
How much data is sufficient to learn
high-performing algorithms?

Nina Balcan Dan DeBlasio Travis Dick Carl Kingsford Tuomas Sandholm

Ellen Vitercik
Carnegie Mellon University

STOC’21

Data-driven algorithm design

Algorithms often have many tunable parameters
Significant impact on runtime, solution quality, …

Hand-tuning is time-consuming, tedious, and error prone

Data-driven algorithm design

Goal: Automate algorithm configuration via machine learning
Algorithmically find good parameter settings

using a set of “typical” inputs from application at hand

Parameter setting should—ideally—be good on future inputs

Training set

Example: Sequence alignment

Goal: Line up pairs of strings
Applications: Biology, natural language processing, etc.

vitterchik

Did you mean: vitercik

Sequence alignment algorithms

Input: Two sequences 𝑆 and 𝑆′ Output: Alignment of 𝑆 and 𝑆′

A – - C T G
- G T C A -

Insertion/deletion (indel)
Match

Mismatch

Gap

𝑆 = A C T G
𝑆′ = G T C A

Sequence alignment algorithms

Standard algorithm with parameters 𝜌!, 𝜌", 𝜌# ≥ 0:
Return alignment maximizing:

(# matches)− 𝜌!) (# mismatches) − 𝜌") (# indels) − 𝜌#) (# gaps)

A – - C T G
- G T C A -

Insertion/deletion (indel)
Match

Mismatch

Gap

𝑆 = A C T G
𝑆′ = G T C A

Sequence alignment algorithms
Can sometimes access ground-truth, reference alignment
E.g., in computational biology: Bahr et al., Nucleic Acids Res.’01; Raghava et al., BMC
Bioinformatics ‘03; Edgar, Nucleic Acids Res.’04; Walle et al., Bioinformatics’04

Requires extensive manual alignments
…rather just run parameterized algorithm

How to tune algorithm’s parameters?
“There is considerable disagreement
among molecular biologists about the
correct choice” [Gusfield et al. ’94]

A – - C T G
- G T C A -

Sequence alignment algorithms
-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA

Ground-truth alignment of protein sequences

Sequence alignment algorithms
-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA

Ground-truth alignment of protein sequences

GRTCP---KPDDLPFSTVVPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
EVKCPFPSRPDN-GFVNYPAKPTLYYK-DKATFGCHDGY-SLDGPEEIECTKLGNWS-AMPSCKA

Alignment by algorithm with poorly-tuned parameters

Sequence alignment algorithms
-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA

Ground-truth alignment of protein sequences

GRTCP---KPDDLPFSTVVPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
EVKCPFPSRPDN-GFVNYPAKPTLYYK-DKATFGCHDGY-SLDGPEEIECTKLGNWS-AMPSCKA

Alignment by algorithm with poorly-tuned parameters

GRTCPKPDDLPFSTV-VPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
EVKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGY-SLDGPEEIECTKLGNWSA-MPSCKA

Alignment by algorithm with well-tuned parameters

Automated configuration

1. Fix parameterized algorithm
2. Receive training set 𝑇 of “typical” inputs

3. Find parameters with good performance on average over 𝑇
Runtime, solution quality, etc.

Sequence 𝑆!
Sequence 𝑆!"

Reference alignment 𝐴!

Sequence 𝑆#
Sequence 𝑆#"

Reference alignment 𝐴#

Automated configuration

1. Fix parameterized algorithm
2. Receive training set 𝑇 of “typical” inputs

3. Find parameters with good performance on average over 𝑇
Output alignment is close to reference alignment

Sequence 𝑆!
Sequence 𝑆!"

Reference alignment 𝐴!

Sequence 𝑆#
Sequence 𝑆#"

Reference alignment 𝐴#

Automated configuration

1. Fix parameterized algorithm
2. Receive training set 𝑇 of “typical” inputs

3. Find parameters with good performance on average over 𝑇
Key question (focus of talk):
Will those parameters have good future performance?

Sequence 𝑆!
Sequence 𝑆!"

Reference alignment 𝐴!

Sequence 𝑆#
Sequence 𝑆#"

Reference alignment 𝐴#

Automated configuration

Seen Unseen ?

Key question (focus of talk):
Will those parameters have good future performance?

Sequence 𝑆
Sequence 𝑆′

Unknown alignment 𝐴

Sequence 𝑆!
Sequence 𝑆!"

Reference alignment 𝐴!

Sequence 𝑆#
Sequence 𝑆#"

Reference alignment 𝐴#

Model applies in many settings, including:
Constraint satisfaction problems, e.g.:

Horvitz, Ruan, Gomes, Krautz, Selman, Chickering UAI’01
Nudelman, Leyton-Brown, Hoos, Devkar, Shoham CP’04
Sayag, Fine, Mansour STACS’06
Hutter, Hamadi, Hoos, Leyton-Brown CP’06
Xu, Hutter, Leyton-Brown CP’07
Xu, Hutter, Hoos, Leyton-Brown JAIR’08
Xu, Hoos, Leyton-Brown AAAI’10
Kleinberg, Leyton-Brown, Lucier IJCAI’17
Balcan, Dick, Sandholm, Vitercik ICML’18
Weisz, György, Szepesvári ICML ‘18, ’19
Kleinberg, Leyton-Brown, Lucier, Graham NeurIPS’19

Automated configuration

Model applies in many settings, including:
Clustering, e.g.:

Balcan, Nagarajan, Vitercik, White COLT’17
Balcan, Dick, White NeurIPS’18
Garg, Kalai NeurIPS’18
Balcan, Dick, Lang ICLR’20

Automated configuration

Model applies in many settings, including:
Integer and linear programming, e.g.:

Leyton-Brown, Nudelman, Andrew, McFadden, Shoham IJCAI’03, CP’03
Hutter, Hoos, Leyton-Brown, Stützle JAIR’09
Hutter, Hoos, Leyton-Brown LION’11, AIJ’14
Sandholm Handbook of Market Design’13
He, Daume, Eisner NeurIPS’14
Khalil, Le Bodic, Song, Nemhauser, Dilkina AAAI’16
Balcan, Nagarajan, Vitercik, White COLT’17
Balcan, Dick, Sandholm, Vitercik ICML’18
Balcan, Dick, Vitercik FOCS’18
Balcan, Sandholm, Vitercik AAAI’20
Balcan, Sandholm, Vitercik ICML’20

Automated configuration

Model applies in many settings, including:
Computational biology, e.g.:

Majoros, Salzberg Bioinformatics’04
Chikhi, Medvedev Bioinformatics’13
May, Tamura, Noble J. of Proteome Research’17
DeBlasio, Kececioglu Springer’18
DeBlasio, Kim, Kingsford WBC@ICML’19
Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik ’20

Automated configuration

Automated configuration

Applied
research

Theory
research

2016
Automated configuration model introduced to theory community

by Gupta and Roughgarden [ITCS’16, SICOMP’17]

This talk: Main result

Key question (focus of talk):
Good performance on average over training set implies good

future performance?

Answer this question for any parameterized algorithm where:
Performance is piecewise-structured function of parameters

Piecewise constant, linear, quadratic, …

This talk: Main result

𝜌!

𝜌#

Algorithmic
performance
on fixed input

Piecewise constant Piecewise …Piecewise linear

Performance is piecewise-structured function of parameters
Piecewise constant, linear, quadratic, …

Distance between algorithm’s output given 𝑆, 𝑆$

and ground-truth alignment is p-wise constant

Example: Sequence alignment

𝜌!

𝜌#

Domains with piecewise structure
Integer programming

Balcan, Dick, Sandholm, Vitercik, ICML’18;
Balcan, Nagarajan, Vitercik, White, COLT’17

Clustering
Balcan, Nagarajan, Vitercik, White, COLT’17
Balcan, Dick, White, NeurIPS’18; Balcan, Dick, Lang, ICLR’20

Greedy algorithms
Gupta, Roughgarden, ITCS’16

Computational biology
Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, ’20

Primary challenge in combinatorial domains:
Algorithmic performance is a volatile function of parameters

Complex connection between parameters and performance

For well-understood functions in machine learning theory:
Simple connection between function parameters and value

Performance

𝜌

Outline

1. Introduction
2. Model and problem formulation
3. Our guarantees
4. Conclusions

ℝ%: Set of all parameters
𝒳: Set of all inputs

Model

Example: Sequence alignment

ℝ#: Set of alignment algorithm parameters
𝒳: Set of sequence pairs

One sequence pair 𝑥 = 𝑆, 𝑆$ ∈ 𝒳

𝑆 = A C T G
𝑆′ = G T C A

𝑢𝝆 𝑥 = utility of algorithm parameterized by 𝝆 ∈ ℝ% on input 𝑥
E.g., runtime, solution quality, distance to ground truth, …

Assume 𝑢𝝆 𝑥 ∈ −1,1
Can be generalized to 𝑢𝝆 𝑥 ∈ −𝐻,𝐻

Algorithmic performance

Model

Standard assumption: Unknown distribution 𝒟 over inputs
Distribution models specific application domain at hand

E.g., distribution over pairs of DNA strands

E.g., distribution over pairs of protein sequences

Generalization bounds

Key question: For any parameter setting 𝝆,
is average utility on training set close to expected utility?

Formally: Given samples 𝑥!, … , 𝑥'~𝒟, for any 𝝆,

Generalization bounds

Key question: For any parameter setting 𝝆,
is average utility on training set close to expected utility?

Formally: Given samples 𝑥!, … , 𝑥'~𝒟, for any 𝝆,
1
𝑁
6
()!

'

𝑢𝝆 𝑥(− 𝔼*~𝒟 𝑢𝝆 𝑥 ≤ ??
Empirical average utility

Generalization bounds

Key question: For any parameter setting 𝝆,
is average utility on training set close to expected utility?

Formally: Given samples 𝑥!, … , 𝑥'~𝒟, for any 𝝆,
1
𝑁
6
()!

'

𝑢𝝆 𝑥(− 𝔼*~𝒟 𝑢𝝆 𝑥 ≤ ??
Expected utility

Generalization bounds

Key question: For any parameter setting 𝝆,
is average utility on training set close to expected utility?

Formally: Given samples 𝑥!, … , 𝑥'~𝒟, for any 𝝆,
1
𝑁
6
()!

'

𝑢𝝆 𝑥(− 𝔼*~𝒟 𝑢𝝆 𝑥 ≤ ?

Strong average utility Strong expected utility

?

Generalization bounds

Key question: For any parameter setting 𝝆,
is average utility on training set close to expected utility?

Formally: Given samples 𝑥!, … , 𝑥'~𝒟, for any 𝝆,
1
𝑁
6
()!

'

𝑢𝝆 𝑥(− 𝔼*~𝒟 𝑢𝝆 𝑥 ≤ ?

Strong average utility Strong expected utility

?

future

Outline

1. Introduction
2. Model and problem formulation
3. Our guarantees

a. Example of piecewise-structured utility function
b. Piecewise-structured functions more formally
c. Main theorem
d. Application: Sequence alignment

4. Conclusions

Sequence alignment algorithms

Standard algorithm with parameters 𝜌!, 𝜌", 𝜌# ≥ 0:
Return alignment maximizing:

(# matches)− 𝜌!) (# mismatches) − 𝜌") (# indels) − 𝜌#) (# gaps)

𝑆 = A C T G
𝑆′ = G T C A

A – - C T G
- G T C A -

Insertion/deletion (indel)
Match

Mismatch

Gap

Sequence alignment algorithms

Lemma:
For any pair 𝑆, 𝑆$, there’s a small partition of ℝ# s.t. in any region,

algorithm’s output is fixed across all parameters in region

A – - C T G
- G T C A -

𝜌!

𝜌#

𝑆 = A C T G
𝑆′ = G T C A

Gusfield et al., Algorithmica ‘94; Fernández-Baca et al., J. of Discrete Alg. ’04

Sequence alignment algorithms

Lemma:
For any pair 𝑆, 𝑆$, there’s a small partition of ℝ# s.t. in any region,

algorithm’s output is fixed across all parameters in region

A – C T G
G T C A -

A – - C T G
- G T C A -

𝜌!

𝜌#

𝑆 = A C T G
𝑆′ = G T C A

Gusfield et al., Algorithmica ‘94; Fernández-Baca et al., J. of Discrete Alg. ’04

Piecewise-constant utility function

Corollary:
Utility is piecewise constant function of parameters

𝑢 $,$! 𝝆

𝜌!

𝜌#

Distance between algorithm’s output and ground-truth alignment

Outline

1. Introduction
2. Model and problem formulation
3. Our guarantees

a. Example of piecewise-structured utility function
b. Piecewise-structured functions more formally
c. Main theorem
d. Application: Sequence alignment

4. Conclusions

Primal & dual classes
𝑢𝝆 𝑥 = utility of algorithm parameterized by 𝝆 ∈ ℝ% on input 𝑥
𝒰 = 𝑢𝝆: 𝒳 → ℝ 𝝆 ∈ ℝ% “Primal” function class

Typically, prove guarantees by bounding complexity of 𝒰

Challenge: 𝒰 is gnarly

E.g., in integer programming:
• Each domain element is an IP
• Unclear how to plot or visualize functions 𝑢𝝆
• No obvious notions of Lipschitzness or smoothness to rely on

VC dimension, pseudo-dimension, Rademacher complexity, …

Primal & dual classes
𝑢𝝆 𝑥 = utility of algorithm parameterized by 𝝆 ∈ ℝ% on input 𝑥
𝒰 = 𝑢𝝆: 𝒳 → ℝ 𝝆 ∈ ℝ% “Primal” function class

Typically, prove guarantees by bounding complexity of 𝒰

Challenge: 𝒰 is gnarly

E.g., in sequence alignment:
• Each domain element is a pair of sequences
• Unclear how to plot or visualize functions 𝑢𝝆
• No obvious notions of Lipschitz continuity or smoothness to rely on

Primal & dual classes
𝑢𝝆 𝑥 = utility of algorithm parameterized by 𝝆 ∈ ℝ% on input 𝑥
𝒰 = 𝑢𝝆: 𝒳 → ℝ 𝝆 ∈ ℝ% “Primal” function class

𝑢*∗ 𝝆 = utility as function of parameters
𝑢*∗ 𝝆 = 𝑢𝝆 𝑥
𝒰∗ = 𝑢*∗ : ℝ% → ℝ 𝑥 ∈ 𝒳 “Dual” function class

• Dual functions have simple, Euclidean domain
• Often have ample structure can use to bound complexity of 𝒰

Dual functions 𝑢*∗ : ℝ% → ℝ are piecewise-structured

Clustering
algorithm

configuration

Integer
programming

algorithm
configuration

Computational
biology

algorithm
configuration

Mechanism
configuration

Greedy
algorithm

configuration

Piecewise-structured functions

Outline

1. Introduction
2. Model and problem formulation
3. Our guarantees

a. Example of piecewise-structured utility function
b. Piecewise-structured functions more formally
c. Main theorem
d. Application: Sequence alignment

4. Conclusions

Warmup: 1-dimensional parameters

For every input 𝑥, 𝑢*∗ : ℝ → ℝ is p-wise constant with ≤ 𝑘 pieces.

𝜌

𝑢&∗(𝜌)

Warmup: 1-dimensional parameters

For every input 𝑥, 𝑢*∗ : ℝ → ℝ is p-wise constant with ≤ 𝑘 pieces.

Theorem:
Training set of size >𝑂 ./0 1

2!
implies that WHP, for all ∀𝜌,

average utility over training set is 𝜖-close to expected utility

1
𝑁
6
()!

'

𝑢3 𝑥(− 𝔼*~𝒟 𝑢3 𝑥 ≤ 𝜖

Warmup: 1-dimensional parameters

For every input 𝑥, 𝑢*∗ : ℝ → ℝ is p-wise constant with ≤ 𝑘 pieces.

Theorem:
Training set of size >𝑂 ./0 1

2!
implies that WHP, for all ∀𝜌,

average utility over training set is 𝜖-close to expected utility

1
𝑁
6
()!

'

𝑢3 𝑥(− 𝔼*~𝒟 𝑢3 𝑥 ≤ 𝜖

future

Warmup: 1-dimensional parameters

For every input 𝑥, 𝑢*∗ : ℝ → ℝ is p-wise constant with ≤ 𝑘 pieces.
linear

𝜌

𝑢&∗(𝜌)

Warmup: 1-dimensional parameters

For every input 𝑥, 𝑢*∗ : ℝ → ℝ is p-wise constant with ≤ 𝑘 pieces.
???

Multiple parameters?

𝑢&∗ 𝝆

𝜌!

𝜌#

Intrinsic complexity

“Intrinsic complexity” 𝐶𝒢 of function class 𝒢
• Measures how well functions in 𝒢 fit complex patterns
• Specific ways to quantify “intrinsic complexity”:

• VC dimension
• Pseudo-dimension

More complex Less complex

Main result (informal)

Boundary functions 𝑓!, … , 𝑓1 ∈ ℱ partition ℝ% s.t. in each region,
𝑢*∗ 𝝆 = 𝑔(𝝆) for some 𝑔 ∈ 𝒢.

Training set of size >𝑂 !
2!

𝐶ℱ + 𝐶𝒢 log 𝑘 implies
WHP ∀𝝆, avg utility over training set is 𝜖-close to exp utility

𝑓 ∈ ℱ

𝑔 ∈ 𝒢
𝑢&∗ 𝝆

𝜌!

𝜌#

Main result (informal)

Boundary functions 𝑓!, … , 𝑓1 ∈ ℱ partition ℝ% s.t. in each region,
𝑢*∗ 𝝆 = 𝑔(𝝆) for some 𝑔 ∈ 𝒢.

Training set of size >𝑂 !
2!

𝐶ℱ + 𝐶𝒢 log 𝑘 implies
WHP ∀𝝆, avg utility over training set is 𝜖-close to exp utility

ℱ, 𝒢 are typically very well structured
• 𝒢 = set of all constant functions ⇒ 𝐶𝒢 = 𝑂(1)
• 𝒢 = set of all linear functions in ℝ/ ⇒ 𝐶𝒢 = 𝑂(𝑑)

Main result (informal)

Boundary functions 𝑓!, … , 𝑓1 ∈ ℱ partition ℝ% s.t. in each region,
𝑢*∗ 𝝆 = 𝑔(𝝆) for some 𝑔 ∈ 𝒢.

Theorem:
Pdim 𝒰 = >𝑂 VCdim ℱ∗ + Pdim(𝒢∗) log 𝑘

Primal function class 𝒰 = 𝑢𝝆 𝝆 ∈ ℝ)

Outline

1. Introduction
2. Model and problem formulation
3. Our guarantees

a. Example of piecewise-structured utility function
b. Piecewise-structured functions more formally
c. Main theorem
d. Application: Sequence alignment

4. Conclusions

Piecewise constant dual functions

Lemma:
Utility is piecewise constant function of parameters

𝜌!

𝜌#

𝑢($,$!)
∗ 𝝆

Sequence alignment guarantees

Theorem: Training set of size >𝑂 ./0(789. .8;0<=)
2!

implies for any 𝝆,
Average utility over training set is 𝜖-close to expected utility

𝜌!

𝜌#

𝑢($,$!)
∗ 𝝆

Outline

1. Introduction
2. Model and problem formulation
3. Our guarantees
4. Conclusions

A unifying structure connects seemingly disparate problems:

Clustering
algorithm

configuration

Integer
programming

algorithm
configuration

Computational
biology

algorithm
configuration

Mechanism
configuration

We use this structure to provide extremely general guarantees

Greedy
algorithm

configuration

Conclusion

How much data is sufficient to learn
high-performing algorithms?

Nina Balcan Dan DeBlasio Travis Dick Carl Kingsford Tuomas Sandholm

Ellen Vitercik
Carnegie Mellon University

STOC’21

