Leaming Local Algorithms with Global Views
for Graph Combinatorial Optimization

Le Song

Georgia Institute of Technology
Joint work with

Hanjun Dai Xinshi Chen Yu Li
Google Brain Georgia Tech CUHK

Graphs are everywhere

o g .
all Ll o :
R . . ’
) . i
ol ot ,
.
gl
r -
.
.
- 4 .
Je
.
A - F
=L g .
- =T
. . . X .
£ .
P = "
£ .
[R
PR
Lo T
NE Vs .
i e P
g !

SOCIAL
NETWORKS

NETWORKS

(Year:1978)

. § FC_Barcelona
\\ 4 7] o
%, o
x\’é?p 3
e 9 ’,"Qo‘
\ . %)
N 7 @’6*

“Carles Puyol Saforcada
(born 13 April 1978) is a
Spanish retired professional
footballer. He was re

oo “KNOWLEDGE
GRAPHS

MOLECULAR
GRAPHS

INTERACTIONS

AT
OR

KS

Combinatorial optimization over graph

0 0] [0 0] Minimum vertex cover
‘ min fly; G) == V;
v z :
1 y€e{0,1} =

s.t. gy 6) =y ty; =1
‘ Vi I' 0 v(i,j) € E

NP-hard problems

Graph neural networks (GNN/MPN/Structure2vec)

» Obtain embedding via iterative updates: n I

Node attribute,

[Edge attribute,
raw info X

o Initialize h\”) = o (W, X;),V i raw info.

e lterate T times: &(iural network]
w

h® <o (Wlhl?t‘” + W, Z h}“”) I

JEN (i)

0 L

Node selection probability

C (T)
p; = Output (hi) Optimize GNN parameters =
Search over the space of graph algorithms

[Dai, et al. ICML 16 and many others]

Sequential vs distributed local algorithms

¢ Sequential algorithms o Distributed local algorithms
o Nodes are selected one by one o Nodes are selected simultaneously
o Graph may change after each selection o Decision are made based on local graph structure
@ [l

Learning algorithms with reinforcement learning

5. Inference on test graph
¥ e
> 15
2. GNN node embeddings

1. Training graphs {hiT}iEV
' Greedy action
[* = argmax; q(i|S)
4. Train
Reward -1 for each step \/
[m Reinforcement] < 3. State-action value function
X7 Learning q(ilS) = 610(6; Xjev hj + 65 hy)

[Learning combinatorial optimization over graphs. N/PS 2017]

Example of learned sequential algorithms

o Learned GNN algorithm balances between
o Degree of the picked node and
o Connectivity of the graph

S2V-DQN Greedy-Node Greedy-Edge

LN
EANIA T

A
P

I s $

GNN algorithm Node greedy Edge greedy

[Dai et al. NIPS 2017]

Example of distributed local algorithms: PageRank

ST S
of who follows her /

Wha’c’s the rank
of this user? R; « z .
Tk

%

anually
designed.

Can we learn
_ from data?)

Iterate until
convergence:

~N

GNN = Parametrized distributed local graph algorithm

o Expressiveness of GNN: n I

Node attribute,

[Edge attribute,
raw info X

o Can express distributed local algorithms raw info.

(Weisfeler-Lehman for graph isomorphism)

¢ Limitation of GNN: I
o Only capture information in T-hop
neighborhood
-G
o WhenTis large, itis hard to train GNN. g l
o Without global information, not expressive _ (T)
enough p; = Output (hi

[Sato et al. NIPS 2019] 10

Challenges for learning new algorithms

1. How to design the search space? 2. How to learn these algorithms? 3. Can we interpret
Supervised, Unsupervised what’s discovered?

Global Features

Spanning Graph Instance Learn Graph Explainable

Tree 1 with Augmented Neural Networks Model
Global Features

Spanning Augment

Tree N
O

Greedy
Solution

Differentiable Algorithm Discovery (DAD) framework

11

Search Space Design
for GNN

Motivating example

» The best known algorithm for solving a general linear system takes time O (n?373)
o Kelner et al. (2013) proposed an algorithm for solving Laplacian system:
Lx = b, where L is Laplacian matrix
in nearly-linear time.

Step 1: Find a low-stretch spanning tree Step 2: Refine the initialized solution by iteratively
and obtain an initial solution on the tree. operating on local cycles in the original graph.
spanning tree T G spanning tree T' G
SS
SS
IS

13

Spanning tree solution as cheap global feature

input graph G spanning tree > optimal solutions y over tree
with dynamic programming

14

Multiple spanning trees to multiple features

Input graph

G

=

Spanning trees

T(1),..,T(n)

=)

Optimal solutions over trees

yT y

T(n)

15

Overall search space design

Optimal solutions on
N spanning trees

Approximate solutions via
M greedy algorithms

~<

Global Features

Spanning

— Tree N

Spanning
Tree 1

\ZE\

Greedy
Solution 1

Greedy

\Solution M

2

Augment

Graph Instance

with Augmented Global Features

16

Better learned algorithms with global information

o Comparison of our features to other features
¢ Random features
o Random one-hot encoding
e Port Numbering + Weak 2-coloring

Our approach is consistently better

1.02 1 ' ' : '
1.un353= . = - il
DAaD

- 1.0030- CPNGNNs
© 1.0025 -
=

Y 1.0020-

Onehot
RandFeat

= 1.0015 -
(=)
= 1.0010 -
o

1.0005 -

1.0000 -

16-20 32-40 64-75 128-150 256-300
nodes in train/test graphs

17

Learn Distributed Local Algorithms
with GNN

Supervised

» Foreach graph G, a solution y* is obtained by running expensive solver

o Learn GNN-based algorithm which can imitate y™ but runs much faster

Graph Instance G Node embeddings Node selection probability
: T
with Global Node Features X {h] }iEV p; = Output (hlgT))
and Global Edge Features Z

i T-hop GNN> *

0.7

@ Selection by y*

19

Supervised

o Challenge: “mode-averaging” problem.
o There exists symmetries in the solutions.
o Forexample, y* and 1 — y™ are representing the same cut in the Max-Cut problem.

P

o Solution: generate K distributions and apply hindsight loss

(vi pik)

08 07 0.1
0.9 TH u u]

% 4o Probability distribution 17)

output layer 1 0.3 .,3 . {pi'l}iev

=) . hindsight loss
098 0.2
I > min ¢
H ke{1,...K}
H probability distribution K
output layer K {pi,K }iEV —

20

Unsupervised

o Many graph problems can be formulated as integer programming (IP) problems:

min_ f(Y;G) subjectto g;(y;G) <0 fori =1,...,1
ye{o,1}!V

» Construct unsupervised training loss based on optimization objective / and constraints g

Ly(p,G) = Elf(Y;G)] + B - Plg:(Y; G) < O]
where Y ~ Bernoulli(p)

Graph Instance G Node embeddings Node selection probability
i T
with Global Node Features X {h] }iEV p. = Output (hlgT))

and Global Edge Features Z
W i @ * output layer » 0

0.7 0.1

21

Better approximation than classical algorithms

o Average and Max approximation ratio
o Train/test on Barabasi Albert random graphs, with up to 300 nodes

o Compare to polynomial algorithms, as well as LP/SDP

¢ Use either supervised or Unsupervised learning

Minimum Vertex Cover

2.0
DAD LP-Relax

o DaD-U 2Approx-Greedy
-ﬁ 1.87 LogM-Approx 2Approx
S 1.6-
=
E
*x 1.4-
e
(=
=1
< 1.2+ ‘

1.0 - i i — 1|

16-20 32-40 64-75 128-150 256-300

nodes in train/test graphs

22

Better time-solution trade-off

o How much time X is needed to getY approximation ratio
o Each dot s a (time, solution quality) pair
o Graphs with 512 nodes

1.6
BN LAG
1.5 4
o LAG-U
S LogN-Approx
&U 1.4 4 2Approx-Greedy
. 2Approx
M|n|mum é 1.3 1 LP-Relax
VerteX a Gurobi
1.2 1
o
Cover <
1.1 1
1.0 4

1072 1071 100 10! 102 103

Time (Ms)

10%

23

Extrapolation

o train on small graphs
o teston graphs up to 1024 nodes

*
*

1.035 -

E 1.0254—— DAD-16-20

£ < DAD-32-40

= 1.020- DAD-64-75

= | DAD-128-150

X LO13T __ pap-2s6-300

% 1.0104 —— LogN-Approx

< 1.005 /
1.000

16 32 64 128 256 512 1024
nodes in test graphs

Minimum Vertex Cover on Barabasi Albert random graphs

24

Explain the Learned GNN Algorithms

25

Explainer

Node selection probability
p; = Output (hl@)
Y; ~ Bernoulli(p;)

Learned
Algorithm:

GNN) |Output Layer
0.3 &

T-hop subgraph

(Vs Es, S)
Selected Graph Structure & Features

26

Explainer architecture

0.9
Learned i GNN) |Output Layer
Algorithm: i i 03 %

T-hop subgraph

Node selection probability
p; = Output (hl@)
Y; ~ Bernoulli(p(i))

Node embeddings

(Vs, E5, Ss)

(L .
Explainer: _
Selected Graph Structure & Features
GNN) -
. : 7
\ ' H ; Top k2
i a3 .@{O}z

27

Information theoretic learning

Learned
Algorithm:

Explainer:

T-hop subgraph

0.9
i GNN)|Output Layer
0.3

Node embeddings

7

Node selection probability
p; = Output (hl@)
Y; ~ Bernoulli(p(i))

maximize
mutual information
MI(Y;; (Vs, Es, Ss))

Top k1

<

(Vs Es, S)
Selected Graph Structure & Features

Top k2

v

Top k3 =

A 4

28

Discovery of greedy-like behavior

o Explanation setting:
o limitto 5 nodes and 10 edges to explain each target node

Minimum
Vertex
Cover

o Takeaway:
o Greedy heuristics are the best performing ones on these tasks
o GNN understands and learns the meaning of greedy algorithm features

29

Compare with Continuous Space Explainers

o © O o o © O o
o ° 5 o ° 5
o o)
o © o o ©
o (@] o) o O
o) o) o)
o} o o o}
o) o)
o)
oo o o o)
A A o O o
o} o o)
o) o) o) o
o) o)
° 4 ° o 4 °
o o © o o ©
O @) O o
o.. e 0@ © @ o
©) ® © O, ° ?-'\.\A - ©
Q. o % e o e
o 9 o — T " *e o o
© = 1.0 = \ X/
——— / s) ,/g;/;fffffff* g\/// \ /‘w" / O (@) O (@)
[) — < o/ ﬁ @) e S A X ,//
— A ey NN @RI o) o
o~ / /] to T TN s
Y /o o I — \'// e o ©
O 5 AN \ =t q/ﬁ / O
—— — . H /
— > _— o WY e} 0
o] o o o — N~ _~ % o o
O T A o N X/ 4 A
- N © D —o. / o o
0o @) (@) @4 \ \ S @)
o O ° o / o o o)
o o PS o
o ¢}

30

Anchor nodes of explanation

o Node color: the darker, the more frequent of being selected for explanation;

O
o O O/ -@
Minimum OS5 P O
Vertex OO O
O
Cover 4 o O 53
o O
® O
e O
o Observation o Hypothesis
o There exists a set of o Anchornodes are like "landmarks" in the graph
“anchor nodes” I:> o GNN compares the target node with anchor nodes to make prediction
« Anchor nodes tends to be G
diverse, regarding » Connections: GNN with anchor nodes: Position/distance

their solution probability aware GNNs (You et.al, 2018; Li et.al, 2020)

31

Comparing feature quality

¢ Explanation setting:
o Concatenate TreeDP + Greedy + other global features
o Use our explainer to select most important feature(s)

Table 3. Most important (used in more that 99% of the graphs) features identified by our explainer.

Features Most important
MVC Node/Edge Greedy, TreeDP, Weak 2-color, RandFeat Node Greedy, TreeDP
MDS Greedy, TreeDP, Weak 2-color, RandFeat Greedy

Max-Cut Greedy, min/akpw/max-TreeDP, Weak 2-color, RandFeat Greedy, Max-TreeDP, Weak 2-color

32

Differentiable Algorithm Discovery (DAD)

1. How to design the search space? 2. How to learn these algorithms? 3. Can we interpret
Supervised, Unsupervised what’s discovered?

Global Features

Spanning Graph Instance Learn Graph Explainable
Tree 1 with Augmented Neural Networks Model
Global Features
Spanning Augment
Tree N
O
Greedy Supervised
Solution Unsupervised

33

The End

34

	Learning Local Algorithms with Global Views �for Graph Combinatorial Optimization��Le Song��Georgia Institute of Technology�Joint work with���
	Graphs are everywhere
	Combinatorial optimization over graph
	Graph neural networks (GNN/MPN/Structure2vec)
	Sequential vs distributed local algorithms
	Learning algorithms with reinforcement learning
	Example of learned sequential algorithms
	Example of distributed local algorithms: PageRank
	GNN = Parametrized distributed local graph algorithm
	Challenges for learning new algorithms
	Search Space Design�for GNN����
	Motivating example
	Spanning tree solution as cheap global feature
	Multiple spanning trees to multiple features
	Overall search space design
	Better learned algorithms with global information
	Learn Distributed Local Algorithms�with GNN����
	Supervised
	Supervised
	Unsupervised
	Better approximation than classical algorithms
	Better time-solution trade-off
	Extrapolation
	Explain the Learned GNN Algorithms
	Explainer
	Explainer architecture
	Information theoretic learning
	Discovery of greedy-like behavior
	Compare with Continuous Space Explainers
	Anchor nodes of explanation
	Comparing feature quality
	Differentiable Algorithm Discovery (DAD)
	The End

