm where: Performance is **piecewise-structured** function of parameters

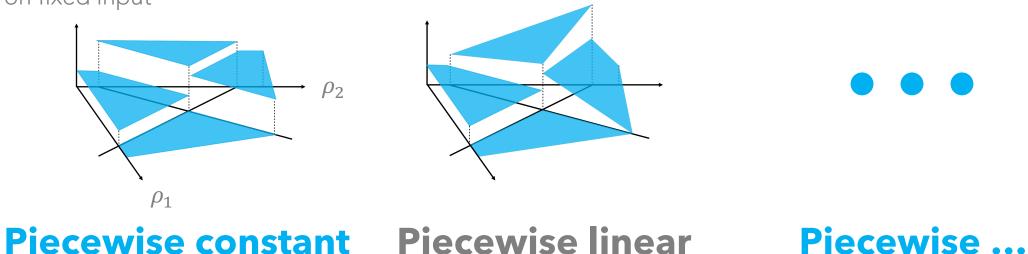
Piecewise constant, linear, quadratic, ...

This talk: Main result

Performance is **piecewise-structured** function of parameters

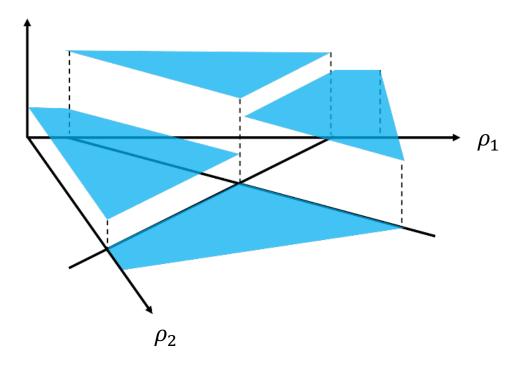
Piecewise constant, linear, quadratic, ...

Algorithmic performance on fixed input

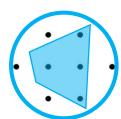


Example: Sequence alignment

Distance between **algorithm's output** given *S*,*S'* and **ground-truth** alignment is p-wise constant



Domains with piecewise structure



Integer programming

Balcan, Dick, Sandholm, **Vitercik**, ICML'18; Balcan, Nagarajan, **Vitercik**, White, COLT'17

Clustering

Balcan, Nagarajan, **Vitercik**, White, COLT'17 Balcan, Dick, White, NeurIPS'18; Balcan, Dick, Lang, ICLR'20

Greedy algorithms

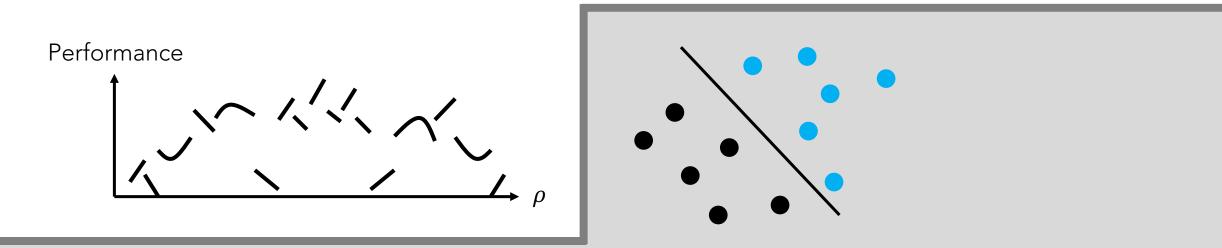
Gupta, Roughgarden, ITCS'16

Computational biology

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC'21

Primary challenge in combinatorial domains:

Algorithmic performance is a **volatile** function of parameters **Complex** connection between parameters and performance



For well-understood functions in machine learning theory:

Simple connection between function parameters and value

Outline

1. Introduction

2. Model and problem formulation

- 3. Our guarantees
- 4. Conclusions

Model

 \mathbb{R}^d : Set of all parameters \mathcal{X} : Set of all inputs

Example: Sequence alignment

 \mathbb{R}^3 : Set of alignment algorithm parameters \mathcal{X} : Set of sequence pairs

$$S = A C T G$$
$$S' = G T C A$$

One sequence pair $x = (S, S') \in \mathcal{X}$

Algorithmic performance

 $u_{\rho}(x) =$ utility of algorithm parameterized by $\rho \in \mathbb{R}^{d}$ on input xE.g., runtime, solution quality, distance to ground truth, ...

Assume $u_{\rho}(x) \in [-1,1]$ Can be generalized to $u_{\rho}(x) \in [-H,H]$

Model

Standard assumption: Unknown distribution \mathcal{D} over inputs Distribution models specific application domain at hand

E.g., distribution over pairs of DNA strands

E.g., distribution over pairs of protein sequences

Key question: For any parameter setting ρ, is average utility on training set close to expected utility?

Formally: Given samples $x_1, \ldots, x_N \sim \mathcal{D}$, for any ρ ,

Key question: For any parameter setting *ρ*, is average utility on training set close to expected utility?

Formally: Given samples $x_1, \ldots, x_N \sim \mathcal{D}$, for any ρ ,

$$\left|\frac{1}{N}\sum_{i=1}^{N}u_{\rho}(x_{i})-\mathbb{E}_{x\sim\mathcal{D}}\left[u_{\rho}(x)\right]\right|\leq ?$$

Empirical average utility

Key question: For any parameter setting *ρ*, is average utility on training set close to expected utility?

Formally: Given samples $x_1, \ldots, x_N \sim \mathcal{D}$, for any ρ ,

$$\left|\frac{1}{N}\sum_{i=1}^{N}u_{\rho}(x_{i})-\mathbb{E}_{x\sim\mathcal{D}}\left[u_{\rho}(x)\right]\right|\leq ?$$

Expected utility

Key question: For any parameter setting *ρ*, is average utility on training set close to expected utility?

Formally: Given samples $x_1, \ldots, x_N \sim \mathcal{D}$, for any ρ ,

$$\left|\frac{1}{N}\sum_{i=1}^{N}u_{\rho}(x_{i})-\mathbb{E}_{x\sim\mathcal{D}}\left[u_{\rho}(x)\right]\right|\leq ?$$

Key question: For any parameter setting *ρ*, is average utility on training set close to expected utility?

Formally: Given samples $x_1, \ldots, x_N \sim \mathcal{D}$, for any ρ ,

$$\left|\frac{1}{N}\sum_{i=1}^{N}u_{\rho}(x_{i})-\mathbb{E}_{x\sim\mathcal{D}}\left[u_{\rho}(x)\right]\right|\leq ?$$

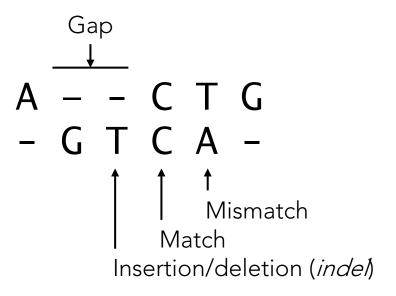
Strong **average** utility **b** Strong **future** utility

Outline

- 1. Introduction
- 2. Model and problem formulation
- 3. Our guarantees
 - a. Example of piecewise-structured utility function
 - b. Piecewise-structured functions more formally
 - c. Main theorem
 - d. Application: Sequence alignment
- 4. Conclusions

Standard algorithm with parameters $\rho_1, \rho_2, \rho_3 \ge 0$: Return alignment maximizing: (# matches) - $\rho_1 \cdot$ (# mismatches) - $\rho_2 \cdot$ (# indels) - $\rho_3 \cdot$ (# gaps)

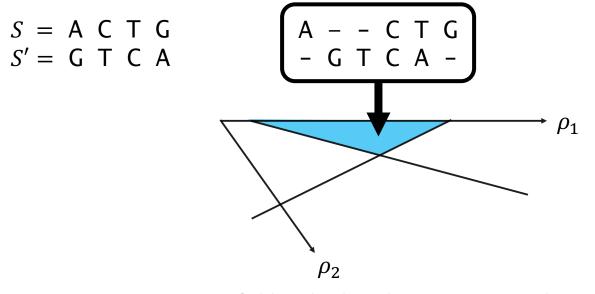
S = A C T GS' = G T C A



Sequence alignment algorithms

Lemma:

For any pair S, S', there's a small partition of \mathbb{R}^3 s.t. in any region, algorithm's output is fixed across all parameters in region

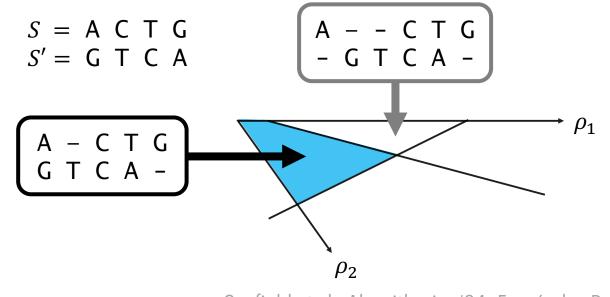


Gusfield et al., Algorithmica '94; Fernández-Baca et al., J. of Discrete Alg. '04

Sequence alignment algorithms

Lemma:

For any pair S, S', there's a small partition of \mathbb{R}^3 s.t. in any region, algorithm's output is fixed across all parameters in region



Gusfield et al., Algorithmica '94; Fernández-Baca et al., J. of Discrete Alg. '04

Piecewise-constant utility function

Corollary:

Utility is piecewise constant function of parameters

Distance between algorithm's output and ground-truth alignment



Outline

- 1. Introduction
- 2. Model and problem formulation
- 3. Our guarantees
 - a. Example of piecewise-structured utility function
 - **b.** Piecewise-structured functions more formally
 - c. Main theorem
 - d. Application: Sequence alignment
- 4. Conclusions

Primal & dual classes

 $u_{\rho}(x) = \text{utility of algorithm parameterized by } \rho \in \mathbb{R}^{d} \text{ on input } x$ $\mathcal{U} = \{u_{\rho}: \mathcal{X} \to \mathbb{R} \mid \rho \in \mathbb{R}^{d}\}$ "Primal" function class

Typically, prove guarantees by bounding **complexity** of ${\mathcal U}$

VC dimension, pseudo-dimension, Rademacher complexity, ...

Primal & dual classes

 $u_{\rho}(x) = \text{utility of algorithm parameterized by } \rho \in \mathbb{R}^{d} \text{ on input } x$ $\mathcal{U} = \{u_{\rho}: \mathcal{X} \to \mathbb{R} \mid \rho \in \mathbb{R}^{d}\}$ "Primal" function class

Typically, prove guarantees by bounding **complexity** of $\mathcal U$

Challenge: *U* is gnarly

E.g., in sequence alignment:

- Each domain element is a pair of sequences
- Unclear how to plot or visualize functions u_{ρ}
- No obvious notions of Lipschitz continuity or smoothness to rely on

Primal & dual classes

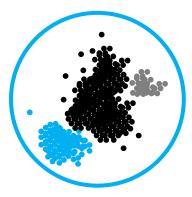
 $u_{\rho}(x) = \text{utility of algorithm parameterized by } \rho \in \mathbb{R}^{d} \text{ on input } x$ $\mathcal{U} = \{u_{\rho}: \mathcal{X} \to \mathbb{R} \mid \rho \in \mathbb{R}^{d}\}$ "Primal" function class

$$u_x^*(\rho) = ext{utility}$$
 as function of parameters
 $u_x^*(\rho) = u_{
ho}(x)$
 $\mathcal{U}^* = \{u_x^* \colon \mathbb{R}^d \to \mathbb{R} \mid x \in \mathcal{X}\}$ **"Dual" function class**

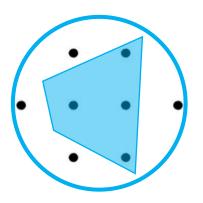
- Dual functions have simple, Euclidean domain
- Often have ample structure can use to bound complexity of ${\mathcal U}$

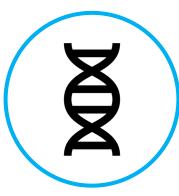
Piecewise-structured functions

Dual functions $u_{\chi}^*: \mathbb{R}^d \to \mathbb{R}$ are **piecewise-structured**

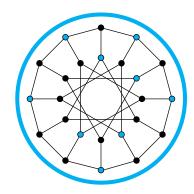


Clustering algorithm configuration





Computational biology algorithm configuration **Mechanism** configuration

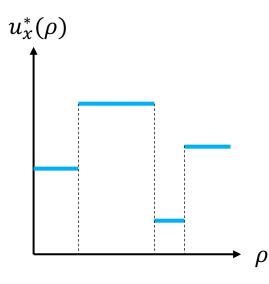


Greedy algorithm configuration

Outline

- 1. Introduction
- 2. Model and problem formulation
- 3. Our guarantees
 - a. Example of piecewise-structured utility function
 - b. Piecewise-structured functions more formally
 - c. Main theorem
 - d. Application: Sequence alignment
- 4. Conclusions

For every input $x, u_x^* \colon \mathbb{R} \to \mathbb{R}$ is p-wise constant with $\leq k$ pieces.



For every input $x, u_x^* \colon \mathbb{R} \to \mathbb{R}$ is p-wise constant with $\leq k$ pieces.

Theorem:

Training set of size $\tilde{O}\left(\frac{\log k}{\epsilon^2}\right)$ implies that WHP, for all $\forall \rho$, average utility over training set is ϵ -close to expected utility

$$\left|\frac{1}{N}\sum_{i=1}^{N}u_{\rho}(x_{i})-\mathbb{E}_{x\sim\mathcal{D}}\left[u_{\rho}(x)\right]\right|\leq\epsilon$$

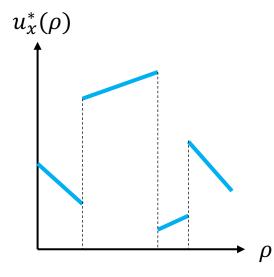
For every input $x, u_x^* \colon \mathbb{R} \to \mathbb{R}$ is p-wise constant with $\leq k$ pieces.

Theorem:

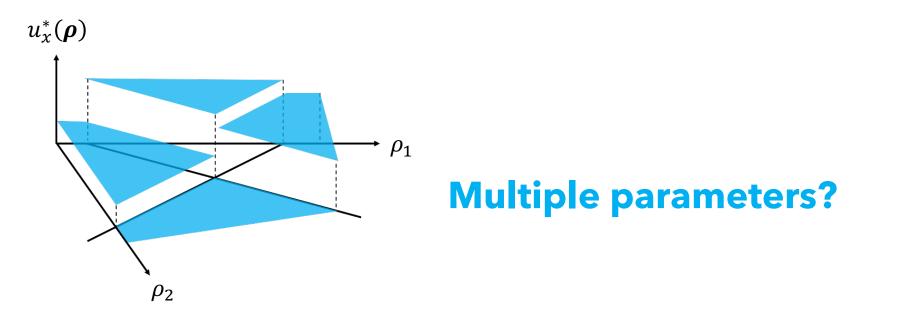
Training set of size $\tilde{O}\left(\frac{\log k}{\epsilon^2}\right)$ implies that WHP, for all $\forall \rho$, average utility over training set is ϵ -close to future utility

$$\left|\frac{1}{N}\sum_{i=1}^{N}u_{\rho}(x_{i})-\mathbb{E}_{x\sim\mathcal{D}}\left[u_{\rho}(x)\right]\right|\leq\epsilon$$

For every input $x, u_x^* \colon \mathbb{R} \to \mathbb{R}$ is p-wise constant with $\leq k$ pieces. linear



For every input $x, u_x^* \colon \mathbb{R} \to \mathbb{R}$ is p-wise constant with $\leq k$ pieces. ???



Intrinsic complexity

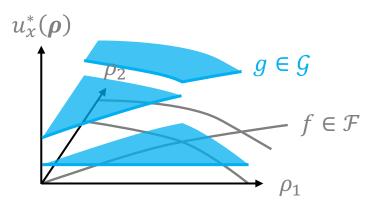
"Intrinsic complexity" $C_{\mathcal{G}}$ of function class \mathcal{G}

- Measures how well functions in \mathcal{G} fit complex patterns
- Specific ways to quantify "intrinsic complexity":
 - VC dimension
 - Pseudo-dimension

Main result (informal)

Boundary functions $f_1, ..., f_k \in \mathcal{F}$ partition \mathbb{R}^d s.t. in each region, $u_x^*(\rho) = g(\rho)$ for some $g \in G$.

Training set of size $\tilde{O}\left(\frac{1}{\epsilon^2}(C_F + C_G)\log k\right)$ implies WHP $\forall \rho$, avg utility over training set is ϵ -close to exp utility



Main result (informal)

Boundary functions $f_1, ..., f_k \in \mathcal{F}$ partition \mathbb{R}^d s.t. in each region, $u_x^*(\rho) = g(\rho)$ for some $g \in G$.

Training set of size $\tilde{O}\left(\frac{1}{\epsilon^2}(C_F + C_G)\log k\right)$ implies WHP $\forall \rho$, avg utility over training set is ϵ -close to exp utility

$$\Rightarrow C_{\mathcal{G}} = O(1) \Rightarrow C_{\mathcal{G}} = O(d)$$

Main result (informal)

Boundary functions $f_1, ..., f_k \in \mathcal{F}$ partition \mathbb{R}^d s.t. in each region, $u_x^*(\rho) = g(\rho)$ for some $g \in G$.

Theorem:

 $\mathsf{Pdim}(\mathcal{U}) = \tilde{O}\big((\mathsf{VCdim}(\mathcal{F}^*) + \mathsf{Pdim}(\mathcal{G}^*))\log k\big)$ $\mathsf{Primal} \text{ function class } \mathcal{U} = \{u_{\rho} | \rho \in \mathbb{R}^d\}$

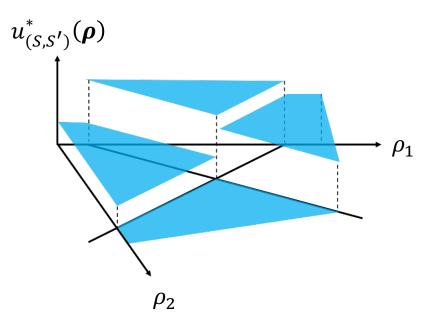
Outline

- 1. Introduction
- 2. Model and problem formulation
- 3. Our guarantees
 - a. Example of piecewise-structured utility function
 - b. Piecewise-structured functions more formally
 - c. Main theorem
 - d. Application: Sequence alignment
- 4. Conclusions

Piecewise constant dual functions

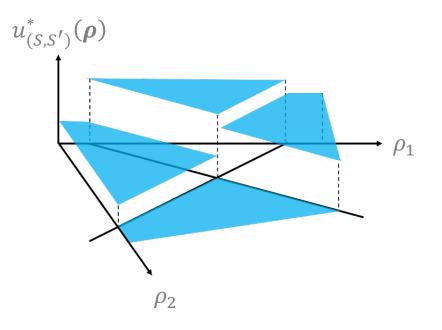
Lemma:

Utility is piecewise constant function of parameters



Sequence alignment guarantees

Theorem: Training set of size $\tilde{O}\left(\frac{\log(\text{seq. length})}{\epsilon^2}\right)$ implies for any ρ , **Average** utility over training set is ϵ -close to **expected** utility



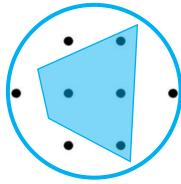
Outline

- 1. Introduction
- 2. Model and problem formulation
- 3. Our guarantees
- 4. Conclusions

Conclusion

A **unifying** structure connects **seemingly disparate** problems:

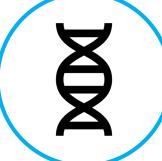




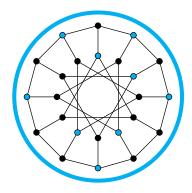
configuration

Clustering algorithm configuration

Integer programming algorithm



Computational biology algorithm configuration



Greedy algorithm configuration

We use this structure to provide extremely general guarantees

How much data is sufficient to learn high-performing algorithms?

Ellen Vitercik Carnegie Mellon University

STOC'21

Dan DeBlasio

Travis Dick

Carl Kingsford

Tuomas Sandholm

Nina Balcan