
Structured ML Training
via Conditional Gradients

Sebastian Pokutta

Technische Universität Berlin
and

Zuse Institute Berlin

pokutta@math.tu-berlin.de
@spokutta

Deep Learning and Combinatorial Optimization
IPAM (online) · February 23, 2021

Berlin Mathematics Research Center

MATH

mailto:pokutta@math.tu-berlin.de
https://twitter.com/spokutta
http://helper.ipam.ucla.edu/scheduleprint.aspx?pc=DLC2021
http://helper.ipam.ucla.edu/scheduleprint.aspx?pc=DLC2021


What is this talk about?
Introduction

A lot about sparsity, a bit about deep learning, and
combinatorial optimization mostly in passing.

(And of course lots of conditional gradients; sorry!)

Idea. We can use combinatorial polytopes (k-sparse polytopes, `p-balls etc) to
‘regularize’ the learning problem and induce solution structure and sparsity.

Today. A brief overview and two examples.

Outline.
• Quick recall: Conditional Gradients a.k.a. the Frank-Wolfe algorithm
• Learning dynamics via Conditional Gradients
• Training Deep Neural Networks with Conditional Gradients

(Hyperlinked) References are not exhaustive; check references contained therein.

Sebastian Pokutta · Structured ML Training via Conditional Gradients 1 / 19



What is this talk about?
Introduction

A lot about sparsity, a bit about deep learning, and
combinatorial optimization mostly in passing.

(And of course lots of conditional gradients; sorry!)

Idea. We can use combinatorial polytopes (k-sparse polytopes, `p-balls etc) to
‘regularize’ the learning problem and induce solution structure and sparsity.

Today. A brief overview and two examples.

Outline.
• Quick recall: Conditional Gradients a.k.a. the Frank-Wolfe algorithm
• Learning dynamics via Conditional Gradients
• Training Deep Neural Networks with Conditional Gradients

(Hyperlinked) References are not exhaustive; check references contained therein.

Sebastian Pokutta · Structured ML Training via Conditional Gradients 1 / 19



What is this talk about?
Introduction

A lot about sparsity, a bit about deep learning, and
combinatorial optimization mostly in passing.

(And of course lots of conditional gradients; sorry!)

Idea. We can use combinatorial polytopes (k-sparse polytopes, `p-balls etc) to
‘regularize’ the learning problem and induce solution structure and sparsity.

Today. A brief overview and two examples.

Outline.
• Quick recall: Conditional Gradients a.k.a. the Frank-Wolfe algorithm
• Learning dynamics via Conditional Gradients
• Training Deep Neural Networks with Conditional Gradients

(Hyperlinked) References are not exhaustive; check references contained therein.

Sebastian Pokutta · Structured ML Training via Conditional Gradients 1 / 19



What is this talk about?
Introduction

A lot about sparsity, a bit about deep learning, and
combinatorial optimization mostly in passing.

(And of course lots of conditional gradients; sorry!)

Idea. We can use combinatorial polytopes (k-sparse polytopes, `p-balls etc) to
‘regularize’ the learning problem and induce solution structure and sparsity.

Today. A brief overview and two examples.

Outline.
• Quick recall: Conditional Gradients a.k.a. the Frank-Wolfe algorithm
• Learning dynamics via Conditional Gradients
• Training Deep Neural Networks with Conditional Gradients

(Hyperlinked) References are not exhaustive; check references contained therein.

Sebastian Pokutta · Structured ML Training via Conditional Gradients 1 / 19



What is this talk about?
Introduction

A lot about sparsity, a bit about deep learning, and
combinatorial optimization mostly in passing.

(And of course lots of conditional gradients; sorry!)

Idea. We can use combinatorial polytopes (k-sparse polytopes, `p-balls etc) to
‘regularize’ the learning problem and induce solution structure and sparsity.

Today. A brief overview and two examples.

Outline.
• Quick recall: Conditional Gradients a.k.a. the Frank-Wolfe algorithm
• Learning dynamics via Conditional Gradients
• Training Deep Neural Networks with Conditional Gradients

(Hyperlinked) References are not exhaustive; check references contained therein.

Sebastian Pokutta · Structured ML Training via Conditional Gradients 1 / 19



Conditional Gradients
a.k.a. the Frank-Wolfe algorithm

—Quick Recap—

Sebastian Pokutta · Structured ML Training via Conditional Gradients 2 / 19



The basic problem
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a poly-
tope P, solve optimization problem:

min
x∈P

f (x) (baseProblem)

[Source: Jaggi 2013]

⇒ Complexity of convex optimization relative to LO/FO oracle

Sebastian Pokutta · Structured ML Training via Conditional Gradients 3 / 19



The basic problem
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a poly-
tope P, solve optimization problem:

min
x∈P

f (x) (baseProblem)

[Source: Jaggi 2013]

⇒ Complexity of convex optimization relative to LO/FO oracle

Sebastian Pokutta · Structured ML Training via Conditional Gradients 3 / 19



The basic problem
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a poly-
tope P, solve optimization problem:

min
x∈P

f (x) (baseProblem)

[Source: Jaggi 2013]

1. Very versatile model
2. Can use various types of information about both f and P
3. Works very well in (continuous) real-world applications
4. At the core of many (all?) learning algorithms (albeit mostly non-convex case)

⇒ Complexity of convex optimization relative to LO/FO oracle

Sebastian Pokutta · Structured ML Training via Conditional Gradients 3 / 19



The basic problem
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a poly-
tope P, solve optimization problem:

min
x∈P

f (x) (baseProblem)

[Source: Jaggi 2013]
Our setup.
1. Access to P. Linear Optimization (LO) Oracle: Given linear objective c return

x← argmin
v∈P

cTv.

2. Access to f . First-Order (FO) Oracle: Given x return
∇f (x) and f (x).

⇒ Complexity of convex optimization relative to LO/FO oracle

Sebastian Pokutta · Structured ML Training via Conditional Gradients 3 / 19



The basic problem
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a poly-
tope P, solve optimization problem:

min
x∈P

f (x) (baseProblem)

[Source: Jaggi 2013]
Our setup.
1. Access to P. Linear Optimization (LO) Oracle: Given linear objective c return

x← argmin
v∈P

cTv.

2. Access to f . First-Order (FO) Oracle: Given x return
∇f (x) and f (x).

⇒ Complexity of convex optimization relative to LO/FO oracle

Sebastian Pokutta · Structured ML Training via Conditional Gradients 3 / 19



The basic problem
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a poly-
tope P, solve optimization problem:

min
x∈P

f (x) (baseProblem)

[Source: Jaggi 2013]
Our setup.
1. Access to P. Linear Optimization (LO) Oracle: Given linear objective c return

x← argmin
v∈P

cTv.

2. Access to f . First-Order (FO) Oracle: Given x return
∇f (x) and f (x).

⇒ Complexity of convex optimization relative to LO/FO oracle
Sebastian Pokutta · Structured ML Training via Conditional Gradients 3 / 19



The Frank-Wolfe Algorithm
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1: x0 ∈ P
2: for t = 0 to T − 1 do
3: vt ← argmin

v∈P
〈∇f (xt), v〉

4: xt+1 ← xt + γt(vt − xt)
5: end for

xt

vt

−∇f (xt)

x∗

xt+1

[Frank, Wolfe, 1956] [Levitin, Polyak, 1966]

Advantages:
• Extremely simple and robust: no complicated data structures to maintain
• Easy to implement: requires only the two oracles
• Projection-free: feasibility convex combination and LO oracle.
• Sparsity: optimal solution is a convex combination of (usually) vertices.
• Structured update of iterates: vt ∈ P induces structured updates.

Disadvantages:
• Suboptimal convergence rate of O(1/T)

⇒ Despite (theoretically) suboptimal rate heavily used in applications due to simplicity.

Sebastian Pokutta · Structured ML Training via Conditional Gradients 4 / 19



The Frank-Wolfe Algorithm
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1: x0 ∈ P
2: for t = 0 to T − 1 do
3: vt ← argmin

v∈P
〈∇f (xt), v〉

4: xt+1 ← xt + γt(vt − xt)
5: end for

xt

vt

−∇f (xt)

x∗

xt+1

[Frank, Wolfe, 1956] [Levitin, Polyak, 1966]

Advantages:
• Extremely simple and robust: no complicated data structures to maintain
• Easy to implement: requires only the two oracles
• Projection-free: feasibility convex combination and LO oracle.
• Sparsity: optimal solution is a convex combination of (usually) vertices.
• Structured update of iterates: vt ∈ P induces structured updates.

Disadvantages:
• Suboptimal convergence rate of O(1/T)

⇒ Despite (theoretically) suboptimal rate heavily used in applications due to simplicity.

Sebastian Pokutta · Structured ML Training via Conditional Gradients 4 / 19



The Frank-Wolfe Algorithm
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1: x0 ∈ P
2: for t = 0 to T − 1 do
3: vt ← argmin

v∈P
〈∇f (xt), v〉

4: xt+1 ← xt + γt(vt − xt)
5: end for

xt

vt

−∇f (xt)

x∗

xt+1

[Frank, Wolfe, 1956] [Levitin, Polyak, 1966]

Advantages:
• Extremely simple and robust: no complicated data structures to maintain
• Easy to implement: requires only the two oracles
• Projection-free: feasibility convex combination and LO oracle.
• Sparsity: optimal solution is a convex combination of (usually) vertices.
• Structured update of iterates: vt ∈ P induces structured updates.

Disadvantages:
• Suboptimal convergence rate of O(1/T)

⇒ Despite (theoretically) suboptimal rate heavily used in applications due to simplicity.

Sebastian Pokutta · Structured ML Training via Conditional Gradients 4 / 19



The Frank-Wolfe Algorithm
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1: x0 ∈ P
2: for t = 0 to T − 1 do
3: vt ← argmin

v∈P
〈∇f (xt), v〉

4: xt+1 ← xt + γt(vt − xt)
5: end for

xt

vt

−∇f (xt)

x∗

xt+1

[Frank, Wolfe, 1956] [Levitin, Polyak, 1966]

Advantages:
• Extremely simple and robust: no complicated data structures to maintain
• Easy to implement: requires only the two oracles
• Projection-free: feasibility convex combination and LO oracle.
• Sparsity: optimal solution is a convex combination of (usually) vertices.
• Structured update of iterates: vt ∈ P induces structured updates.

Disadvantages:
• Suboptimal convergence rate of O(1/T)

⇒ Despite (theoretically) suboptimal rate heavily used in applications due to simplicity.

Sebastian Pokutta · Structured ML Training via Conditional Gradients 4 / 19



The Frank-Wolfe Algorithm
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1: x0 ∈ P
2: for t = 0 to T − 1 do
3: vt ← argmin

v∈P
〈∇f (xt), v〉

4: xt+1 ← xt + γt(vt − xt)
5: end for

xt

vt

−∇f (xt)

x∗

xt+1

[Frank, Wolfe, 1956] [Levitin, Polyak, 1966]

Advantages:
• Extremely simple and robust: no complicated data structures to maintain
• Easy to implement: requires only the two oracles
• Projection-free: feasibility convex combination and LO oracle.
• Sparsity: optimal solution is a convex combination of (usually) vertices.
• Structured update of iterates: vt ∈ P induces structured updates.

Disadvantages:
• Suboptimal convergence rate of O(1/T)

⇒ Despite (theoretically) suboptimal rate heavily used in applications due to simplicity.

Sebastian Pokutta · Structured ML Training via Conditional Gradients 4 / 19



The Frank-Wolfe Algorithm
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1: x0 ∈ P
2: for t = 0 to T − 1 do
3: vt ← argmin

v∈P
〈∇f (xt), v〉

4: xt+1 ← xt + γt(vt − xt)
5: end for

xt

vt

−∇f (xt)

x∗
xt+1

[Frank, Wolfe, 1956] [Levitin, Polyak, 1966]

Advantages:
• Extremely simple and robust: no complicated data structures to maintain
• Easy to implement: requires only the two oracles
• Projection-free: feasibility convex combination and LO oracle.
• Sparsity: optimal solution is a convex combination of (usually) vertices.
• Structured update of iterates: vt ∈ P induces structured updates.

Disadvantages:
• Suboptimal convergence rate of O(1/T)

⇒ Despite (theoretically) suboptimal rate heavily used in applications due to simplicity.

Sebastian Pokutta · Structured ML Training via Conditional Gradients 4 / 19



The Frank-Wolfe Algorithm
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1: x0 ∈ P
2: for t = 0 to T − 1 do
3: vt ← argmin

v∈P
〈∇f (xt), v〉

4: xt+1 ← xt + γt(vt − xt)
5: end for

xt

vt

−∇f (xt)

x∗
xt+1

[Frank, Wolfe, 1956] [Levitin, Polyak, 1966]

Advantages:
• Extremely simple and robust: no complicated data structures to maintain
• Easy to implement: requires only the two oracles
• Projection-free: feasibility convex combination and LO oracle.
• Sparsity: optimal solution is a convex combination of (usually) vertices.
• Structured update of iterates: vt ∈ P induces structured updates.

Disadvantages:
• Suboptimal convergence rate of O(1/T)

⇒ Despite (theoretically) suboptimal rate heavily used in applications due to simplicity.

Sebastian Pokutta · Structured ML Training via Conditional Gradients 4 / 19



The Frank-Wolfe Algorithm
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1: x0 ∈ P
2: for t = 0 to T − 1 do
3: vt ← argmin

v∈P
〈∇f (xt), v〉

4: xt+1 ← xt + γt(vt − xt)
5: end for

xt

vt

−∇f (xt)

x∗
xt+1

[Frank, Wolfe, 1956] [Levitin, Polyak, 1966]
Advantages:
• Extremely simple and robust: no complicated data structures to maintain
• Easy to implement: requires only the two oracles
• Projection-free: feasibility convex combination and LO oracle.
• Sparsity: optimal solution is a convex combination of (usually) vertices.
• Structured update of iterates: vt ∈ P induces structured updates.

Disadvantages:
• Suboptimal convergence rate of O(1/T)

⇒ Despite (theoretically) suboptimal rate heavily used in applications due to simplicity.

Sebastian Pokutta · Structured ML Training via Conditional Gradients 4 / 19



The Frank-Wolfe Algorithm
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1: x0 ∈ P
2: for t = 0 to T − 1 do
3: vt ← argmin

v∈P
〈∇f (xt), v〉

4: xt+1 ← xt + γt(vt − xt)
5: end for

xt

vt

−∇f (xt)

x∗
xt+1

[Frank, Wolfe, 1956] [Levitin, Polyak, 1966]
Advantages:
• Extremely simple and robust: no complicated data structures to maintain
• Easy to implement: requires only the two oracles
• Projection-free: feasibility convex combination and LO oracle.
• Sparsity: optimal solution is a convex combination of (usually) vertices.
• Structured update of iterates: vt ∈ P induces structured updates.

Disadvantages:
• Suboptimal convergence rate of O(1/T)

⇒ Despite (theoretically) suboptimal rate heavily used in applications due to simplicity.

Sebastian Pokutta · Structured ML Training via Conditional Gradients 4 / 19



The Frank-Wolfe Algorithm
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1: x0 ∈ P
2: for t = 0 to T − 1 do
3: vt ← argmin

v∈P
〈∇f (xt), v〉

4: xt+1 ← xt + γt(vt − xt)
5: end for

xt

vt

−∇f (xt)

x∗
xt+1

[Frank, Wolfe, 1956] [Levitin, Polyak, 1966]
Advantages:
• Extremely simple and robust: no complicated data structures to maintain
• Easy to implement: requires only the two oracles
• Projection-free: feasibility convex combination and LO oracle.
• Sparsity: optimal solution is a convex combination of (usually) vertices.
• Structured update of iterates: vt ∈ P induces structured updates.

Disadvantages:
• Suboptimal convergence rate of O(1/T)

⇒ Despite (theoretically) suboptimal rate heavily used in applications due to simplicity.

Sebastian Pokutta · Structured ML Training via Conditional Gradients 4 / 19



Simple Convergence Proof
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)
Let f be L-smooth convex, P be polytope with diameter D. With choice γt � 2

t+3 :

f (xt) − f (x∗) ≤
2LD2

t + 3 .

Proof Sketch.
By smoothness:

f (xt+1) − f (xt) ≤ 〈∇f (xt), xt+1 − xt 〉 +
L
2 ‖xt+1 − xt ‖

2 = γt 〈∇f (xt), vt − xt 〉 +
Lγ2t
2 ‖vt − xt ‖

2.

LP maximality and convexity: 〈∇f (xt), vt − xt 〉 ≤ 〈∇f (xt), x∗ − xt 〉 ≤ f (x∗) − f (xt). Moreover, ‖vt − xt ‖ ≤ D.

Thus:
f (xt+1) − f (x∗) ≤ (1 − γt)(f (xt) − f (x∗)) + γ2t

LD2

2 .

By Induction (plugging in the guarantee + de�nition of γt):

f (xt+1) − f (x∗) ≤
(
1 − 2

t + 3

)
2LD2

t + 3 +
4

(t + 3)2 ·
LD2

2 =
2LD2(t + 2)
(t + 3)2 ≤

2LD2

t + 4 ,

by (t + 2)(t + 4) ≤ (t + 3)2.

�

Sebastian Pokutta · Structured ML Training via Conditional Gradients 5 / 19



Simple Convergence Proof
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)
Let f be L-smooth convex, P be polytope with diameter D. With choice γt � 2

t+3 :

f (xt) − f (x∗) ≤
2LD2

t + 3 .

Proof Sketch.
By smoothness:

f (xt+1) − f (xt) ≤ 〈∇f (xt), xt+1 − xt 〉 +
L
2 ‖xt+1 − xt ‖

2 = γt 〈∇f (xt), vt − xt 〉 +
Lγ2t
2 ‖vt − xt ‖

2.

LP maximality and convexity: 〈∇f (xt), vt − xt 〉 ≤ 〈∇f (xt), x∗ − xt 〉 ≤ f (x∗) − f (xt). Moreover, ‖vt − xt ‖ ≤ D.

Thus:
f (xt+1) − f (x∗) ≤ (1 − γt)(f (xt) − f (x∗)) + γ2t

LD2

2 .

By Induction (plugging in the guarantee + de�nition of γt):

f (xt+1) − f (x∗) ≤
(
1 − 2

t + 3

)
2LD2

t + 3 +
4

(t + 3)2 ·
LD2

2 =
2LD2(t + 2)
(t + 3)2 ≤

2LD2

t + 4 ,

by (t + 2)(t + 4) ≤ (t + 3)2.

�
Sebastian Pokutta · Structured ML Training via Conditional Gradients 5 / 19



Simple Convergence Proof
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)
Let f be L-smooth convex, P be polytope with diameter D. With choice γt � 2

t+3 :

f (xt) − f (x∗) ≤
2LD2

t + 3 .

Proof Sketch.
By smoothness:

f (xt+1) − f (xt) ≤ 〈∇f (xt), xt+1 − xt 〉 +
L
2 ‖xt+1 − xt ‖

2 = γt 〈∇f (xt), vt − xt 〉 +
Lγ2t
2 ‖vt − xt ‖

2.

LP maximality and convexity: 〈∇f (xt), vt − xt 〉 ≤ 〈∇f (xt), x∗ − xt 〉 ≤ f (x∗) − f (xt). Moreover, ‖vt − xt ‖ ≤ D.

Thus:
f (xt+1) − f (x∗) ≤ (1 − γt)(f (xt) − f (x∗)) + γ2t

LD2

2 .

By Induction (plugging in the guarantee + de�nition of γt):

f (xt+1) − f (x∗) ≤
(
1 − 2

t + 3

)
2LD2

t + 3 +
4

(t + 3)2 ·
LD2

2 =
2LD2(t + 2)
(t + 3)2 ≤

2LD2

t + 4 ,

by (t + 2)(t + 4) ≤ (t + 3)2.

�
Sebastian Pokutta · Structured ML Training via Conditional Gradients 5 / 19



Simple Convergence Proof
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)
Let f be L-smooth convex, P be polytope with diameter D. With choice γt � 2

t+3 :

f (xt) − f (x∗) ≤
2LD2

t + 3 .

Proof Sketch.
By smoothness:

f (xt+1) − f (xt) ≤ 〈∇f (xt), xt+1 − xt 〉 +
L
2 ‖xt+1 − xt ‖

2 = γt 〈∇f (xt), vt − xt 〉 +
Lγ2t
2 ‖vt − xt ‖

2.

LP maximality and convexity: 〈∇f (xt), vt − xt 〉 ≤ 〈∇f (xt), x∗ − xt 〉 ≤ f (x∗) − f (xt). Moreover, ‖vt − xt ‖ ≤ D.

Thus:
f (xt+1) − f (x∗) ≤ (1 − γt)(f (xt) − f (x∗)) + γ2t

LD2

2 .

By Induction (plugging in the guarantee + de�nition of γt):

f (xt+1) − f (x∗) ≤
(
1 − 2

t + 3

)
2LD2

t + 3 +
4

(t + 3)2 ·
LD2

2 =
2LD2(t + 2)
(t + 3)2 ≤

2LD2

t + 4 ,

by (t + 2)(t + 4) ≤ (t + 3)2.

�
Sebastian Pokutta · Structured ML Training via Conditional Gradients 5 / 19



Simple Convergence Proof
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)
Let f be L-smooth convex, P be polytope with diameter D. With choice γt � 2

t+3 :

f (xt) − f (x∗) ≤
2LD2

t + 3 .

Proof Sketch.
By smoothness:

f (xt+1) − f (xt) ≤ 〈∇f (xt), xt+1 − xt 〉 +
L
2 ‖xt+1 − xt ‖

2 = γt 〈∇f (xt), vt − xt 〉 +
Lγ2t
2 ‖vt − xt ‖

2.

LP maximality and convexity: 〈∇f (xt), vt − xt 〉 ≤ 〈∇f (xt), x∗ − xt 〉 ≤ f (x∗) − f (xt). Moreover, ‖vt − xt ‖ ≤ D.

Thus:
f (xt+1) − f (x∗) ≤ (1 − γt)(f (xt) − f (x∗)) + γ2t

LD2

2 .

By Induction (plugging in the guarantee + de�nition of γt):

f (xt+1) − f (x∗) ≤
(
1 − 2

t + 3

)
2LD2

t + 3 +
4

(t + 3)2 ·
LD2

2 =
2LD2(t + 2)
(t + 3)2 ≤

2LD2

t + 4 ,

by (t + 2)(t + 4) ≤ (t + 3)2.
�

Sebastian Pokutta · Structured ML Training via Conditional Gradients 5 / 19



Signi�cant progress over the recent years (incomplete list)
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

1. Strongly convex case [Garber, Hazan 2013] [Lan, Zhou 2014] [Lacoste-Julien, Jaggi 2015] [Garber, Meschi 2016]

2. Non-convex case [Lacoste-Julien 2016]

3. Online case [Hazan, Kale 2012]

4. Stochastic variants and adaptive gradients [Hazan, Luo 2016] [Reddi et al 2016] [Combettes, Spiegel, P. 2020]

5. Sharp functions and sharp regions [Kerdreux, d’Aspremont, P. 2018] [Kerdreux, d’Aspremont, P. 2020]

6. Acceleration [Diakonikolas, Carderera, P. 2019] [Bach 2020] [Carderera, Diakonikolas, Lin, P. 2021]

7. Specialized variants [Freund, Grigas, Mazumder 2015] [Braun, P., Zink 2016] [Braun, P., Tu, Wright 2018]

Conditional Gradients very competitive: simple, robust, real-world performance.

For more background etc see upcoming survey!

Sebastian Pokutta · Structured ML Training via Conditional Gradients 6 / 19

https://arxiv.org/abs/1301.4666
http://www.optimization-online.org/DB_HTML/2014/10/4605.html
https://proceedings.neurips.cc/paper/2015/file/c058f544c737782deacefa532d9add4c-Paper.pdf
https://proceedings.neurips.cc/paper/2016/hash/daca41214b39c5dc66674d09081940f0-Abstract.html
https://arxiv.org/abs/1607.00345
https://arxiv.org/abs/1206.4657
https://arxiv.org/abs/1602.02101
https://arxiv.org/abs/1607.08254
https://arxiv.org/abs/2009.14114
https://arxiv.org/abs/1810.02429
https://arxiv.org/abs/2004.11053
https://arxiv.org/abs/1906.07867
https://arxiv.org/abs/2002.02835
https://arxiv.org/abs/2102.06806
https://arxiv.org/abs/1511.02204
https://arxiv.org/abs/1610.05120
https://arxiv.org/abs/1805.07311


Conditional Gradient-based Identi�cation
of Nonlinear Dynamics (CINDy)

—Recovering Dynamics from Noisy Data—

joint work with Alejandro Carderera, Christof Schütte, Martin Weiser

Sebastian Pokutta · Structured ML Training via Conditional Gradients 7 / 19



Physical Systems via ODEs
CINDy: Recovering Dynamics from Noisy Data

Physical systems described by ordinary di�erential equation.

Ûx(t) = F (x(t)) ,

where x(t) ∈ Rd denotes the state of the system at time t.

Usually. F : Rd → Rd (usually) linear combination of simpler ansatz functions
D =

{
ψi | i ∈ n1,no

}
with ψi : Rd → R:

Ûx(t) = F (x(t)) = ΞTψ(x(t)) =


ξ1
...
ξd



ψ1(x(t))

...
ψn(x(t))

 ,
where Ξ ∈ Rn×d is a typically sparse matrix and ψ(x(t)) = [ψ1(x(t)), · · · ,ψn(x(t))]T ∈ Rn.

Sebastian Pokutta · Structured ML Training via Conditional Gradients 8 / 19



Physical Systems via ODEs
CINDy: Recovering Dynamics from Noisy Data

Physical systems described by ordinary di�erential equation.

Ûx(t) = F (x(t)) ,

where x(t) ∈ Rd denotes the state of the system at time t.

Usually. F : Rd → Rd (usually) linear combination of simpler ansatz functions
D =

{
ψi | i ∈ n1,no

}
with ψi : Rd → R:

Ûx(t) = F (x(t)) = ΞTψ(x(t)) =


ξ1
...
ξd



ψ1(x(t))

...
ψn(x(t))

 ,
where Ξ ∈ Rn×d is a typically sparse matrix and ψ(x(t)) = [ψ1(x(t)), · · · ,ψn(x(t))]T ∈ Rn.

Sebastian Pokutta · Structured ML Training via Conditional Gradients 8 / 19



Sparse Identi�cation of Nonlinear Dynamics (SINDy)
CINDy: Recovering Dynamics from Noisy Data

[Brunton et al 2016]

and Appendixes A and B. However, it may be difficult to know
the correct variables a priori. Fortunately, time-delay coordi-
nates may provide useful variables from a time series (9, 12, 38).
The ability to reconstruct sparse attractor dynamics using time-
delay coordinates is demonstrated in SI Appendix, section 4.5
using a single variable of the Lorenz system.
The choice of coordinates and the sparsifying basis are in-

timately related, and the best choice is not always clear. However,
basic knowledge of the physics (e.g., Navier–Stokes equations have
quadratic nonlinearities, and the Schrödinger equation has jxj2 x
terms) may provide a reasonable choice of nonlinear functions and
measurement coordinates. In fact, the sparsity and accuracy of the
proposed sparse identified model may provide valuable diagnostic
information about the correct measurement coordinates and basis
in which to represent the dynamics. Choosing the right coordinates
to simplify dynamics has always been important, as exemplified by
Lagrangian and Hamiltonian mechanics (39). There is still a need
for experts to find and exploit symmetry in the system, and the
proposed methods should be complemented by advanced algo-
rithms in machine learning to extract useful features.

Results
We demonstrate the algorithm on canonical systems*, ranging
from linear and nonlinear oscillators (SI Appendix, section 4.1),
to noisy measurements of the chaotic Lorenz system, to the
unsteady fluid wake behind a cylinder, extending this method to
nonlinear PDEs and high-dimensional data. Finally, we show
that bifurcation parameters may be included in the models,

recovering the parameterized logistic map and the Hopf normal
form from noisy measurements. In each example, we explore the
ability to identify the dynamics from state measurements alone,
without access to derivatives.
It is important to reiterate that the sparse identification

method relies on a fortunate choice of coordinates and function
basis that facilitate sparse representation of the dynamics. In SI
Appendix, Appendix B, we explore the limitations of the method
for examples where these assumptions break down: the Lorenz
system transformed into nonlinear coordinates and the glycolytic
oscillator model (11–13).

Chaotic Lorenz System. As a first example, consider a canonical
model for chaotic dynamics, the Lorenz system (40):

_x= σðy− xÞ, [7a]

_y= xðρ− zÞ− y, [7b]

_z= xy− βz. [7c]

Although these equations give rise to rich and chaotic dynamics
that evolve on an attractor, there are only a few terms in the
right-hand side of the equations. Fig. 1 shows a schematic of how
data are collected for this example, and how sparse dynamics are
identified in a space of possible right-hand-side functions using
convex ℓ1 minimization.
For this example, data are collected for the Lorenz system, and

stacked into two large data matrices X and _X, where each row of X
is a snapshot of the state x in time, and each row of _X is a snapshot

Fig. 1. Schematic of the SINDy algorithm, demonstrated on the Lorenz equations. Data are collected from the system, including a time history of the states X
and derivatives _X; the assumption of having _X is relaxed later. Next, a library of nonlinear functions of the states, ΘðXÞ, is constructed. This nonlinear feature
library is used to find the fewest terms needed to satisfy _X=ΘðXÞΞ. The few entries in the vectors of Ξ, solved for by sparse regression, denote the relevant
terms in the right-hand side of the dynamics. Parameter values are σ = 10, β= 8=3, ρ= 28, ðx0, y0, z0ÞT = ð−8,7,27ÞT . The trajectory on the Lorenz attractor is
colored by the adaptive time step required, with red indicating a smaller time step.

*Code is available at faculty.washington.edu/sbrunton/sparsedynamics.zip.

3934 | www.pnas.org/cgi/doi/10.1073/pnas.1517384113 Brunton et al.

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

N
ov

em
be

r 1
9,

 2
02

0 

Focus on component-wise formulation of sparse recovery problem and solve a
relaxation of:

min
ξj∈R

d

m∑
i=1
‖ Ûxi − ξ

T
j ψ(xi)‖

2
2 + α‖ξj‖0,

for each j ∈ n1,do for a suitably chosen α ≥ 0.
Note. Earlier approach via Gröbner/Border Bases for homogeneous case. [Heldt et al 2009]

Sebastian Pokutta · Structured ML Training via Conditional Gradients 9 / 19

https://www.pnas.org/content/113/15/3932.short
http://dx.doi.org/10.1016/j.jsc.2008.11.010


Sparse Identi�cation of Nonlinear Dynamics (SINDy)
CINDy: Recovering Dynamics from Noisy Data

[Brunton et al 2016]

of the time derivative of the state _x in time. Here, the right-hand-
side dynamics are identified in the space of polynomials ΘðXÞ in
ðx, y, zÞ up to fifth order, although other functions such as
sin, cos, exp, or higher-order polynomials may be included:

ΘðXÞ=

"

xðtÞ
j

j
yðtÞ
j

j
zðtÞ
j

j
xðtÞ2

j

j
xðtÞyðtÞ

j

j
⋯ z ðtÞ5

j

j

#

.

Each column of ΘðXÞ represents a candidate function for the right-
hand sideofEq.1. Becauseonly a fewof these terms are active in each
row of f, we solve the sparse regression problem inEq. 3 to determine
the sparse vectors of coefficients Ξ= ½ ξ1 ξ2 ⋯ ξn $ that determine
which terms are active in the dynamics. This is illustrated schemati-
cally in Fig. 1, where sparse vectors ξk are found to represent the
derivative _xk as a linear combination of the fewest terms in ΘðXÞ.
In the Lorenz example, the ability to capture dynamics on the

attractor is more important than the ability to predict an individual
trajectory, because chaos will quickly cause any small variations in
initial conditions or model coefficients to diverge exponentially.
As shown in Fig. 1, the sparse model accurately reproduces the
attractor dynamics from chaotic trajectory measurements. The
algorithm not only identifies the correct terms in the dynamics, but
it accurately determines the coefficients to within .03% of the true
values. We also explore the identification of the dynamics when
only noisy state measurements are available (SI Appendix, Fig. S7).
The correct dynamics are identified, and the attractor is preserved
for surprisingly large noise values. In SI Appendix, section 4.5, we
reconstruct the attractor dynamics in the Lorenz system using
time-delay coordinates from a single measurement xðtÞ.

PDE for Vortex Shedding Behind an Obstacle.The Lorenz system is a
low-dimensional model of more realistic high-dimensional PDE
models for fluid convection in the atmosphere. Many systems of
interest are governed by PDEs (24), such as weather and climate,
epidemiology, and the power grid, to name a few. Each of these
examples is characterized by big data, consisting of large spatially
resolved measurements consisting of millions or billions of states
and spanning orders of magnitude of scale in both space and
time. However, many high-dimensional, real-world systems evolve
on a low-dimensional attractor, making the effective dimension
much smaller (35).
Here we generalize the SINDy method to an example in fluid dy-

namics that typifies many of the challenges outlined above. In the
context of data from a PDE, our algorithm shares some connections to
the dynamic mode decomposition, which is a linear dynamic regression

(41–43). Data are collected for the fluid flow past a cylinder at
Reynolds number 100 using direct numerical simulations of the 2D
Navier–Stokes equations (44, 45). The nonlinear dynamic relationship
between the dominant coherent structures is identified from these flow-
field measurements with no knowledge of the governing equations.
The flow past a cylinder is a particularly interesting example be-

cause of its rich history in fluid mechanics and dynamical systems. It
has long been theorized that turbulence is the result of a series of
Hopf bifurcations that occur as the flow velocity increases (46), giving
rise to more rich and intricate structures in the fluid. After 15 years,
the first Hopf bifurcation was discovered in a fluid system, in the
transition from a steady laminar wake to laminar periodic vortex
shedding at Reynolds number 47 (47, 48). This discovery led to a
long-standing debate about how a Hopf bifurcation, with cubic
nonlinearity, can be exhibited in aNavier–Stokes fluid with quadratic
nonlinearities. After 15 more years, this was resolved using a sepa-
ration of timescales and a mean-field model (49), shown in Eq. 8. It
was shown that coupling between oscillatorymodes and the base flow
gives rise to a slow manifold (Fig. 2, Left), which results in algebraic
terms that approximate cubic nonlinearities on slow timescales.
This example provides a compelling test case for the proposed

algorithm, because the underlying form of the dynamics took
nearly three decades for experts in the community to uncover.
Because the state dimension is large, consisting of the fluid state
at hundreds of thousands of grid points, it is first necessary to
reduce the dimension of the system. The POD (35, 37), provides
a low-rank basis resulting in a hierarchy of orthonormal modes
that, when truncated, capture the most energy of the original
system for the given rank truncation. The first two most energetic
POD modes capture a significant portion of the energy, and
steady-state vortex shedding is a limit cycle in these coordinates.
An additional mode, called the shift mode, is included to capture
the transient dynamics connecting the unstable steady state (“C”
in Fig. 2) with the mean of the limit cycle (49) (“B” in Fig. 2).
These modes define the x, y, z coordinates in Fig. 2.
In the coordinate system described above, the mean-field

model for the cylinder dynamics is given by (49)

_x= μx−ωy+Axz, [8a]

_y=ωx+ μy+Ayz, [8b]

_z=−λ
!
z− x2 − y2

"
. [8c]

If λ is large, so that the z dynamics are fast, then the mean flow
rapidly corrects to be on the (slow) manifold z= x2 + y2 given by

Fig. 2. Example of high-dimensional dynamical system from fluid dynamics. The vortex shedding past a cylinder is a prototypical example that is used for flow
control, with relevance to many applications, including drag reduction behind vehicles. The vortex shedding is the result of a Hopf bifurcation. However, because
the Navier–Stokes equations have quadratic nonlinearity, it is necessary to use a mean-field model with a separation of timescales, where a fast mean-field
deformation is slave to the slow vortex shedding dynamics. The parabolic slow manifold is shown (Left), with the unstable fixed point (C), mean flow (B), and
vortex shedding (A). A POD basis and shift mode are used to reduce the dimension of the problem (Middle Right). The identified dynamics closely match the true
trajectory in POD coordinates, and most importantly, they capture the quadratic nonlinearity and timescales associated with the mean-field model.

Brunton et al. PNAS | April 12, 2016 | vol. 113 | no. 15 | 3935

A
PP

LI
ED

M
A
TH

EM
A
TI
CS

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

N
ov

em
be

r 1
9,

 2
02

0 

the amplitude of vortex shedding. When substituting this alge-
braic relationship into Eqs. 8a and 8b, we recover the Hopf
normal form on the slow manifold.
With a time history of these three coordinates, the proposed al-

gorithm correctly identifies quadratic nonlinearities and reproduces
a parabolic slow manifold. Note that derivative measurements are
not available, but are computed from the state variables. In-
terestingly, when the training data do not include trajectories that
originate off of the slow manifold, the algorithm incorrectly iden-
tifies cubic nonlinearities, and fails to identify the slow manifold.

Normal Forms, Bifurcations, and Parameterized Systems. In practice,
many real-world systems depend on parameters, and dramatic
changes, or bifurcations, may occur when the parameter is var-
ied. The SINDy algorithm is readily extended to encompass
these important parameterized systems, allowing for the dis-
covery of normal forms (31, 50) associated with a bifurcation
parameter μ. First, we append μ to the dynamics:

_x= fðx; μÞ, [9a]

_μ= 0. [9b]

It is then possible to identify fðx; μÞ as a sparse combination of
functions of x as well as the bifurcation parameter μ.
Identifying parameterized dynamics is shown in two examples:

the 1D logistic map with stochastic forcing,

xk+1 = μxkð1− xkÞ+ ηk,

and the 2D Hopf normal form (51),

_x= μx+ωy−Ax
!
x2 + y2

"

_y=−ωx+ μy−Ay
!
x2 + y2

"
.

The logistic map is a classical model for population dynamics,
and the Hopf normal form models spontaneous oscillations in
chemical reactions, electrical circuits, and fluid instability.
The noisy measurements and the sparse dynamic reconstruc-

tions for both examples are shown in Fig. 3. In the logistic map
example, the stochastically forced trajectory is sampled at 10
discrete parameter values, shown in red. From these measure-
ments, the correct parameterized dynamics are identified. The
parameterization is accurate enough to capture the cascade of
bifurcations as μ is increased, resulting in the detailed bifurcation
diagram in Fig. 3. Parameters are identified to within .1% of true
values (SI Appendix, Appendix C).

In the Hopf normal-form example, noisy state measurements
from eight parameter values are sampled, with data collected on the
blue and red trajectories in Fig. 3 (Top Right). Noise is added to the
position measurements to simulate sensor noise, and the total var-
iation regularized derivative (33) is used. In this example, the nor-
mal form is correctly identified, resulting in accurate limit cycle
amplitudes and growth rates (Bottom Right). The correct identifi-
cation of a normal form depends critically on the choice of variables
and the nonlinear basis functions used for ΘðxÞ. In practice, these
choices may be informed by machine learning and data mining, by
partial knowledge of the physics, and by expert human intuition.
Similarly, time dependence and external forcing or feedback

control uðtÞ may be added to the vector field:

_x= fðx, uðtÞ, tÞ,

_t= 1.

Generalizing the SINDy algorithm makes it possible to analyze
systems that are externally forced or controlled. For example, the
climate is both parameterized (50) and has external forcing, includ-
ing carbon dioxide and solar radiation. The financial market is an-
other important example with forcing and active feedback
control.

Discussion
In summary, we have demonstrated a powerful technique to identify
nonlinear dynamical systems from data without assumptions on the
form of the governing equations. This builds on prior work in sym-
bolic regression but with innovations related to sparse regression,
which allow our algorithms to scale to high-dimensional systems.We
demonstrate this method on a number of example systems exhibiting
chaos, high-dimensional data with low-rank coherence, and param-
eterized dynamics. As shown in the Lorenz example, the ability to
predict a specific trajectory may be less important than the ability to
capture the attractor dynamics. The example from fluid dynamics
highlights the remarkable ability of this method to extract dynamics
in a fluid system that took three decades for experts in the com-
munity to explain. There are numerous fields where this methodmay
be applied, where there are ample data and the absence of governing
equations, including neuroscience, climate science, epidemiology,
and financial markets. Finally, normal forms may be discovered by
including parameters in the optimization, as shown in two examples.
The identification of sparse governing equations and parameteriza-
tions marks a significant step toward the long-held goal of intelligent,
unassisted identification of dynamical systems.
We have demonstrated the robustness of the sparse dynamics

algorithm to measurement noise and unavailability of derivative

Fig. 3. SINDy algorithm is able to
identify normal forms and capture
bifurcations, as demonstrated on the
logistic map (Left) and the Hopf nor-
mal form (Right). Noisy data from
both systems are used to train models.
For the logistic map, a handful of
parameter values μ (red lines), are
used for the training data, and the
correct normal form and bifurcation
sequence is captured (below). Noisy
data for the Hopf normal form are
collected at a few values of μ, and the
total variation derivative (33) is used
to compute time derivatives. The ac-
curate Hopf normal form is repro-
duced (below). The nonlinear terms
identified by the algorithm are in SI
Appendix, section 4.4 and Appendix C.

3936 | www.pnas.org/cgi/doi/10.1073/pnas.1517384113 Brunton et al.

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

N
ov

em
be

r 1
9,

 2
02

0 

Characteristics of SINDy.
1. Works on a very wide variety of dynamics
2. Recovers sparse dynamics very well in the noise-free case
3. However when data is noisy, picks up many auxiliary terms to explain noise.

Sebastian Pokutta · Structured ML Training via Conditional Gradients 10 / 19

https://www.pnas.org/content/113/15/3932.short


The Fully-Corrective Frank-Wolfe Algorithm
CINDy: Recovering Dynamics from Noisy Data

Algorithm Fully-Corrective FW Algorithm (FCFW)
1: x0 ∈ P, S0 ← {x0 }
2: for t = 0 to T − 1 do
3: vt ← argmin

v∈P
〈∇f (xt), v〉

4: St+1 ← St ∪ {vt }
5: xt+1 ← argminx∈conv(St+1) f (x)
6: end for

[Holloway, 1974]

• Sparsity: FCFW o�ers much higher sparsity
• Speed: Convergence speed is (much) higher but
iterations very costly

• Projection-free: While still projection-free requires
solver for subproblems

x0

0.
1

0.30.
5

0.
7

0.7

0.
9

0.9

1.
1

1.1

1.
3

1.3

1.
5

1.51.
7

1.7

x∗

x1

x2
x3 x4x5 x6

x7

−∇ f (x14)

Vanilla FW Algorithm

x0

0.
1

0.30.
5

0.
7

0.7

0.
9

0.9

1.
1

1.1

1.
3

1.3

1.
5

1.51.
7

1.7

x1

x2

x∗

Fully-Corrective FW Algorithm

⇒ While expensive can be useful if sheer speed is not a priority but sparsity is.
Note. Sparsity not only a function of formulation but also algorithm and its trajectory.

Sebastian Pokutta · Structured ML Training via Conditional Gradients 11 / 19



The Fully-Corrective Frank-Wolfe Algorithm
CINDy: Recovering Dynamics from Noisy Data

Algorithm Fully-Corrective FW Algorithm (FCFW)
1: x0 ∈ P, S0 ← {x0 }
2: for t = 0 to T − 1 do
3: vt ← argmin

v∈P
〈∇f (xt), v〉

4: St+1 ← St ∪ {vt }
5: xt+1 ← argminx∈conv(St+1) f (x)
6: end for

[Holloway, 1974]

• Sparsity: FCFW o�ers much higher sparsity
• Speed: Convergence speed is (much) higher but
iterations very costly

• Projection-free: While still projection-free requires
solver for subproblems

x0

0.
1

0.30.
5

0.
7

0.7

0.
9

0.9

1.
1

1.1

1.
3

1.3

1.
5

1.51.
7

1.7

x∗

x1

x2
x3 x4x5 x6

x7

−∇ f (x14)

Vanilla FW Algorithm

x0

0.
1

0.30.
5

0.
7

0.7

0.
9

0.9

1.
1

1.1

1.
3

1.3

1.
5

1.51.
7

1.7

x1

x2

x∗

Fully-Corrective FW Algorithm

⇒ While expensive can be useful if sheer speed is not a priority but sparsity is.
Note. Sparsity not only a function of formulation but also algorithm and its trajectory.

Sebastian Pokutta · Structured ML Training via Conditional Gradients 11 / 19



The Fully-Corrective Frank-Wolfe Algorithm
CINDy: Recovering Dynamics from Noisy Data

Algorithm Fully-Corrective FW Algorithm (FCFW)
1: x0 ∈ P, S0 ← {x0 }
2: for t = 0 to T − 1 do
3: vt ← argmin

v∈P
〈∇f (xt), v〉

4: St+1 ← St ∪ {vt }
5: xt+1 ← argminx∈conv(St+1) f (x)
6: end for

[Holloway, 1974]

• Sparsity: FCFW o�ers much higher sparsity
• Speed: Convergence speed is (much) higher but
iterations very costly

• Projection-free: While still projection-free requires
solver for subproblems

x0

0.
1

0.30.
5

0.
7

0.7

0.
9

0.9

1.
1

1.1

1.
3

1.3

1.
5

1.51.
7

1.7

x∗

x1

x2
x3 x4x5 x6

x7

−∇ f (x14)

Vanilla FW Algorithm

x0

0.
1

0.30.
5

0.
7

0.7

0.
9

0.9

1.
1

1.1

1.
3

1.3

1.
5

1.51.
7

1.7

x1

x2

x∗

Fully-Corrective FW Algorithm

⇒ While expensive can be useful if sheer speed is not a priority but sparsity is.
Note. Sparsity not only a function of formulation but also algorithm and its trajectory.

Sebastian Pokutta · Structured ML Training via Conditional Gradients 11 / 19



The Fully-Corrective Frank-Wolfe Algorithm
CINDy: Recovering Dynamics from Noisy Data

Algorithm Fully-Corrective FW Algorithm (FCFW)
1: x0 ∈ P, S0 ← {x0 }
2: for t = 0 to T − 1 do
3: vt ← argmin

v∈P
〈∇f (xt), v〉

4: St+1 ← St ∪ {vt }
5: xt+1 ← argminx∈conv(St+1) f (x)
6: end for

[Holloway, 1974]

• Sparsity: FCFW o�ers much higher sparsity
• Speed: Convergence speed is (much) higher but
iterations very costly

• Projection-free: While still projection-free requires
solver for subproblems

x0

0.
1

0.30.
5

0.
7

0.7

0.
9

0.9

1.
1

1.1

1.
3

1.3

1.
5

1.51.
7

1.7

x∗

x1

x2
x3 x4x5 x6

x7

−∇ f (x14)

Vanilla FW Algorithm

x0

0.
1

0.30.
5

0.
7

0.7

0.
9

0.9

1.
1

1.1

1.
3

1.3

1.
5

1.51.
7

1.7

x1

x2

x∗

Fully-Corrective FW Algorithm

⇒ While expensive can be useful if sheer speed is not a priority but sparsity is.
Note. Sparsity not only a function of formulation but also algorithm and its trajectory.

Sebastian Pokutta · Structured ML Training via Conditional Gradients 11 / 19



The Fully-Corrective Frank-Wolfe Algorithm
CINDy: Recovering Dynamics from Noisy Data

Algorithm Fully-Corrective FW Algorithm (FCFW)
1: x0 ∈ P, S0 ← {x0 }
2: for t = 0 to T − 1 do
3: vt ← argmin

v∈P
〈∇f (xt), v〉

4: St+1 ← St ∪ {vt }
5: xt+1 ← argminx∈conv(St+1) f (x)
6: end for

[Holloway, 1974]

• Sparsity: FCFW o�ers much higher sparsity
• Speed: Convergence speed is (much) higher but
iterations very costly

• Projection-free: While still projection-free requires
solver for subproblems

x0

0.
1

0.30.
5

0.
7

0.7

0.
9

0.9

1.
1

1.1

1.
3

1.3

1.
5

1.51.
7

1.7

x∗

x1

x2
x3 x4x5 x6

x7

−∇ f (x14)

Vanilla FW Algorithm

x0

0.
1

0.30.
5

0.
7

0.7

0.
9

0.9

1.
1

1.1

1.
3

1.3

1.
5

1.51.
7

1.7

x1

x2

x∗

Fully-Corrective FW Algorithm

⇒ While expensive can be useful if sheer speed is not a priority but sparsity is.
Note. Sparsity not only a function of formulation but also algorithm and its trajectory.

Sebastian Pokutta · Structured ML Training via Conditional Gradients 11 / 19



CINDy vs SINDy: a recovery example
CINDy: Recovering Dynamics from Noisy Data

Kuramoto model. d = 10 weakly-coupled identical oscillators. For oscillator i:

Ûxi = ωi +
K
d

d∑
j=1

sin
(
xj − xi

)
+ h sin

(
xi

)

Number of data points. 3000 generated from 100 experiments (30 per experiment
with additive random noise of 1.0−3.

Sebastian Pokutta · Structured ML Training via Conditional Gradients 12 / 19



CINDy vs SINDy: sparsity matters - the most parsimonious model
CINDy: Recovering Dynamics from Noisy Data

Kuramoto model.

Fermi-Pasta-Ulam-Tsingou model.

Sebastian Pokutta · Structured ML Training via Conditional Gradients 13 / 19



Stochastic Conditional Gradients

—Training Neural Networks with Frank-Wolfe—

joint work with Christoph Spiegel and Max Zimmer

Sebastian Pokutta · Structured ML Training via Conditional Gradients 14 / 19

https://arxiv.org/abs/2010.07243


The Stochastic Frank-Wolfe Algorithm (with Momentum)
Training Neural Networks with Conditional Gradients

Algorithm Stochastic FW Algorithm (SFW)
1: m0 ← 0
2: for t = 0 to T − 1 do
3: uniformly sample i.i.d. i1, . . . , ibt ∼ n1,mo
4: ∇̃L(θt) ← 1

bt
∑bt
j=1 ∇`ij (θt)

5: mt ← (1 − ρt)mt−1 + ρt ∇̃L(θt)
6: vt ← argminv∈P 〈mt, v〉
7: θt+1 ← θt + αt(vt − θt)
8: end for

[e.g., Reddi et al 2016]

• Convergence rate: In the non-convex stochastic
smooth case O(1/

√
T)-rate

• Speed: Works well for very large data sets due to
mini-batched gradients

• Projection-free: Remains projection-free and
allows for constraints

0.5

1.0

1.5

tr
ai

ni
ng

se
tl

os
s

0 5 10 15 20
epochs

0%

25%

50%

75%

100%

te
st

se
ta

cc
ur

ac
y

0 1M 2M 3M
gradients calculated

SFW
SVRF
ORGFW
MSFW

SFW variants

Sebastian Pokutta · Structured ML Training via Conditional Gradients 15 / 19

https://ieeexplore.ieee.org/abstract/document/7852377


The Stochastic Frank-Wolfe Algorithm (with Momentum)
Training Neural Networks with Conditional Gradients

Algorithm Stochastic FW Algorithm (SFW)
1: m0 ← 0
2: for t = 0 to T − 1 do
3: uniformly sample i.i.d. i1, . . . , ibt ∼ n1,mo
4: ∇̃L(θt) ← 1

bt
∑bt
j=1 ∇`ij (θt)

5: mt ← (1 − ρt)mt−1 + ρt ∇̃L(θt)
6: vt ← argminv∈P 〈mt, v〉
7: θt+1 ← θt + αt(vt − θt)
8: end for

[e.g., Reddi et al 2016]

• Convergence rate: In the non-convex stochastic
smooth case O(1/

√
T)-rate

• Speed: Works well for very large data sets due to
mini-batched gradients

• Projection-free: Remains projection-free and
allows for constraints

0.5

1.0

1.5

tr
ai

ni
ng

se
tl

os
s

0 5 10 15 20
epochs

0%

25%

50%

75%

100%

te
st

se
ta

cc
ur

ac
y

0 1M 2M 3M
gradients calculated

SFW
SVRF
ORGFW
MSFW

SFW variants

Sebastian Pokutta · Structured ML Training via Conditional Gradients 15 / 19

https://ieeexplore.ieee.org/abstract/document/7852377


The Stochastic Frank-Wolfe Algorithm (with Momentum)
Training Neural Networks with Conditional Gradients

Algorithm Stochastic FW Algorithm (SFW)
1: m0 ← 0
2: for t = 0 to T − 1 do
3: uniformly sample i.i.d. i1, . . . , ibt ∼ n1,mo
4: ∇̃L(θt) ← 1

bt
∑bt
j=1 ∇`ij (θt)

5: mt ← (1 − ρt)mt−1 + ρt ∇̃L(θt)
6: vt ← argminv∈P 〈mt, v〉
7: θt+1 ← θt + αt(vt − θt)
8: end for

[e.g., Reddi et al 2016]

• Convergence rate: In the non-convex stochastic
smooth case O(1/

√
T)-rate

• Speed: Works well for very large data sets due to
mini-batched gradients

• Projection-free: Remains projection-free and
allows for constraints

0.5

1.0

1.5

tr
ai

ni
ng

se
tl

os
s

0 5 10 15 20
epochs

0%

25%

50%

75%

100%

te
st

se
ta

cc
ur

ac
y

0 1M 2M 3M
gradients calculated

SFW
SVRF
ORGFW
MSFW

SFW variants

Sebastian Pokutta · Structured ML Training via Conditional Gradients 15 / 19

https://ieeexplore.ieee.org/abstract/document/7852377


Relevance maps under di�erent optimizers / feasible regions
Training Neural Networks with Conditional Gradients

SGD Adam Adagrad Adadelta L1-norm ball K-sparse polytope L2-norm ball L5-norm ball Hypercube

Sebastian Pokutta · Structured ML Training via Conditional Gradients 16 / 19



Iterative Magnitude Pruning (IPM) for Conditional Gradients
Training Neural Networks with Conditional Gradients

Basic Idea. Train network to relativly high accuracy. Prune small weights. Repeat.

Note. There is tons of variants out there (beyond scope!) with
1. Learning Rate Rewinding
2. Weight Rewinding
3. Fine-Tuning

[see e.g., Robert Lange’s Blog Post for a great overview]

Sebastian Pokutta · Structured ML Training via Conditional Gradients 17 / 19

https://roberttlange.github.io/posts/2020/06/lottery-ticket-hypothesis/


Iterative Magnitude Pruning (IPM) for Conditional Gradients
Training Neural Networks with Conditional Gradients

Basic Idea. Train network to relativly high accuracy. Prune small weights. Repeat.

Note. There is tons of variants out there (beyond scope!) with
1. Learning Rate Rewinding
2. Weight Rewinding
3. Fine-Tuning

[see e.g., Robert Lange’s Blog Post for a great overview]

Sebastian Pokutta · Structured ML Training via Conditional Gradients 17 / 19

https://roberttlange.github.io/posts/2020/06/lottery-ticket-hypothesis/


Iterative Magnitude Pruning (IPM) for Conditional Gradients
Training Neural Networks with Conditional Gradients

Experiment. Training + Pruning + Fine-Tuning (CIFAR-10)

90% 91% 92% 93% 94% 95% 96% 97% 98%
Sparsity

82%

84%

86%

88%

90%

Te
st

ac
cu

ra
cy

SFW k-SparsePolytope
GSM (Ding et al, 2019)
LearningCompression (Carreira-Perpinan et al., 2018)

Sebastian Pokutta · Structured ML Training via Conditional Gradients 18 / 19



Thank you!

Sebastian Pokutta · Structured ML Training via Conditional Gradients 19 / 19


	Introduction
	Conditional Gradients: the basics
	Fully-Corrective Frank-Wolfe
	Stochastic Frank-Wolfe

	anm1: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


