Learning Local Algorithms with Global Views for Graph Combinatorial Optimization

Le Song

Georgia Institute of Technology Joint work with

Hanjun Dai Google Brain Xinshi Chen Georgia Tech Yu Li CUHK

Graphs are everywhere

Combinatorial optimization over graph

Minimum vertex cover

$$\min_{\substack{y \in \{0,1\} | \mathcal{V} | \\ \text{s.t.}}} f(y; G) \coloneqq \sum_{i \in \mathcal{V}} y_i$$
s.t.
$$g(y; G) \coloneqq y_i + y_j \ge 1$$

$$\forall (i, j) \in \mathcal{E}$$

NP-hard problems

Graph neural networks (GNN/MPN/Structure2vec)

- Obtain embedding via iterative updates:
 - Initialize $h_i^{(0)} = \sigma(W_1X_i), \forall i$

Edge attribute,
raw info.
$$j'$$

 j'
 $h_j^{(T)}$
 $h_j^{(T)}$
 $h_i^{(T)}$

Node selection probability $p_i = \text{Output}\left(h_i^{(T)}\right)$

Optimize GNN parameters = Search over the space of graph algorithms

Sequential vs distributed local algorithms

- Sequential algorithms
 - Nodes are selected one by one
 - Graph may change after each selection

- Distributed local algorithms
 - Nodes are selected simultaneously
 - Decision are made based on local graph structure

Learning algorithms with reinforcement learning

[Learning combinatorial optimization over graphs. NIPS 2017.]

Example of learned sequential algorithms

- Learned GNN algorithm balances between
 - Degree of the picked node and
 - Connectivity of the graph

GNN algorithm

Node greedy

Edge greedy

Example of distributed local algorithms: PageRank

GNN = Parametrized distributed local graph algorithm

Expressiveness of GNN:

- Can express distributed local algorithms (Weisfeler-Lehman for graph isomorphism)
- Limitation of GNN:
 - Only capture information in T-hop neighborhood
 - When T is large, it is hard to train GNN.
 - Without global information, not expressive enough

Challenges for learning new algorithms

1. How to design the search space?

2. How to learn these algorithms? Supervised, Unsupervised

3. Can we interpret what's discovered?

Differentiable Algorithm Discovery (DAD) framework

Search Space Design for GNN

Motivating example

- The best known algorithm for solving a general linear system takes time $\mathcal{O}(n^{2.373})$
- Kelner et al. (2013) proposed an algorithm for solving Laplacian system:

Lx = b, where L is Laplacian matrix

in nearly-linear time.

Step 1: Find a low-stretch spanning tree and obtain an initial solution on the tree.

Step 2: Refine the initialized solution by iteratively operating on local cycles in the original graph.

Spanning tree solution as cheap global feature

Multiple spanning trees to multiple features

Overall search space design

Better learned algorithms with global information

- Comparison of our features to other features
 - Random features
 - Random one-hot encoding
 - Port Numbering + Weak 2-coloring

Our approach is consistently better

Learn Distributed Local Algorithms with GNN

Supervised

- For each graph G, a solution y^* is obtained by running expensive solver
- Learn GNN-based algorithm which can imitate y^* but runs much faster

Supervised

- Challenge: "mode-averaging" problem.
 - There exists symmetries in the solutions.
 - For example, y^* and $1 y^*$ are representing the same cut in the Max-Cut problem.

Solution: generate K distributions and apply hindsight loss

Unsupervised

• Many graph problems can be formulated as integer programming (IP) problems:

 $\min_{\mathbf{y} \in \{0,1\}^{|V|}} f(Y;G) \text{ subject to } g_i(y;G) \le 0 \text{ for } i = 1, \dots, l$

• Construct unsupervised training loss based on optimization objective f and constraints g $L_U(p,G) \coloneqq E[f(Y;G)] + \beta \cdot P[g_i(Y;G) \le 0]$ where $Y \sim \text{Bernoulli}(p)$

Better approximation than classical algorithms

- Average and Max approximation ratio
 - Train/test on Barabasi Albert random graphs, with up to 300 nodes
 - Compare to polynomial algorithms, as well as LP/SDP
 - Use either supervised or Unsupervised learning

Better time-solution trade-off

- How much time X is needed to get Y approximation ratio
 - Each dot is a (time, solution quality) pair
 - Graphs with 512 nodes

Extrapolation

- train on small graphs
- test on graphs up to 1024 nodes

Minimum Vertex Cover on Barabasi Albert random graphs

Explain the Learned GNN Algorithms

Explainer

Explainer architecture

Information theoretic learning

Discovery of greedy-like behavior

Explanation setting:

Iimit to 5 nodes and 10 edges to explain each target node

Takeaway:

- Greedy heuristics are the best performing ones on these tasks
- GNN understands and learns the meaning of greedy algorithm features

Compare with Continuous Space Explainers

Anchor nodes of explanation

• Node color: the darker, the more frequent of being selected for explanation;

Minimum Vertex Cover

- Observation
 - There exists a set of "anchor nodes"
 - Anchor nodes tends to be diverse, regarding their solution probability

- Hypothesis
 - Anchor nodes are like "landmarks" in the graph
 - GNN compares the target node with anchor nodes to make prediction
- Connections: GNN with anchor nodes: Position/distance aware GNNs (You et.al, 2018; Li et.al, 2020)

Comparing feature quality

- Explanation setting:
 - Concatenate TreeDP + Greedy + other global features
 - Use our explainer to select most important feature(s)

		· · ·
	Features	Most important
MVC	Node/Edge Greedy, TreeDP, Weak 2-color, RandFeat	Node Greedy, TreeDP
MDS	Greedy, TreeDP, Weak 2-color, RandFeat	Greedy
Max-Cut	Greedy, min/akpw/max-TreeDP, Weak 2-color, RandFeat	Greedy, Max-TreeDP, Weak 2-color

Table 3. Most important (used in more that 99% of the graphs) features identified by our explainer.

Differentiable Algorithm Discovery (DAD)

The End