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Combinatorial optimization
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Finding an op*mal solu*on from a discrete set of solu*ons is hard

and for some industrial problems it needs to be done o6en!



Search-based approaches
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How to exploits this fact
in order to explore the solu*on more efficiently

Complete methods

1. Integer Programming
2. Constraint Programming
3. SAT Solving

Pros

1. Op*mality guarantees
2. General-purpose solvers

Cons
1. Prohibitive execution time
2. Do not leverage past resolution of 

similar problems problems



End-to-end learning-based approaches
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Pros

1. Execution time is super-fast
2. Problem structure is learned
3. Easy to use (when trained)

Cons
1. No op*mality guarantees
2. Non trivial to represent a problem
3. Hard to handle constraints (which are 

vastly present in industrial sePngs)

How to leverage valuable knowledge from past experiments 
in order to learn how to solve the problem

[Bengio et al., 2018]



Solving COPs by searching and learning
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Searching (OR): controlling the execu*on and gePng guarantees

Learning (ML): leveraging past knowledge for speeding-up the search

Taking the best of the two worlds

[Bengio et al., 2018]



Yes, but how do we do that ?
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S8ll an open ques8on that interests many research groups

Learning to branch in mixed integer programming [Khalil et al., 2016, AAAI]

Exact combinatorial optimization with graph convolutional 
neural networks

[Gasse et al., 2019, NeurIPS]

Improving Op<miza<on Bounds using Machine Learning:
Decision Diagrams meet Deep Reinforcement Learning

[Cappart et al., 2019, AAAI]

Learning to search in branch and bound algorithms [He et al., 2014, NeurIPS]

Recent works

Solving Mixed Integer Programs Using Neural Networks [Nair et al., 2020, ArXiv]

Main limita1ons of these works

Training o)en done with imita0on learning (requires labeled data)



Proposed approach
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We would like to tackle some of these difficulties

Dynamic programming (DP) as an unifying representation 
between constraint programming and reinforcement learning

1. Able to prove optimality
2. Not restricted to integer programs

3. Efficiently learn from previous decisions
4. No need of ground truth (labeled data)

Integer Programming
Constraint Programming (CP)

SAT solving
Local Search

Search-based tools

Supervised Learning
Reinforcement Learning (RL)

Unsupervised Learning

Learning-based tools



DP notaAon
Given a generic combinatorial op1miza1on problem

high-level picture of the architecture is shown in Figure 1. It is divided into three parts: the learning
phase, the solving phase and the unifying representation, acting as a bridge between the two phases.
Each part contains several components. Green blocks and arrows represent the original contributions
of this work and blue blocks corresponds to known algorithms that we adapted for our framework.
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Figure 1: Overview of our framework for solving COPs.

2.1 Dynamic Programming Model

Dynamic programming (DP) [7] is a technique combining both mathematical modeling and computer
programming for solving complex optimization problems, such as NP-hard problems. In its simplest
form, it consists in breaking a problem into sub-problems and to link them through a recursive
formulation. The initial problem is then solved recursively, and the optimal values of the decision
variables are recovered successively by tracking back the information already computed. Let us
consider a general COP Q : {max f(x) : x 2 X ✓ Zn

}, where xi with i 2 n are n discrete variables
that must be assigned in order to maximize a function f(x). In the DP terminology, the decision
variables of Q are referred to as the controls (xi). They take value from their domain D(xi), and
enforce a transition (T : S ⇥ X ! S) from a state (si) to another one (si+1) where S is the set
of states. The initial state (s1) is known and a transition is done at each stage (i 2 {1, . . . , n})
until all the variables have been assigned. Besides, a reward (R : S ⇥ X ! R) is induced after
each transition. Finally, a DP model can also contain validity conditions (V : S ⇥ X ! {0, 1})
and dominance rules (P : S ⇥X ! {0, 1}) that restrict the set of feasible actions. The difference
between both is that validity conditions are mandatory to ensure the correctness of the DP model
(V (s, x) = 0 , T (s, x) = ?) whereas the dominance rules are only used for efficiency purposes
(P (s, x) = 0 ) T (s, x) = ?), where ,, ), and ? represent the equivalence, the implication,
and the unfeasible state, respectively. A DP model for a COP can then be modelled as a tuple
hS,X, T,R, V, P i. The problem can be solved recursively using Bellman Equation, where gi : X !

R is a state-value function representing the optimal reward of being at state si at stage i:

gi(si) = max
n
R(si, xi) + gi+1

�
T (si, xi)

�o
8i 2 {1..n} s.t. T (si, xi) 6= ? (1)

The reward is equal to zero for the final state (gn+1(sn+1) = 0) and is backtracked until g1(s1) has
been computed. This last value gives the optimal cost of Q. Then, by tracing the values assigned to the
variables xi, the optimal solution is recovered. Unfortunately, DP suffers from the well-known curse
of dimensionality, which prevents its use when dealing with problems involving large state/control
spaces. A partial solution to this problem is to prune dominated actions (P (s, x) = 0). An action is
dominated if it is valid according to the recursive formulation, but is (1) either strictly worse than
another action, or (2) it cannot lead to a feasible solution. In practice, pruning such dominated actions
can have a huge impact on the size of the search space, but identifying them is not trivial as assessing
those two conditions precisely is problem-dependent. Besides, even after pruning the dominated
actions, the size of the state-action space may still be too large to be completely explored in practice.
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In DP, the problem would be define using:

• A set decision or actions (𝑥!) taking values from domains (𝐷𝑜𝑚(𝑥!))

• That enforce a transition 𝑇: 𝑆 × 𝑋 → 𝑆 from a state (𝑠!) to the next (𝑠!"#)

• A initial state (𝑠#) and a transition to perform at every stage 𝑖 ∈ 1,… , 𝑛

• A reward (𝑅: 𝑆 × 𝑋 → ℝ ) is induced after each transition

• A set of conditions (validity and dominance) restrict the possible transitions

Which can be solved recursively using the Bellman Equation

high-level picture of the architecture is shown in Figure 1. It is divided into three parts: the learning
phase, the solving phase and the unifying representation, acting as a bridge between the two phases.
Each part contains several components. Green blocks and arrows represent the original contributions
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From DP to CP
In CP, a combinatorial op>mizatoin problem is define using:

• A set variables X taking value in their domains D(X), subject to a set of constraints C(X) 
and objec@ve funciton O. 

• We use an encoding that uses two types of variables: decision and auxiliary

• Auxiliary variables xi
s represent the current state at stage 𝑖

• Decision variables xia denotes the ac@on that will be taken at stage 𝑖.

The previous DP can be expressed in CP in the following manner:

2.4 Neural Network Architecture

In order to ensure the genericity and the efficiency of the framework, we have two requirements for
designing the neural network architecture: (1) be able to handle instances of the same COPs, but that
have a different number of variables (i.e., able to operate on non-fixed dimensional feature vectors)
and (2) be invariant to input permutations. In other words, encoding variables x1, x2, and x3 should
produce the same prediction as encoding x3, x1, and x2. A first option is to embed the variables into
a set transformer architecture [37], that ensures these two requirements. Besides, many COPs also
have a natural graph structure that can be exploited. For such a reason, we also considered another
embedding based on graph attention network (GAT) [59]. The embedding, either obtained using
GAT or set transformer, can then be used as an input of a feed-forward network to get a prediction.
Case studies will show a practical application of both architectures. For the DQN network, the
dimension of the last layer output corresponds to the total number of actions for the COP and output
an estimation of the Q-values for each of them. The output is then masked in order to remove the
unfeasible actions. Concerning PPO, distinct networks for the actor and the critic are built. The last
layer on the critic output only a single value. Concerning the actor, it is similar as the DQN case but a
softmax selection is used after the last layer in order to obtain the probability to select each action.

2.5 CP Encoding

An introduction to constraint programming is proposed in Appendix B. Note that the teletype font
is used to refer to CP notations. This section describes how a DP formulation can be encoded in a CP
model. Modeling a problem using CP consists in defining the tuple hX, D, C, Oi where X is the set of
variables, D(X) is the set of domains, C is the set of constraints, and O is the objective function. Let us
consider the DP formulation hS,X, T,R, V, P i with also n the number of stages.

Variables and domains We make a distinction between the decision variables, on which the search
is performed, and the auxiliary variables that are linked to the decision variables, but that are not
branched on during the search. The encoding involves two variables per stage: (1) xsi 2 X is an
auxiliary variable representing the current state at stage i whereas (2) xai 2 X is a decision variable
representing the action done at this state, similarly to the regular decomposition [45]. Besides, a
last auxiliary variable is considered for the stage n+ 1, which represents the final state of the system.
In the optimal solution, the variables thus indicate the best state that can be reached at each stage, and
the best action to select as well.

Constraints The constraints of our encoding have two purposes. Firstly, they must ensure the
consistency of the DP formulation. It is done (1) by setting the initial state to a value (e.g., ✏), (2)
by linking the state of each stage to the previous one through the transition function (T ), and finally
(3) by enforcing each transition to be valid, in the sense that they can only generate a feasible state
of the system. Secondly, other constraints are added in order to remove dominated actions and the
subsequent states. In the CP terminology, such constraints are called redundant constraint, they
do not change the semantic of the model, but speed-up the search. The constraints inferred by our
encoding are as follows, where validityCondition and dominanceCondition are both Boolean
functions detecting non-valid transitions and dominated actions, respectively.

x
s
1 = ✏ (Setting initial state)
x
s
i+1 = T (xsi , x

a
i ) 8i 2 {1, . . . , n} (Enforcing transitions)

validityCondition(xsi , x
a
i ) 8i 2 {1, . . . , n} (Keeping valid transitions)

dominanceCondition(xsi , x
a
i ) 8i 2 {1, . . . , n} (Pruning dominated states)

Objective function The goal is to maximize the accumulated sum of rewards generated through
the transition (R : S ⇥ A ! R) during the n stages: maxxa

�Pn
i=1 R(xsi , x

a
i )
�
. Note that the

optimization and branching selection is done only on the decision variables (xa).

2.6 Search Strategy

From the same DP formulation, we are able to (1) build a RL environment in order to learn the best
actions to perform, and (2) state a CP model of the same problem. This consistency is at the heart
of the framework. This section shows how the knowledge learned during the training phase can be
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s.t.

Easily implemented
with element and table constraints



Proposed Framework
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Main assump*on: we have a DP model of the problem

Pytorch (python) Gecode (C++)

What we propose     What exists already



DL, RL and Search Architecture 

The DL architecture selected need to: 
1. handle instances of the same COPs, but different number of variables 
2. be invariant to input permutation

We have experiemented with
Graph AJen@on Network (Veličković et al., ICML 2018
Set Transformers (Lee et al., ICML 2019)

Which then provide input to a feed forward network

The RL agents tested are either
DQN: one value for each ac@on (expected value of ac@on)
PPO: policy gradient (a probability we should select each ac@on)

Embedding the RL agents into the CP Search
BaB:  Depth-First Branch and Bound Search (using DQN) 
ILDS: Itera@ve Limited Discrepency Search (using DQN)
RBS: Restart-based Search (using PPO)



Illustration on TSP
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1
2

3

4 0

• Last customer visited
• Remaining customers to visit

State

Ac1on
• Visit a new customer
• Subject to some validity condi@ons

Transition
• Update the state

Reward
• Travelling distance (negative reward)Exemple

Ini1al state Ac1on Next stateCost
⟨0, {1,2,3,4}⟩ 4 𝑑(0 → 4) ⟨4, {1,2,3}⟩

Dynamic programming model
Require to define: states, ac>ons, transi>on func>on, reward func>on 



Link To RL environment
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• Last customer visited
• Remaining customers to visit

• Last customer visited
• Remaining customers to visit
• Informa>on about the instance

• Visit a new customer • Visit a new customer

• Update the state • Same update

• Travelling distance • FIRST, find a feasible solu@on
• THEN, minimize the distance

State

Ac1on

Transition

Reward

DP Model RL Environment

Exploiting again similarities with dynamic programming



⟨1, {}⟩

1 2 3 4

1 2 3 4

⟨4, {1}⟩

1 2 3 4

⟨2, {1,4}⟩

1 2 3 4

⟨3, {1,2,4}⟩

Constraint programming search
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⟨0, {1,2,3,4}⟩

4
1

2

3 0

⟨1, {4}⟩

Two possibili>es:
• Call RL agent again
• Reuse previous DQN/PPO (caching)



Adding Constraints
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Let’s consider the Traveling Salesman Problem with Time Windows

8 to 10 am

4

1

2

3 0

9:30 to 11 am

11 am to 2 pm

4 pm to 6 pm



TSPTW: A DP model

E Travelling Salesman Problem with Time Windows (TSPTW)

The travelling salesman problem with time windows (TSPTW) is an extension of the standard
travelling salesman problem (TSP). Given an instance of n customers, it consists in finding a
minimum cost Hamiltonian tour starting and ending at a given depot and visiting all customers (or
similarly, cities). Each customer i is defined by a position (xi and yi for the 2D case), and a time
window ([li, ui]), defining the time slot where he can be visited. Each customer can and must be
visited once and the travel time between two customers i and j is defined by di,j . Note that a customer
can be visited before the beginning of its time windows but, in this case, the service has to wait.
No customers can be serviced after its time windows, and solutions that fail to serve all the clients
are considered infeasible. Finally, there is no time windows associated to the depot. The goal is to
minimize the sum of the travel distances. Although the search space of the TSPTW is smaller than
for the TSP, the time constraints make the problem more difficult to solve in practice [57].

E.1 Dynamic Programming Model

Given an instance of n customers, the DP model has n+ 1 stages where the last state corresponds to
the solution obtained. Without loss of generality, we assume that the depot is associated to the first
customer (i = 1). A state si 2 S at stage i is composed of three entities: (1) the set of remaining
customers that still have to be visited (mi 2 P

�
{2, ..., n}

�
, with P the powerset of all the customers

without including the depot), (2) the last customer that has been serviced (vi 2 {1..n}), and (3) the
current time (ti 2 N+). An action ai 2 {1..n} performed at stage i corresponds to the service of
customer i. The reward R(si, ai) is, in fact, a penalty and corresponds to the travel time between
two customers (R(si, ai) = �dvi,ai). Note that an additional penalty for coming back to the depot
(R(sn+1) = �dvn+1,1) must also be considered. The DP model we built is as follows.

s1 =
�
m1 = {2..n}, v1 = 1, t1 = 0

 
(Initial state definition)

mi+1 = mi \ ai 8i 2 {1..n} (Transition function for mi)
vi+1 = ai 8i 2 {1..n} (Transition function for vi)
ti+1 = max

�
ti + dvi,ai , lai

�
8i 2 {1..n} (Transition function for ti)

V1 : ai 2 mi 8i 2 {1..n} (First validity condition)
V2 : uai � ti + dvi,ai 8i 2 {1..n} (Second validity condition)
P :

�
ti � uj

�
)

�
j /2 mi

�
8i, j 2 {1..n} (Dominance pruning)

The initial state enforces to start at the depot at time t = 0 and that all the customers (excepting the
depot) must be visited. When an action is done (i.e., servicing a customer), the state is updated as
follows: (1) the client does not have to be visited anymore, (2) he becomes the last visited client, and
(3) the current time is updated according to the problem definition. A action is valid if it satisfies two
validity conditions: (1) he must be in the set of the non-visited clients, and (2) given the current time,
it is possible to visit the client without exceeding the time windows. The non-mandatory dominance
rule (R) removes from mi all the clients having the time windows exceeded. By doing so, the search
space is reduced. Finally, the objective function is to minimize the sum of the travel time.

E.2 Instance Generation

For an instance of n customers, the coordinates xi and yi are sampled uniformly at random in a
grid of size 100 ⇥ 100. The rounded 2D Euclidean distances is used for the travel time between
two locations. The largest distance separating two customers is then

p
1002 + 1002 ⇡ 144. Time

windows are also randomly generated but we ensure that the values selected will allow at least one
feasible solution. To do so, we generate the time windows as follows. Let W be the maximal time
window length allowed and G the maximal gap between two consecutive time windows. We first
generate a random permutation of all the customers. It constitutes the feasible solution we want to
preserve. Then, the time windows are computed as follows: li+1 ⇠ U [di,i+1 + li, di,i+1 + li +G],
and ui+1 ⇠ U [li+1, li+1 + W ], with l1 = 0 (i.e., the depot) and di,i+1 the distance between two
consecutive customers in the tour. It is important to note that this feasible solution is not known by
the solvers, which only receive the customers coordinates and the time windows bounds. Without
loss of generality, the values 100 and 10 are used for W and G.
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The state definition
𝑠! ∈ 𝑆 includes:
• 𝑣! last node visited
• 𝑡! is the time of visit 
• 𝑚! ∈ 𝒫 2,… , 𝑛 set of remaining customers 

The model is index in 𝒊 ∈ 𝑺, and each stage corresponds a customer visit

The problem data
• 𝑙! & 𝑢! are bounds on the @me window
• 𝑑 ̇,̇ is the distance between two customers 

Taking ac>on 𝒂𝒊 ∈ 𝟏,… , 𝒏 corresponds to the customer to visit at stage 𝒊
State transition functions as follows



TSPTW: Results

Python and Pytorch [43] is used for designing the neural networks. Library DGL [61] is used for
implementing graph embedding, and SetTransformer [37] for set embedding. The CP solver used
is Gecode [55], which has the benefit to be open-source and to offer a lot of freedom for designing
new search procedures. As Gecode is implemented in C++, an operability interface with Python

code is required. It is done using Pybind11 [29]. Training time is limited to 48 hours, memory
consumption to 32 GB and 1 GPU (Tesla V100-SXM2-32GB) is used per model. A new model
is recorded after each 100 episodes of the RL algorithm and the model achieving the best average
reward on a validation set of 100 instances generated in the same way as for the training is selected.
The final evaluation is done on 100 other instances (still randomly generated in the same manner)
using Intel Xeon E5-2650 CPU with 32GB of RAM and a time limit of 60 minutes.

3.1 Travelling Salesman Problem with Time Windows (TSPTW)

Detailed information about this case study and the baselines used for comparison is proposed in
Appendix E. In short, OR-Tools is an industrial solver developed by Google, PPO uses a beam-
search decoding of width 64, and CP-nearest solves the DP formulation with CP, but without
the learning part. A nearest insertion heuristic is used for the value-selection instead. Results
are summarized in Table 1. First of all, we can observe that OR-Tools, CP-model, and DQN are
significantly outperformed by the hybrid approaches. Good results are nevertheless achieved by
CP-nearest, and PPO. We observe that the former is better to prove optimality, whereas the latter is
better to discover feasible solutions. However, when the size of instances increases, both methods
have more difficulties to solve the problem and are also outperformed by the hybrid methods, which
are both efficient to find solutions and to prove optimality. Among the hybrid approaches, we observe
that DQN-based searches give the best results, both in finding solutions and in proving optimality.

We also note that caching the predictions is useful. Indeed, the learned heuristics are costly to use,
as the execution time to finish the search is larger when the cache is disabled. For comparison, the
average execution time of a value-selection without caching is 34 milliseconds for BaB-DQN (100
cities), and goes down to 0.16 milliseconds when caching is enabled. For CP-nearest, the average
time is 0.004 milliseconds. It is interesting to see that, even being significantly slower than the
heuristic, the hybrid approach is able to give the best results.

Table 1: Results for TSPTW. Methods with ? indicate that caching is used, Success reports the
number of instances where at least a solution has been found (among 100), Opt. reports the number of
instances where the optimality has been proven (among 100), and Time reports the average execution
time to complete the search (in minutes, and only including the instances where the search has been
completed; when the search has been completed for no instance t.o. (timeout) is indicated.

Approaches 20 cities 50 cities 100 cities
Type Name Success Opt. Time Success Opt. Time Success Opt. Time

Constraint programming
OR-Tools 100 0 < 1 0 0 t.o. 0 0 t.o.
CP-model 100 100 < 1 0 0 t.o. 0 0 t.o.
CP-nearest 100 100 < 1 99 99 6 0 0 t.o.

Reinforcement learning DQN 100 0 < 1 0 0 < 1 0 0 < 1
PPO 100 0 < 1 100 0 5 21 0 46

Hybrid (no cache) BaB-DQN 100 100 < 1 100 99 2 100 52 20
ILDS-DQN 100 100 < 1 100 100 2 100 53 39
RBS-PPO 100 100 < 1 100 80 12 100 0 t.o.

Hybrid (with cache) BaB-DQN
? 100 100 < 1 100 100 < 1 100 91 15

ILDS-DQN
? 100 100 < 1 100 100 1 100 90 15

RBS-PPO
? 100 100 < 1 100 99 2 100 11 32

3.2 4-Moments Portfolio Optimization (PORT)

Detailed information about this case study is proposed in Appendix F. In short, Knitro and APOPT

are two general non-linear solvers. Given that the problem is non-convex, these solvers are not able
to prove optimality as they may be blocked in local optima. The results are summarized in Table
2. Let us first consider the continuous case. For the smallest instances, we observe that BaB-DQN?,
ILDS-DQN

?, and CP-model achieve the best results, although only BaB-DQN
? has been able to prove
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Average 'me to make a decision
• BaB-DQN – 34 ms
• Bab-DQQ : caching – 0.16ms
• CP-nearest – 0.004 ms
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(in min.)

Observa'on:
• PPO dominates DQN in end-to-end ML
• Reverse is observed when used inside CP



4-Moments PorMolio OpAmizaAon

Given a set of n investments, each with a specific cost (a+), an expected 
return (µ+), a standard devia0on (σ+), a skewness (γ+), and a kurtosis (κ_i). 

Each investors a9ributes an importance (𝜆 ,…. ) to each moment and 
must decide (𝑥/ ∈ {0,1}) whether he makes each investment or not, 
subject to a budget 𝐵. The objec@ve is to select large posi@ve expected 
return and skewness, with large nega@ve variance and kurtosis.

Math. Programming model Dynamic Programming model

F 4-Moments Portfolio Optimization Problem (PORT)

In the 4-moments portfolio optimization problem (PORT) [4, 11], an investor has to select a com-
bination of investments that provides the best trade-off between the expected return and different
measures of financial risk. Given a set of n investments, each with a specific cost (ai), an expected
return (µi), a standard deviation (�i), a skewness (�i), and a kurtosis (i), the goal of the portfolio
optimization problem is to find a portfolio with a large positive expected return and skewness, but
with a large negative variance and kurtosis, provided that the total investment cost is below its budget
B. Besides, the importance of each financial characteristic is weighted (�1, �2, �3, and �4) according
to the preference of the investor. Let xi be a binary variable associated to each investment, indicating
whether or not the investment is included in the portfolio. The standard problem is expressed as
follows:
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Note that it is a discrete non-linear programming problem, and that the objective function, taken
as-is, is non-convex. Solving this problem using a integer programming solver is non-trivial and
requires advanced decomposition methods [11]. Another option is to use a general non-linear solver
as Knitro [60], or APOPT [27]. However, as this formulation is non-convex, such solvers will not
be able to prove optimality. To do so, a convex reformulation of the problem is required. In this
work, we also consider a discrete variant of this problem, where the floor function is applied on all
the roots of Equation (2). By doing so, all the coefficients are integers. This variant is especially hard
for general non-linear solvers, as we break the linearity of the objective function and increase the risk
of getting a poor local optimum.

F.1 Dynamic Programming Model

Given an instance of n items, the DP model has n + 1 stages where the last state corresponds to
the final solution obtained. The idea of the DP model is to consider at each investment successively
(one per stage) and to decide if it must be inserted into the portfolio. A state si 2 N+ at stage i only
consists of the current cost of the investments in the portfolio. An action ai 2 {0, 1} performed at
stage i corresponds to the selection, or not, of the investment i. The reward corresponds to the final
objective function value (Equation (2)) provided that we are at the last stage (i.e., all the variables
have been assigned). Otherwise, it is equal to zero. Then, only the final reward is considered. The DP
model, with a validity condition ensuring that the budget B is never exceeded, is as follows:

s1 = 0 (Initial state definition)
si+1 = si + aibi 8i 2 {1..n} (Transition function for mi)
V1 : si + aibi  B 8i 2 {1..n} (Validity condition)

F.2 Instance Generation

Instances are generated in a similar fashion as [4, 11]. For an instance of n investments, the costs bi
and the expected return µi are sampled uniformly from 0 to 100. The maximum budget B is set at
0.5⇥

Pn
i=1 bi. The other financial terms (�i, �i, and i) are sampled uniformly from 0 to µi. Finally,

�i = 1, and �2 = �3 = �4 = 5.

F.3 Neural Architecture

Unlike the TSPTW, the portfolio optimization problem has no graph structure. For this reason, we
have considered for this problem an architecture based on sets (SetTransformer) [37] which has
the benefit to be permutation invariant. Then, processing an instance with the items {i1, i2, i3}
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Note that it is a discrete non-linear programming problem, and that the objective function, taken
as-is, is non-convex. Solving this problem using a integer programming solver is non-trivial and
requires advanced decomposition methods [11]. Another option is to use a general non-linear solver
as Knitro [60], or APOPT [27]. However, as this formulation is non-convex, such solvers will not
be able to prove optimality. To do so, a convex reformulation of the problem is required. In this
work, we also consider a discrete variant of this problem, where the floor function is applied on all
the roots of Equation (2). By doing so, all the coefficients are integers. This variant is especially hard
for general non-linear solvers, as we break the linearity of the objective function and increase the risk
of getting a poor local optimum.

F.1 Dynamic Programming Model

Given an instance of n items, the DP model has n + 1 stages where the last state corresponds to
the final solution obtained. The idea of the DP model is to consider at each investment successively
(one per stage) and to decide if it must be inserted into the portfolio. A state si 2 N+ at stage i only
consists of the current cost of the investments in the portfolio. An action ai 2 {0, 1} performed at
stage i corresponds to the selection, or not, of the investment i. The reward corresponds to the final
objective function value (Equation (2)) provided that we are at the last stage (i.e., all the variables
have been assigned). Otherwise, it is equal to zero. Then, only the final reward is considered. The DP
model, with a validity condition ensuring that the budget B is never exceeded, is as follows:

s1 = 0 (Initial state definition)
si+1 = si + aibi 8i 2 {1..n} (Transition function for mi)
V1 : si + aibi  B 8i 2 {1..n} (Validity condition)

F.2 Instance Generation

Instances are generated in a similar fashion as [4, 11]. For an instance of n investments, the costs bi
and the expected return µi are sampled uniformly from 0 to 100. The maximum budget B is set at
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i=1 bi. The other financial terms (�i, �i, and i) are sampled uniformly from 0 to µi. Finally,

�i = 1, and �2 = �3 = �4 = 5.

F.3 Neural Architecture

Unlike the TSPTW, the portfolio optimization problem has no graph structure. For this reason, we
have considered for this problem an architecture based on sets (SetTransformer) [37] which has
the benefit to be permutation invariant. Then, processing an instance with the items {i1, i2, i3}
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PORT: Results

optimality for all the instances. For larger instances, the non-linear solvers achieve the best results,
but are nevertheless closely followed by RBS-PPO

?. When the coefficients of variables are floored
(discrete case), the objective function is not continuous anymore, making the problem harder for
non-linear solvers, which often exploit information from derivatives for the solving process. Such
a variant is not supported by APOPT. Interestingly, the hybrid approaches do not suffer from this
limitation, as no assumption on the DP formulation is done beforehand. Indeed, ILDS-DQN? and
BaB-DQN

? achieve the best results for the smallest instances and RBS-PPO
? for the larger ones.

Table 2: Results for PORT. Best results are highlighted, Sol. reports the best average objective profit
reached, Opt. reports the number of instances where the optimality has been proven (among 100).

Approaches Continuous coefficients Discrete coefficients
20 items 50 items 100 items 20 items 50 items 100 items

Type Name Sol. Opt. Sol. Opt. Sol. Opt. Sol. Opt. Sol. Opt. Sol. Opt.

Non-linear solver KNITRO 343.79 0 1128.92 0 2683.55 0 211.60 0 1039.25 0 2635.15 0
APOPT 342.62 0 1127.71 0 2678.48 0 - - - - - -

Constraint programming CP-model 356.49 98 1028.82 0 2562.59 0 359.81 100 1040.30 0 2575.64 0

Reinforcement learning DQN 306.71 0 879.68 0 2568.31 0 309.17 0 882.17 0 2570.81 0
PPO 344.95 0 1123.18 0 2662.88 0 347.85 0 1126.06 0 2665.68 0

Hybrid (with cache)
BaB-DQN

?
356.49 100 1047.13 0 2634.33 0 359.81 100 1067.37 0 2641.22 0

ILDS-DQN
?

356.49 1 1067.20 0 2639.18 0 359.81 100 1084.21 0 2652.53 0
RBS-PPO

? 356.35 0 1126.09 0 2674.96 0 359.69 0 1129.53 0 2679.57 0

4 Discussion and Limitations

First of all, let us highlight that this work is not the first one attempting to use ML for guiding the
decision process of combinatorial optimization solvers [26]. According to the survey and taxonomy
of Bengio et al. [9], this kind of approach belongs to the third class (Machine learning alongside
optimization algorithms) of ML approaches for solving COPs. It is for instance the case of [20],
which propose to augment branch-and-bound procedures using imitation learning. However, their
approach requires supervised learning and is only limited to (integer) linear problems. The differences
we have with this work are that (1) we focus on COPs modelled as a DP, and (2) the training is entirely
based on RL. Thanks to CP, the framework can solve a large range of problems, as the TSPTW,
involving non-linear combinatorial constraints, or the portfolio optimization problem, involving a
non-linear objective function. Note that we nevertheless need a generator of instances, or enough
historical data of the same distribution, in order to train the models. Besides its expressiveness, and
in contrast to most of the related works solving the problem end-to-end [8, 33, 18, 30], our approach
is able to deal with problems where finding a feasible solution is difficult and is able to provide
optimality proofs. This was considered by Bengio et al. as an important challenge in learning-based
methods for combinatorial optimization [9].

In most situations, experiments show that our approach can obtain more and better solutions than
the other methods with a smaller execution time. However, they also highlighted that resorting to a
neural network prediction is an expensive operation to perform inside a solver, as it has to be called
numerous times during the solving process. It is currently a bottleneck, especially if we would like to
consider larger instances. It is why caching, despite being a simple mechanism, is important. Another
possibility is to reduce the complexity of the neural network by compressing its knowledge, which
can for instance be done using knowledge-distillation [28] or by building a more compact equivalent
network [51]. Note that the Pybind11 binding between the Python and C++ code is also a source of
inefficiency. Another solution would be to implement the whole framework into a single, efficient,
and expressive enough, programming language.

5 Conclusion

The goal of combinatorial optimization is to find an optimal solution among a finite set of possibilities.
There are many practical and industrial applications of COPs, and efficiently solving them directly
results in a better utilization of resources and a reduction of costs. However, since the number
of possibilities grows exponentially with the problem size, solving is often intractable for large
instances. In this paper, we propose a hybrid approach, based on both deep reinforcement learning
and constraint programming, for solving COPs that can be formulated as a dynamic program. To do
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Observa>ons:
• Discrete coefficients break the con@nuity of the objec@ve func@on 

making the problem harder of NL solver, but not for hybrid.
• CP/Hybrid can prove op@mality on smaller problems



Conclusion and perspecAves
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Constraint 
Programming

Reinforcement 
Learning

1. A generic approach based on RL and CP for solving COP (modelled as DPs)

2. Promising results on challenging problems (TSPTW, and pordolio op@miza@on)

3. Open-source release of our code (A Julia version, SeaPearl (CPRL) is coming soon…) 

Contributions and results:

1. Tes>ng on more combinatorial op>miza>on problems

2. Speeding-up the predic>on >me

Perspec1ves and future work:

Dynamic Programming
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