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Combinatorial optimization over graph

NP-hard problems

min
𝑦𝑦∈ 0,1 𝓥𝓥

𝑓𝑓 𝑦𝑦;𝐺𝐺 ≔�
𝑖𝑖∈𝓥𝓥

𝑦𝑦𝑖𝑖

s. t. 𝑔𝑔 𝑦𝑦;𝐺𝐺 ≔ 𝑦𝑦𝑖𝑖 + 𝑦𝑦𝑗𝑗 ≥ 1
∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝓔𝓔

Minimum vertex cover
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Graph neural networks (GNN/MPN/Structure2vec)
Obtain embedding via iterative updates:

Initialize ℎ𝑖𝑖
(0) = 𝜎𝜎 𝑊𝑊1𝑋𝑋𝑖𝑖 ,∀ 𝑖𝑖

Iterate 𝑇𝑇 times: 

ℎ𝑖𝑖
(𝑡𝑡) ← 𝜎𝜎 𝑊𝑊1ℎ𝑖𝑖

(𝑡𝑡−1) + 𝑊𝑊2 �
𝑗𝑗∈𝒩𝒩 𝑖𝑖

ℎ𝑗𝑗
(𝑡𝑡−1)

neural network

Node selection probability 
𝑝𝑝𝑖𝑖 = Output ℎ𝑖𝑖

𝑇𝑇

[Dai, et al. ICML 16 and many others]

𝑗𝑗 𝑖𝑖

𝑗𝑗𝑗

Node attribute,
raw info 𝑋𝑋

Edge attribute,
raw info.

ℎ𝑖𝑖
(𝑇𝑇)ℎ𝑗𝑗

(𝑇𝑇)

ℎ𝑗𝑗′
(𝑇𝑇)

Optimize GNN parameters =
Search over the space of graph algorithms
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Sequential vs distributed local algorithms
Sequential algorithms

Nodes are selected one by one
Graph may change after each selection

1

1

1

1

Distributed local algorithms
Nodes are selected simultaneously
Decision are made based on local graph structure 
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Learning algorithms with reinforcement learning

3. State-action value function 
𝑞𝑞 𝑖𝑖|𝑆𝑆 = 𝜃𝜃1𝜎𝜎(𝜃𝜃2 ∑𝑗𝑗∈𝑉𝑉 ℎ𝑗𝑗 + 𝜃𝜃3 ℎ𝑖𝑖)

1. Training graphs

Reinforcement
Learning

4. Train 
Reward -1 for each step

Greedy action
𝑖𝑖∗ = argmax𝑖𝑖 𝑞𝑞(𝑖𝑖|𝑆𝑆)

5. Inference on test graph

[Learning combinatorial optimization over graphs. NIPS 2017.]

2. GNN node embeddings 
ℎ𝑖𝑖𝑇𝑇 𝑖𝑖∈𝑉𝑉
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Example of  learned sequential algorithms
Learned GNN algorithm balances between 

Degree of the picked node and 
Connectivity of the graph

GNN algorithm Node greedy Edge greedy

[Dai et al.  NIPS 2017] 8



Example of distributed local algorithms: PageRank

What’s the rank 
of this user?

Rank 𝑅𝑅𝑗𝑗?

Depends on rank 
of who follows her

𝑅𝑅𝑖𝑖

Transition Prob.
𝑤𝑤𝑗𝑗𝑗𝑗

𝑅𝑅𝑗𝑗 ← �
𝑗𝑗,𝑖𝑖 ∈𝐸𝐸

𝑤𝑤𝑗𝑗𝑗𝑗𝑅𝑅𝑖𝑖

Iterate until 
convergence:

Manually 
designed. 

Can we learn
from data?
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GNN = Parametrized distributed local graph algorithm

𝑝𝑝𝑖𝑖 = Output ℎ𝑖𝑖
𝑇𝑇

Expressiveness of GNN: 

Can express distributed local algorithms 
(Weisfeler-Lehman for graph isomorphism)

Limitation of GNN: 

Only capture information in T-hop 
neighborhood

When T is large, it is hard to train GNN. 

Without global information, not expressive 
enough

𝑗𝑗 𝑖𝑖

𝑗𝑗𝑗

Node attribute,
raw info 𝑋𝑋

Edge attribute,
raw info.

[Sato et al.  NIPS 2019]

ℎ𝑖𝑖
(𝑇𝑇)ℎ𝑗𝑗

(𝑇𝑇)

ℎ𝑗𝑗′
(𝑇𝑇)
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Challenges for learning new algorithms

…

Greedy 
Solution

Spanning
Tree N

Augment

Graph Instance
with Augmented 
Global Features

Spanning
Tree 1

Global Features

Learn

…

1. How to design the search space? 2. How to learn these algorithms? 
Supervised, Unsupervised

3. Can we interpret 
what’s discovered? 

Explain

Learn Graph 
Neural Networks

Explainable 
Model

Differentiable Algorithm Discovery (DAD) framework
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Search Space Design
for GNN



Motivating example
The best known algorithm for solving a general linear system takes time 𝒪𝒪(𝑛𝑛2.373)
Kelner et al. (2013) proposed an algorithm for solving Laplacian system:

𝐿𝐿𝐿𝐿 = 𝑏𝑏, where 𝐿𝐿 is Laplacian matrix
in nearly-linear time.

Step 1: Find a low-stretch spanning tree 
and obtain an initial solution on the tree.

Step 2: Refine the initialized solution by iteratively 
operating on local cycles in the original graph.
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Spanning tree solution as cheap global feature

𝐺𝐺input graph spanning tree optimal solutions 𝑦𝑦 over tree
with dynamic programming

Binary node feature

Binary edge feature
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Multiple spanning trees to multiple features

𝐺𝐺Input graph

Spanning trees

𝑇𝑇 1 , … ,𝑇𝑇(𝑛𝑛) 𝑦𝑦𝑇𝑇 1 , … ,𝑦𝑦𝑇𝑇(𝑛𝑛)
Optimal solutions over trees
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Overall search space design

…

Spanning
Tree N Augment

Graph Instance
with Augmented Global Features

…

Spanning
Tree 1

Global Features

Greedy 
Solution 1

……

Greedy 
Solution M

Optimal solutions on
N spanning trees

Approximate solutions via 
M greedy algorithms
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Better learned algorithms with global information
Comparison of our features to other features

Random features
Random one-hot encoding
Port Numbering + Weak 2-coloring

Our approach is consistently better
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Learn Distributed Local Algorithms
with GNN



Supervised

Graph Instance G
with Global Node Features X
and Global Edge Features Z

For each graph G, a solution 𝒚𝒚∗ is obtained by running expensive solver

Learn GNN-based algorithm which can imitate 𝒚𝒚∗ but runs much faster

Node embeddings
ℎ𝑖𝑖𝑇𝑇 𝑖𝑖∈𝑉𝑉

T-hop GNN output layer

0.98

0.3

0.9
0.8 0.7

0.9
0.1 0.1

0.2
0.4

0.1

Selection by 𝒚𝒚∗

Node selection probability 
𝑝𝑝𝑖𝑖 = Output ℎ𝑖𝑖

𝑇𝑇
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Supervised
Challenge: ‘‘mode-averaging’’  problem.

There exists symmetries in the solutions.
For example, 𝒚𝒚∗ and 𝟏𝟏 − 𝒚𝒚∗ are representing the same cut in the Max-Cut problem.

flip the labels

Solution: generate K distributions and apply hindsight loss

output layer 1

0.98

0.3

0.9
0.8 0.7

0.9
0.1 0.1

0.2
0.4

0.1

probability distribution 1
𝑝𝑝𝑖𝑖,1 𝑖𝑖∈𝑉𝑉

output layer K

… …
0.08

0.7

0.1
0.2 0.3

0.1
0.9 0.8

0.8
0.69

0.9

probability distribution K
𝑝𝑝𝑖𝑖,𝐾𝐾 𝑖𝑖∈𝑉𝑉

… min
𝑘𝑘∈ 1,…,𝐾𝐾

ℓ 𝑦𝑦𝑖𝑖∗, 𝑝𝑝𝑖𝑖,𝑘𝑘

hindsight loss
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Unsupervised
Many graph problems can be formulated as integer programming (IP) problems:

Construct unsupervised training loss based on optimization objective 𝑓𝑓 and constraints 𝑔𝑔
𝐿𝐿𝑈𝑈 𝑝𝑝,𝐺𝐺 ≔ 𝐸𝐸 𝑓𝑓 𝑌𝑌;𝐺𝐺 + 𝛽𝛽 ⋅ 𝑃𝑃 𝑔𝑔𝑖𝑖 𝑌𝑌;𝐺𝐺 ≤ 0

where 𝑌𝑌 ∼ Bernoulli(𝑝𝑝)

min
𝒚𝒚∈ 0,1 |𝑉𝑉|

𝑓𝑓(𝑌𝑌;𝐺𝐺) subject to   𝑔𝑔𝑖𝑖 𝑦𝑦;𝐺𝐺 ≤ 0 for 𝑖𝑖 = 1, … , 𝑙𝑙

Graph Instance G
with Global Node Features X
and Global Edge Features Z

T-hop GNN output layer

0.98

0.3

0.9
0.8 0.7

0.9
0.1 0.1

0.2
0.4

0.1

Node selection probability 
𝑝𝑝𝑖𝑖 = Output ℎ𝑖𝑖

𝑇𝑇
Node embeddings

ℎ𝑖𝑖𝑇𝑇 𝑖𝑖∈𝑉𝑉
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Better approximation than classical algorithms
Average and Max approximation ratio

Train/test on Barabasi Albert random graphs, with up to 300 nodes
Compare to polynomial algorithms, as well as LP/SDP
Use either supervised or Unsupervised learning

Minimum Vertex Cover
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Better time-solution trade-off
How much time X is needed to get Y approximation ratio

Each dot is a (time, solution quality) pair
Graphs with 512 nodes

23
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Extrapolation
train on small graphs
test on graphs up to 1024 nodes

Minimum Vertex Cover on Barabasi Albert random graphs

Best greedy
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Explain the Learned GNN Algorithms

25



Explainer

0.98

0.3

0.9
0.8 0.7

0.9
0.1 0.1

0.2
0.4

0.1

GNN Output LayerLearned 
Algorithm: 𝑌𝑌𝑖𝑖 ∼ Bernoulli 𝑝𝑝𝑖𝑖

Node selection probability 
𝑝𝑝𝑖𝑖 = Output ℎ𝑖𝑖

𝑇𝑇
𝑖𝑖 𝑖𝑖

(𝑉𝑉𝑆𝑆𝑖𝑖 ,𝐸𝐸𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑆𝑆𝑖𝑖)
Selected Graph Structure & Features

𝑖𝑖

T-hop subgraph
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Explainer architecture

𝑖𝑖

0.98

0.3

0.9
0.8 0.7

0.9
0.1 0.1

0.2
0.4

0.1

GNN Output Layer𝑖𝑖

T-hop subgraph

Node embeddings

GNN

MLP3
0.9

Top k1MLP1

Node/Edge/Feature Scores
0.2 0.01

0.61

0.7
0.98

0.4

MLP2
0.98

0.01
0.6

0.7

0.010.01

0.3

0.1

0.7
0.1
0.2

Top k2

Top k3

(𝑉𝑉𝑆𝑆𝑖𝑖 ,𝐸𝐸𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑆𝑆𝑖𝑖)
Selected Graph Structure & Features

𝑖𝑖

Learned 
Algorithm: 𝑌𝑌𝑖𝑖 ∼ Bernoulli 𝑝𝑝(𝑖𝑖)

Explainer:

Node selection probability 
𝑝𝑝𝑖𝑖 = Output ℎ𝑖𝑖

𝑇𝑇
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Information theoretic learning 

Node embeddings

𝑖𝑖

0.98

0.3

0.9
0.8 0.7

0.9
0.1 0.1

0.2
0.4

0.1

GNN Output Layer𝑖𝑖

T-hop subgraph

GNN

Top k1MLP1

Node/Edge/Feature Scores
0.2 0.01

0.61

0.7
0.98

0.4

MLP2
0.98

0.01
0.6

0.7

0.010.01

0.3

0.1

MLP3
0.7

0.9

0.1
0.2

Top k2

Top k3

(𝑉𝑉𝑆𝑆𝑖𝑖 ,𝐸𝐸𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑆𝑆𝑖𝑖)
Selected Graph Structure & Features

𝑖𝑖

Learned 
Algorithm: 𝑌𝑌𝑖𝑖 ∼ Bernoulli 𝑝𝑝(𝑖𝑖)

Explainer:

maximize
mutual information
𝑀𝑀𝑀𝑀(𝑌𝑌𝑖𝑖; (𝑉𝑉𝑆𝑆𝑖𝑖 ,𝐸𝐸𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑆𝑆𝑖𝑖))

Node selection probability 
𝑝𝑝𝑖𝑖 = Output ℎ𝑖𝑖

𝑇𝑇
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Discovery of greedy-like behavior
Explanation setting:

limit to 5 nodes and 10 edges to explain each target node

Takeaway:
Greedy heuristics are the best performing ones on these tasks
GNN understands and learns the meaning of greedy algorithm features

Greedy like behavior on some targets!

Minimum 
Vertex 
Cover
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Compare with Continuous Space Explainers

30

GNNExplainer with different regularization coefficients



Anchor nodes of explanation
Node color: the darker, the more frequent of being selected for explanation;

Minimum 
Vertex 
Cover

Observation
There exists a set of 
"anchor nodes"
Anchor nodes tends to be 
diverse, regarding 
their solution probability

Hypothesis
Anchor nodes are like "landmarks" in the graph
GNN compares the target node with anchor nodes to make prediction

Connections:  GNN with anchor nodes: Position/distance 
aware GNNs  (You et.al, 2018; Li et.al, 2020)
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Comparing feature quality
Explanation setting:

Concatenate TreeDP + Greedy + other global features
Use our explainer to select most important feature(s)
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Supervised
Unsupervised

Differentiable Algorithm Discovery (DAD)

…

Greedy 
Solution

Spanning
Tree N

Augment

Graph Instance
with Augmented 
Global Features

Spanning
Tree 1

Global Features

Learn

…

Explain

Learn Graph 
Neural Networks

Explainable 
Model

1. How to design the search space? 2. How to learn these algorithms? 
Supervised, Unsupervised

3. Can we interpret 
what’s discovered? 
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The End
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