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What is this talk about?

Introduction

A lot about sparsity, a bit about deep learning, and
combinatorial optimization mostly in passing.

(And of course lots of conditional gradients; sorry!)
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Introduction

A lot about sparsity, a bit about deep learning, and
combinatorial optimization mostly in passing.

(And of course lots of conditional gradients; sorry!)

Idea. We can use combinatorial polytopes (k-sparse polytopes, {p-balls etc) to
‘regularize’ the learning problem and induce solution structure and sparsity.

Today. A brief overview and two examples.

Outline.

e Quick recall: Conditional Gradients a.k.a. the Frank-Wolfe algorithm
e Learning dynamics via Conditional Gradients
® Training Deep Neural Networks with Conditional Gradients

(Hyperlinked) References are not exhaustive; check references contained therein.
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Conditional Gradients
a.k.a. the Frank-Wolfe algorithm

—Quick Recap—
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The basic problem
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a poly-
tope P, solve optimization problem:
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The basic problem
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a poly-
tope P, solve optimization problem:

min f(X) (baseProblem)
xeP

[Source: Jaggi 2013]

1. Very versatile model

2. Can use various types of information about both f and P

3. Works very well in (continuous) real-world applications

4. At the core of many (all?) learning algorithms (albeit mostly non-convex case)
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Our setup.
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veP
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The basic problem
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a poly-
tope P, solve optimization problem:

min f(X) (baseProblem)
xeP
[Source: Jaggi 2013]
Our setup.
1. Access to P. Linear Optimization (LO) Oracle: Given linear objective c return
T

X «—argmincC'Vv.
veP

2. Access to f. First-Order (FO) Oracle: Given x return

Vf(x) and 0.

= Complexity of convex optimization relative to LO/FO oracle
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The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1 Xo €P
2. fort=0toT-1do
3 Vi «— argmin(Vf(x¢), V)
veP
X
5

Xtr1 & Xt +yt(Ve — Xt)
: end for

[Frank, Wolfe, 1956] [Levitin, Polyak, 1966]

Sebastian Pokutta - Structured ML Training via Conditional Gradients 4119



The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1 Xo €P
2. fort=0toT-1do
3 Vi «— argmin(Vf(x¢), V)
veP
X
5

Xtr1 & Xt +yt(Ve — Xt)
: end for

[Frank, Wolfe, 1956] [Levitin, Polyak, 1966]

Sebastian Pokutta - Structured ML Training via Conditional Gradients 4119



The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1 Xo €P
2. fort=0toT-1do
3 vt «— argmin{Vf(x¢), v)
veP
X
5

Xtr1 & Xt +yt(Ve — Xt)
: end for

[Frank, Wolfe, 1956] [Levitin, Polyak, 1966]
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The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1 Xo €P
2. fort=0toT-1do

3 Vi < arg m|Fr’1(Vf(Xt) V)

A

5

Xtr1 & Xt +yt(Ve — Xt)

: end for Vi

[Frank, Wolfe, 1956] [Levitin, Polyak, 1966]
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Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1 Xo €P
2. fort=0toT-1do
3 Vi «— argmin(Vf(x¢), V)
veP
X
5

Xt+1 < Xt +yt(Ve — Xt)
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[Frank, Wolfe, 1956] [Levitin, Polyak, 1966]
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The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)

1
2
3:
4
5

: Xo €EP

fort=0toT-1do
Vi « arg miFr)(Vf(xt), V)
ve

Xt+1 < Xt +yt(Ve — Xt)

: end for vt

[Frank, Wolfe, 1956] [Levitin, Polyak, 1966]

Advantages:

Extremely simple and robust: no complicated data structures to maintain
Easy to implement: requires only the two oracles

Projection-free: feasibility convex combination and LO oracle.

Sparsity: optimal solution is a convex combination of (usually) vertices.
Structured update of iterates: vy € P induces structured updates.
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The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1 Xo €P
2. fort=0toT-1do
3 Vi — argmin{Vf(x¢), V)
veP
4
5!

Xtr1 e Xt +yt(Ve — Xt)
: end for vt

[Frank, Wolfe, 1956] [Levitin, Polyak, 1966]
Advantages:

® Extremely simple and robust: no complicated data structures to maintain
® Easy to implement: requires only the two oracles

® Projection-free: feasibility convex combination and LO oracle.

® Sparsity: optimal solution is a convex combination of (usually) vertices.

e Structured update of iterates: v¢ € P induces structured updates.

Disadvantages:
® Suboptimal convergence rate of O(1/T)

= Despite (theoretically) suboptimal rate heavily used in applications due to simplicity.
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Simple Convergence Proof
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)
Let f be L-smooth convex, P be polytope with diameter D. With choice y; = %:

2LD?

fxe) = f(x*) < T3
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2
oo - foc) < 22

Proof Sketch.

By smoothness:

L Ly?
F(tsn) = F(Xt) < (VF(Xt), Xtan = Xe) + 3 IXts = XelI* = 7t (VF(Xt), ve = Xe) + Tt llve — xe ]
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Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)
Let f be L-smooth convex, P be polytope with diameter D. With choice y; = %:

2
oo - foc) < 22

Proof Sketch.

By smoothness:

L Ly?
F(tsn) = F(Xt) < (VF(Xt), Xtan = Xe) + 3 IXts = XelI* = 7t (VF(Xt), ve = Xe) + Tt llve — xe ]

LP maximality and convexity: (Vf(xt), vt — Xt) < (Vf(xt), X* — xt) < f(x*) — f(x¢). Moreover, ||vt — Xt|| < D.
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Simple Convergence Proof
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)
Let f be L-smooth convex, P be polytope with diameter D. With choice y; = %:

« _ 2LD?
fox) - f(x") < T3
Proof Sketch.

By smoothness:

L Ly?
F(tsn) = F(Xt) < (VF(Xt), Xtan = Xe) + 3 IXts = XelI* = 7t (VF(Xt), ve = Xe) + Tt llve — xe ]

LP maximality and convexity: (Vf(xt), vt — Xt) < (Vf(xt), X* — xt) < f(x*) — f(x¢). Moreover, ||vt — Xt|| < D.
Thus:

. oy .2 LD
Fxee) = f) < =y (F0x0) = FON + 7 —--
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Simple Convergence Proof
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)
Let f be L-smooth convex, P be polytope with diameter D. With choice y = 5
2LD?

fl) ~fx') < 5

Proof Sketch.

By smoothness:

L 2 L7t2 2
F(tsn) = F(Xt) < (VF(Xt), Xtan = Xe) + 3 [IXts1 = XelI* = ve (VF(Xe), Ve — X¢) + = [lve = Xl

LP maximality and convexity: (Vf(xt), vt — Xt) < (Vf(xt), X* — xt) < f(x*) — f(x¢). Moreover, ||vt — Xt|| < D.

Thus: %
FOen) = FOC) < (1=90)(Fxe) = (X)) +9f — 5

By Induction (plugging in the guarantee + definition of y¢):

2 |\ 2LD? 4 LD?> 2LD?(t+2) _2LD?
o100 < (1- 755 ) 35 misr 3 Tee S B

by (t +2)(t +4) < (t+3)2.
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Significant progress over the recent years (incomplete list)
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

1. Stro ngly convex case [Garber, Hazan 2013] [Lan, Zhou 2014] [Lacoste-Julien, Jaggi 2015] [Garber, Meschi 2016]
2. Non-convex case [Lacoste-Julien 2016]
3. Online case [Hazan, Kale 2012]
4. Stochastic variants and adaptive gradients (vazan, Luo 2016] [Reddi et al 2016] [Combetes, Spiegel, P. 2020]
5. Sharp functions and sharp regions [Kerdreux, d’Aspremont, P. 2018] [Kerdreux, d’Aspremont, P. 2020]
6. Acceleration [Diakonikolas, Carderera, P. 2019] [Bach 2020] [Carderera, Diakonikolas, Lin, P. 2021]
7. Specialized variants [Freund, Grigas, Mazumder 2015] [Braun, P, Zink 2016] [Braun, P, Tu, Wright 2018]

Conditional Gradients very competitive: simple, robust, real-world performance.

For more background etc see upcoming survey!
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https://arxiv.org/abs/1301.4666
http://www.optimization-online.org/DB_HTML/2014/10/4605.html
https://proceedings.neurips.cc/paper/2015/file/c058f544c737782deacefa532d9add4c-Paper.pdf
https://proceedings.neurips.cc/paper/2016/hash/daca41214b39c5dc66674d09081940f0-Abstract.html
https://arxiv.org/abs/1607.00345
https://arxiv.org/abs/1206.4657
https://arxiv.org/abs/1602.02101
https://arxiv.org/abs/1607.08254
https://arxiv.org/abs/2009.14114
https://arxiv.org/abs/1810.02429
https://arxiv.org/abs/2004.11053
https://arxiv.org/abs/1906.07867
https://arxiv.org/abs/2002.02835
https://arxiv.org/abs/2102.06806
https://arxiv.org/abs/1511.02204
https://arxiv.org/abs/1610.05120
https://arxiv.org/abs/1805.07311

Conditional Gradient-based Identification
of Nonlinear Dynamics (CINDy)

—Recovering Dynamics from Noisy Data—

joint work with Alejandro Carderera, Christof Schiitte, Martin Weiser
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Physical Systems via ODEs

CINDy: Recovering Dynamics from Noisy Data

Physical systems described by ordinary differential equation.

X(t) = F(x(t),
where x(t) € RY denotes the state of the system at time t.
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Physical Systems via ODEs

CINDy: Recovering Dynamics from Noisy Data

Physical systems described by ordinary differential equation.

X(t) = F(x(1)),
where x(t) € RY denotes the state of the system at time t.

Usually. F: R - RY (usually) linear combination of simpler ansatz functions
D = {y; |ie[1n]} withy; : R - R:

— & —| [pax(®)

X(t) = Fx®) = ETy(x(t) = : S
— &4 — I lnx®)

where = € R"™d s a typically sparse matrix and y(x(t)) = [y1(X(1),- - - ,un(X(t))]” € RN,
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Sparse Identification of Nonlinear Dynamics (SINDy)
CINDy: Recovering Dynamics from Noisy Data

[Brunton et al 2016]

ox)

L 1denifid System
v

)

Focus on component-wise formulation of sparse recovery problem and solve a
relaxation of:

m
. | > 5
min X — & X; + o,
min, 1= w1 + alll
for each j € [1,d] for a suitably chosen o > 0.

Note. Earlier approach via Grobner/Border Bases for homogeneous case.  (uetdt etat 2000]
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https://www.pnas.org/content/113/15/3932.short
http://dx.doi.org/10.1016/j.jsc.2008.11.010

Sparse Identification of Nonlinear Dynamics (SINDy)
CINDy: Recovering Dynamics from Noisy Data

[Brunton et al 2016]

P —
j =

. i B

e :

= e

,Crunstable fixed pt. v, -shiftmode
3 S

4

-
o12345678 e

Characteristics of SINDy.
1. Works on a very wide variety of dynamics
2. Recovers sparse dynamics very well in the noise-free case
3. However when data is noisy, picks up many auxiliary terms to explain noise.
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The Fully-Corrective Frank-Wolfe Algorithm

CINDy: Recovering Dynamics from Noisy Data

Algorithm Fully-Corrective FW Algorithm (FCFW)
1 Xo € P, So « {Xo}
2 fort=0toT-1do
3 V¢ «— argmin{Vf(x¢), v)

veP
4 St — St U {vt}
5
6

Xt41 < arg minxeconv(StH)f(X)
: end for

[Holloway, 1974]
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The Fully-Corrective Frank-Wolfe Algorithm

CINDy: Recovering Dynamics from Noisy Data

Algorithm Fully-Corrective FW Algorithm (FCFW)
1 Xo € P, So « {Xo}
2 fort=0toT-1do
3 V¢ «— argmin{Vf(x¢), v)

veP
4 St — St U {vt}
5
6

Xty1 € arg minXGconv(StH)f(X)
: end for

[Holloway, 1974]

Fully-Corrective FW Algorithm
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The Fully-Corrective Frank-Wolfe Algorithm

CINDy: Recovering Dynamics from Noisy Data

Algorithm Fully-Corrective FW Algorithm (FCFW)
1 Xo € P, So « {Xo}
2 fort=0toT-1do
3 V¢ «— argmin{Vf(x¢), v)

veP
4 St — St U {vt}
5
6

Xty1 € arg minxeconv(StH)f(X)
: end for

[Holloway, 1974]

® Sparsity: FCFW offers much higher sparsity

® Speed: Convergence speed is (much) higher but
iterations very costly

® Projection-free: While still projection-free requires
solver for subproblems

Fully-Corrective FW Algorithm

= While expensive can be useful if sheer speed is not a priority but sparsity is.
Note. Sparsity not only a function of formulation but also algorithm and its trajectory.
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CINDy vs SINDy: a recovery example

CINDy: Recovering Dynamics from Noisy Data

Kuramoto model. d = 10 weakly-coupled identical oscillators. For oscillator i:

K d
X = wj + g Zsin (Xj —X,-) + hsin (x;)
j=1

Error (Log) in recovery Total number of basis functions
1600 =;

= 2250

SINDY - 2000
- 1750

1550 - [GINDY)

1500 +|

= 1500

1450 =|

Radivs Ll ball
Radivs Ll ball

- 1000

= 1250
1400 =|

I =750

| - 500
|l

1350 -

1300 - - 250

6 4 2

- K E 6 4
Noise (Log) Noise (Log) Noise (Log) Nois:

2
e (Log)

Number of data points. 3000 generated from 100 experiments (30 per experiment
with additive random noise of 1.073.
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CINDy vs SINDy: sparsity matters - the most parsimonious model

CINDy: Recovering Dynamics from Noisy Data

Kuramoto model.

90
135° 45

225 35
270°

Fermi-Pasta-Ulam-Tsingou model.

L P m- SINDy 10+ -m. SINDy
.@. CNDy .@. CNDy

0.5=| —. True dynamic 0.5 =| - True dynamic

00 =j—3—2—3——e—t—3-9-5—c

- \Jt S

Oscillator ID

Pcsition
Velocity

Os:lllo.tor ID
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Stochastic Conditional Gradients

—Training Neural Networks with Frank-Wolfe—

joint work with Christoph Spiegel and Max Zimmer
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https://arxiv.org/abs/2010.07243

The Stochastic Frank-Wolfe Algorithm (with Momentum)

Training Neural Networks with Conditional Gradients

Algorithm Stochastic FW Algorithm (SFW)
1 Mg «<— 0O
2 fort=0toT-1do
3 uniformly sample i.i.d. ia, ..., ip, ~ [1,m]

& b
L0 — & B}, V6,00

4
5 M (1= pp) Meq + pt VL(6;)
6: Vi < arg minyep (M¢, V)

70 Ot — Ot + (Ve — 6)

8: end for

[e.g., Reddi et al 2016]
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The Stochastic Frank-Wolfe Algorithm (with Momentum)

Training Neural Networks with Conditional Gradients

Algorithm Stochastic FW Algorithm (SFW)

1 Mg «<— 0O

2 fort=0toT-1do

3 uniformly sample i.i.d. ia, ..., ip, ~ [1,m]
& b

& VL(O) — 5 %2, Ve, (60

5 Mt (1= pt) Mt + pt VL(6})

6: Vi < arg minyep (M¢, V)

70 Ot — Ot + (Ve — 6)

8: end for

[e.g., Reddi et al 2016]

test set accuracy

n

training st loss

=

100%

>

75% 4

50% q

0%

—— SFW
—— SVRF

~—— ORGFW
— MSFW
0 5 10 15 20 0 M ™M 3M
epochs gradients calculated

SFW variants
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The Stochastic Frank-Wolfe Algorithm (with Momentum)

Training Neural Networks with Conditional Gradients

Algorithm Stochastic FW Algorithm (SFW)

1 Mg «<— 0O
2 fort=0toT-1do
3 uniformly sample i.i.d. ia, ..., ip, ~ [1,m] 15

& b
L0 — & B}, V6,00

2
=
£
£

4

5 Mg (1= pr) My + py L(6r)
6: Vi < arg minyep (M¢, V)
7

8.

D Ot — O+ ar(Ve - 6)
: end for

—— SFW
—— SVRF

. ~—— ORGFW
[e.g., Reddi et al 2016] MSFW
0%
0 5 10 15 20 0 M ™M 3M
epochs gradients calculated

® Convergence rate: In the non-convex stochastic
smooth case O(1/VT)-rate

® Speed: Works well for very large data sets due to
mini-batched gradients

SFW variants

® Projection-free: Remains projection-free and
allows for constraints
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Relevance maps under different optimizers / feasible regions

Training Neural Networks with Conditional Gradients

J-norm ball K-sp

sGD Adam Adigrad  Adadelia L 15,
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Iterative Magnitude Pruning (IPM) for Conditional Gradients

Training Neural Networks with Conditional Gradients

Basic Idea. Train network to relativly high accuracy. Prune small weights. Repeat.

[see e.g., Robert Lange’s Blog Post for a great overview]
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https://roberttlange.github.io/posts/2020/06/lottery-ticket-hypothesis/

Iterative Magnitude Pruning (IPM) for Conditional Gradients

Training Neural Networks with Conditional Gradients

Basic Idea. Train network to relativly high accuracy. Prune small weights. Repeat.

Note. There is tons of variants out there (beyond scope!) with
1. Learning Rate Rewinding
2. Weight Rewinding
3. Fine-Tuning

Searching for Tickets: Iterative Magnitude Pruning

«n)
Wo W

[see e.g., Robert Lange’s Blog Post for a great overview]
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https://roberttlange.github.io/posts/2020/06/lottery-ticket-hypothesis/

Iterative Magnitude Pruning (IPM) for Conditional Gradients

Training Neural Networks with Conditional Gradients

Experiment. Training + Pruning + Fine-Tuning (CIFAR-10)

Test accuracy

90%

88% -

86% -

84%

82% A

——— SFW k-SparsePolytope
~——— GSM (Ding et al, 2019)
— LearningCompression (Carreira-Perpinan et al., 2018)

90% 91% 92% 93% 94% 95% 96% 97%
Sparsity

98%
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Thank you!
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