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2INTRODUCTION

Online retail is driving growth in the parcel 
delivery industry 

Global parcels market approx. US$430 bn 
in 2019 

Global small-package volume > 100 bn in 
2020, forecasted to double by 2026

In the US, transportation accounts for 27% of 
GHG emissions of those 41% emitted by trucks 
and 9% by aircrafts 

Trucking: empty vehicles for a significant share 
of vehicle miles travelled (approx. 5-20%) 

In the US, congestion costs trucking over 
US$63.4 bn annually 

PARCEL DELIVERY IS BOOMING

Sources: Pitney Bowes Index and American 
Transportation Research Institute — ATRI



INTRODUCTION

IMPROVE CAPACITY USAGE, DECREASE NEGATIVE ENVIRONMENTAL 
IMPACTS, DIFFERENTIATE SERVICES AND PRICES 
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Revenue Management 

Manage demand 

Structural, price and quantity decisions

Supply Chain Management 

Manage supply

Our focus lies on revenue management quantity decisions for cargo capacity management 

Less studied than the passenger counterpart 

Unlike passenger case, capacity is defined in several dimensions (e.g., weight and volume), 
capacity usage typically uncertain until the time of loading, flexible routing decisions

Talluri and Van Ryzin (2005)
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A stylized view of cargo capacity management and the booking control problem

Related work

Exploratory work: machine learning for combinatorial optimization

Distribution logistics application and results

Conclusion

OUTLINE



INTRODUCTION

A STYLIZED VIEW OF CARGO CAPACITY MANAGEMENT
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See, for example, Levin et al. (2012)

Cargo capacityAllotment contracts Spot market

A contract fixes a 
customer’s shipping rate 
and amount of reserved 
capacity for a given 
period

Booking requests with 
different characteristics 
occur continuously 

Decision: accept / reject

Time of request, 
weight, volume, 
revenue, 
destination, etc.

Capacity, e.g., for a 
given, day or departure

Objective: maximize profit — revenue subtracting the cost (e.g., transportation and excess 
demand costs)

Infrequent bidding / 
negotiation process

Planning horizon

Problem definition depends e.g., on scope (allotment / spot market, network / single leg) 
and assumptions about uncertainty



PROBLEM DESCRIPTION

BOOKING CONTROL PROBLEM — SPOT MARKET
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Illustrative example — distribution logistics

Vt(wt) = λt
0Vt+1(wt) + ∑

j∈𝒩

λt
j max

ut
j∈{0,1}

{pjut
j + Vt+1(wt + ut

j ej)}, t = 1,…, T

VT+1(wT+1) =

Profit maximization — finite-horizon Markov Decision Process

Γ(wT+1)
Cost of solution to 
operational decision-
making problem

Request  
with prob.  
and revenue 

j ∈ 𝒩
λt

j
pj

No request 
with prob. λ t

0

Time t = 1,2…, T, T + 1

Decision: 
ut

j ∈ {0,1}
State: nb.  of 
accepted requests 
before , t wt ∈ ℝn

Γ(wT+1)



PROBLEM DESCRIPTION

BOOKING CONTROL PROBLEM — SPOT MARKET
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Illustrative example

• End-of-horizon problem: combinatorial optimization (CO) problem, e.g., 
multidimensional bin-packing or routing 

• High-dimensional state space, MDP intractable 

• Detailed solution to the CO problem is not relevant 

• Booking control under imperfect information and small computing time budget

Γ(wT+1)
Cost of solution to 
operational decision-
making problem

Time t = 1,2…, T, T + 1

Request  
with prob.  
and revenue 

j ∈ 𝒩
λt

j
pj

Decision 
ut

j ∈ {0,1}

OBSERVATIONS



RELATED WORK

BID-PRICE POLICIES FOR CARGO BOOKING CONTROL
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MDP formulation 
Threshold policy: accept request if its 
revenue is greater than expected 
opportunity cost of capacity used by 
the request

Linear programming (LP) formulation 
of optimal value function at initial state 
(Puterman, 1994, Adelman, 2007) 
Feasible solutions provide upper 
bounds on optimal value functions and 
optimal total expected profit

Static bid-price policy 
Widely used in practice 
LP ignores temporal 
aspects 
LP resolved frequently 
Williamson (1992), Talluri 
and van Ryzin (1998)

Dynamic bid-price policy 
LP based on value function 
approximated with linear-
in-parameters architectures 
Levina et al. (2011), Barz 
and Gartner (2016) airline 
network cargo capacity 
management

Bid-price policy that 
depends on capacity 
usage 
Lagrangian relaxation of 
capacity constraints in LP, 
Lagrangian multipliers 
dynamically updated 

Levin et al. (2012) airline, 
allotments and spot 
market
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RELATED WORK 9

‣ Abundance of literature showing success in solving hard decision-making problems 
‣ Reinforcement learning in revenue management: limited to passenger seat allocation 

problems in airline industry (Bondeaux et al., 2020, Gosavi et al.,2002, and Lawhead 
and Gosavi, 2019) 

‣ Algorithms typically based on simulating trajectories of the system 
‣ Challenge for cargo booking control: the end-of-horizon problem is costly to solve 

which makes simulation-based algorithms prohibitively costly

‣ Surge of studies, mostly focused on deterministic problems, survey Bengio et al. (2021) 
‣ Supervised learning for predicting characteristics of the solutions (not full solution) 

‣ Fischetti and Fraccaro (2017): predict optimal solution value 
‣ Larsen et al. (2021): predict description of solutions to the second-stage problem in 

a two-stage stochastic program without generating second stage scenarios online. 
Cargo capacity management application. 

Reinforcement learning (RL)

Machine learning for heuristically solving CO problems



METHODOLOGY: MACHINE LEARNING + COMBINATORIAL OPTIMIZATION

EXPLORATORY WORK
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Objective: high-quality booking control policy at low online computing cost 

Idea: Use RL or approximate dynamic programming (ADP) to solve the booking 
control problem with an approximation of  that can be computed in very 
short time 

In this exploratory work we use off-the-shelf ML/RL/ADP algorithms.

Γ(wT+1)

Approximation of Γ(wT+1)

Mapping from n (state) dimensions to m  
Approximation  

g : ℝn → ℝm

ϕ : ℝm → ℝ−

Ṽt(wt) = λt
0Ṽt+1(wt) + ∑

j∈𝒩

λt
j max

ut
j∈{0,1}

{pjut
j + Ṽt+1(wt + ut

j ej)}, t = 1,…, T

ṼT+1(wT+1) = ϕ(g(wT+1))  : solution value given by problem-
specific heuristic, MIP solved to given 
time limit / optimality gap or predicted 
by a ML algorithm

ϕ( ⋅ )

(1)

(2)



METHODOLOGY: MACHINE LEARNING + COMBINATORIAL OPTIMIZATION

SUPERVISED LEARNING
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‣ Separate the problem of accurately predicting  from that of solving 
(1)—(2) 

‣ Off-line data generation  

‣ Aim: representation of feasible final states (optimal and 
suboptimal) 

‣ Sample trajectories using stationary random policies (acceptance 
probability ) and compute  

‣ Labeled data 

Γ

p Γ(wT+1)

𝒟 = {(w1
T+1, Γ(w1

T+1)), …, (wN
T+1, , Γ(wN

T+1))}



APPLICATION

DISTRIBUTION LOGISTICS
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‣ Problem setting from Giallombardo et al. (2020) 

‣ Booking requests: Pick-up activities 

‣ CO problem: Vehicle Routing Problem (VRP) 

‣ Fixed number of vehicles  

‣ Optimal value  where  is the number of vehicles 

‣ If more than  vehicles are required, then we allow for additional 
outsourcing vehicles at fixed cost  

‣ Operational cost:  

K0

z*(w, K) K

K0
C ∈ ℝ+

Γ(w) = − max
K≥K0,K∈ℤ

{z*(w, K) + C(K − K0)}
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INSTANCES AND FEATURES
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‣ Sets of instances 
‣ 4, 10, 15 and 50 locations (uniform random location, locations are 

partitioned into groups with different revenues) 
‣ Request probabilities fixed such that higher revenue requests have 

greater probability of occurring later in the booking period 
‣ Features  
‣ Fixed-size: max, mean, median, standard deviation, 1st/3rd 

quartiles derived from capacity, depot location, total number of 
accepted requests per location, aggregate statistics of the locations 
(relative distances)

g(wT+1)



APPLICATION

APPROXIMATION
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‣ We seek an accurate approximation of 
 

‣ Predict  
‣ Compute outsourcing cost  with a bin-packing solver, MTP 

(Martello, 1990) 
‣ Supervised learning 
‣ Data 
‣ For each set of instances, generate sample trajectories using 

stationary random policy with different values of  
‣ Labels  computed using heuristic solver FILO (Accorsi and 

Vigo, 2020) 
‣  and  

‣ Model: random forest

Γ(w) = − max
K≥K0,K∈ℤ

{z*(w, K ) + C(K − K0)}

z*(w, K )

C(K − K0)

p

z*(w, K )

|𝒟Train | = 2,000 |𝒟Test | = 500



APPLICATION

ALGORITHMS
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‣ Off-the-self RL and ADP using predicted costs  except to evaluate 
final cost, then we use one call to VRP solver (FILO) 
‣ On-policy RL: SARSA with neural state approximation 
‣ ADP: Rollout with Monte Carlo Tree Search (MCTS) with Upper 

Confidence Bounds applied to Trees (UCT) predefined number of 
simulations at each stage X (30 or 100) 
‣ Base policy: Stationary random policy — MCTS-rand-X 
‣ Base policy: SARSA — MCTS-SARSA-X 

‣ Baselines 
‣ Booking-limit policy (BLP) and booking-limit policy with 

reoptimization (BLPR) proposed by  Giallombardo et al. (2020), solved 
using SCIP for instances with 4 and 10 locations 

‣ For the smallest instances: exact dynamic programming with VRP solver 
— DP-Exact — or with predicted costs — DP-ML 

‣ Best stationary random policy — rand-p

ṼT+1(wT+1)
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RESULTS
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‣ Supervised learning: low mean squared and mean absolute errors even for 
the larger instances 

‣ Control policies evaluated on the same 50 realizations of requests for each 
sets of instances 

‣ Intel Core i7-10700 2.90 GHz with 32 GB RAM



APPLICATION

SOLUTION QUALITY 4 LOCATIONS
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Can ML help in Solving Booking Control Problems? 11

Cost approximations  lead to high-quality solutions as DP-ML close to DP-Exact 

ADP and RL algorithms outperform baselines

ṼT+1(wT+1)



APPLICATION

SOLUTION QUALITY 10 LOCATIONS
18

ADP and RL algorithms outperform baselines 

BLP and BLRP produce poorer quality solutions than rand-0.7

12 J. Dumouchelle et al.
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SOLUTION QUALITY 15 AND 50 LOCATIONS
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MCTS algorithms with 100 simulations (instead of 30) produce the best quality solutions 

MCTS-SARSA-100 performs better on the largest instances, SARSA relatively good quality

12 J. Dumouchelle et al.

Can ML help in Solving Booking Control Problems? 13

15 locations 50 locations
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SARSA — training using ML and heuristic 
< 2 h

MCTS-SARSA — same as SARSA

BLP
BLPR

VRP to evaluate final cost 
Cost approximation

MCTS-rand-X online algo 
avg. 1.2/4.9 min (50 locations, 30/100 sim.)

rand-X  < 2 s (50 locations)

Online

Cost approximation 
Data generation (<1h) and training ML algo 
(<1min) 
Test: ML prediction and bin-packing 
heuristic

< 2 s (50 locations)

avg. 2.1/7.5 min (50 locations, 30/100 sim.)

Offline
COMPUTING TIME

< 11 s

< 13 s
Initial policy < 3 s (10 locations)



Conclusion
‣ Idea: use machine learning to predict 

solution cost to the CO problem that 
constitutes the main bottleneck in 
existing solution approaches 

‣ Exploratory work using off-the-shelf ML/
RL/ADP shows promising results 

‣ Ongoing work: second application on 
airline cargo capacity management  

‣ Future work: beyond off-the-shelf RL 
and ADP
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Thank you! 

emma.frejinger@umontreal.ca 

emmafrejinger.org


