Combining Reinforcement Learning and

Constraint Programming for
Combinatorial Optimization

Quentin Cappart, Thierry Moisan, Louis-Martin Rousseau,
Isabeau Prémont-Schwarz, Andre Cire

Y POLYTECHNIQUE
:’, MONTREAL
/

' UNIVERSITY OF AI
&y TORONTO E

SCARBOROUGH

Combinatorial optimization

Finding an optimal solution from a discrete set of solutions is hard

®
%® %®
%o o %0 %% o xe®*
O Oy Xt ® O o %o0ox g
Oy "%o O "%eo

and for some industrial problems it needs to be done often!

Search-based approaches

How to exploits this fact
in order to explore the solution more efficiently

Complete methods

1. Integer Programming
2. Constraint Programming
3. SAT Solving

Pros Cons

. 1. Prohibitive execution time
1. Optimality guarantees

2. Do not leverage past resolution of

2. General-purpose solvers .
similar problems problems

End-to-end learning-based approaches

How to leverage valuable knowledge from past experiments
in order to learn how to solve the problem

Problem
definition

[Bengio et al., 2018]

Pros Cons

. . : 1. No optimality guarantees
1. Execution time is super-fast P yg

. 2. Non trivial to represent a problem
2. Problem structure is learned P P

3. Hard to handle constraints (which are

3. Easytouse (when trained) vastly present in industrial settings)

Solving COPs by searching and learning

Taking the best of the two worlds

Problem
definition

OR

[Bengio et al., 2018]

Searching (OR): controlling the execution and getting guarantees

Learning (ML): leveraging past knowledge for speeding-up the search

Yes, but how do we do that ?

Still an open question that interests many research groups

Recent works

Learning to search in branch and bound algorithms [He et al., 2014, NeurlPS]
Learning to branch in mixed integer programming [Khalil et al., 2016, AAAI]

Exact combinatorial optimization with graph convolutional

[Gasse et al., 2019, NeurlPS]
neural networks

Improving Optimization Bounds using Machine Learning: [Cappart et al., 2019, AAAI]
Decision Diagrams meet Deep Reinforcement Learning

Solving Mixed Integer Programs Using Neural Networks [Nair et al., 2020, ArXiv]

Main limitations of these works

Training often done with imitation learning (requires labeled data)

Proposed approach

We would like to tackle some of these difficulties

1. Able to prove optimality 3. Efficiently learn from previous decisions
2. Not restricted to integer programs 4. No need of ground truth (labeled data)
Search-based tools Learning-based tools

/ Integer Programming \ / Supervised Learning \

Constraint Programming (CP) Reinforcement Learning (RL)

SAT solving

k Local Search /

Unsupervised Learning

Dynamic programming (DP) as an unifying representation
between constraint programming and reinforcement learning

DP notation

Given a generic combinatorial optimization problem
COP Q:{max f(z):x € X CZ"}

In DP, the problem would be define using:

* Aset decision or actions (x;) taking values from domains (Dom(x;))

That enforce a transition (T: S X X — S) from a state (s;) to the next (s;41)

A initial state (s;) and a transition to perform at every stage (i € {1, ...,n})

A reward (R: S X X —- R) is induced after each transition

A set of conditions (validity and dominance) restrict the possible transitions

Which can be solved recursively using the Bellman Equation

gi(8;) = max {R(si, T;) + gir1 (T(si,xi))} Vie{l.n} st. T(s;,z;) # L

From DP to CP

In CP, a combinatorial optimizatoin problem is define using:

e Aset variables X taking value in their domains D (X), subject to a set of constraints C(X)
and objective funciton O.

* We use an encoding that uses two types of variables: decision and auxiliary
* Auxiliary variables x represent the current state at stage i

* Decision variables x denotes the action that will be taken at stage i.

The previous DP can be expressed in CP in the following manner:

Easily implemented
with element and table constraints

maxya (Y 1| R(x5,%{))

st. x] =€ (Setting initial state)
x; = 1(x},x7) Vied{l,...,n} (Enforcing transitions)
validityCondition(x;,xy) Vie{l,...,n} (Keeping valid transitions)

dominanceCondition(x},x}) Vi e {1l,...,n} (Pruning dominated states)

Proposed Framework

Main assumption: we have a DP model of the problem

Learning phase Unifying representation Solving phase
Training instances) Combinatorial : ,
: > o - : Evaluated instances |e—
(randomly generated) : optimization problem :
v
Reinforcement learning Dynamic programming Constraint programming
: Model :

Solution

Pytorch (python) Gecode (C++)

What we propose What exists already
10

DL, RL and Search Architecture

The DL architecture selected need to:
1. handle instances of the same COPs, but different number of variables
2. beinvariant to input permutation

We have experiemented with
Graph Attention Network (Velickovi¢ et al., ICML 2018
Set Transformers (Lee et al., ICML 2019)

Which then provide input to a feed forward network

The RL agents tested are either
DQN: one value for each action (expected value of action)
PPO: policy gradient (a probability we should select each action)

Embedding the RL agents into the CP Search

BaB: Depth-First Branch and Bound Search (using DQN)
ILDS: lterative Limited Discrepency Search (using DQN)
RBS: Restart-based Search (using PPO)

lllustration on TSP

Dynamic programming model
Require to define: states, actions, transition function, reward function

® State

w w ® |ast customer visited

® Remaining customers to visit

. 2
|n| 1 Action
3 - ~ e ~ ® Visit a new customer
L ® Subject to some validity conditions
'n‘ h Transition
4 0 ® Update the state
_ J \ J
Reward
® Travelling distance (negative reward
Exemple ; (nes)
Initial state Action Cost Next state

(0,{1,2,3,4}) 4 d(0—-4) (4,{1,2,3})

12

Link To RL environment

Exploiting again similarities with dynamic programming

DP Model RL Environment
State

® | ast customer visited Last customer visited

® Remaining customers to visit Remaining customers to visit

Information about the instance

Action

® \/isit a new customer Visit a new customer
Transition e ypdate the state Same update
Reward ® Travelling distance FIRST, find a feasible solution

THEN, minimize the distance

13

Constraint programming search

1
m Two possibilities:
e (Call RL agent again

* Reuse previous DQN/PPO (caching)

14

Adding Constraints

Let’s consider the Traveling Salesman Problem with Time Windows

8to 10 am

w ® 11amto2pm
9:30 to 11 am/ 1 w
[]

4 pm to 6 pm

15

TSPTW: A DP model

The model is index in i € S, and each stage corresponds a customer visit

The state definition The problem data
s; € S includes: * [; & u; are bounds on the time window
* v; last node visited * d- isthe distance between two customers

* t;is the time of visit
« m; € P({2,...,n}) set of remaining customers

Taking action a; € {1, ..., n} corresponds to the customer to visit at stage i
State transition functions as follows

51 = {m1 ={2.n}, v1 =1, t; = O} (Initial state definition)
Mir1 = My \ Gy Vi € {1..n} (Transition function for m;)
Vit1 = Q; Vi € {1..n} (Transition function for v;)
t;11 = max (ti + dy, ;5 lai) Vi € {1..n} (Transition function for ¢;)
Viia; €m; Vi e {l..n} (First validity condition)
Vot ug, 2> ti + dy, a, Vi € {1..n} (Second validity condition)

P:(t; >uj) = (j & mi) Vi,j € {l.n} (Dominance pruning)

TSPTW: Results

Approaches 20 cities 50 cities 100 cities
Type Name Success Opt. Time Success Opt. Time Success Opt. Time (inmin)
OR-Tools 100 0 <1 0 0 t.o. 0 0 t.o.
Constraint programming CP-model 100 100 <1 0 0 t.o. 0 0 t.o.
CP-nearest 100 100 <1 99 99 6 0 0 t.o.
Reinforcement learnin DaN 100 0 <l 0 0 <1 0 0 <1
g PPO Beam wearchw=64 100 0 <1 100 0 5 21 0 46
Hybrid (no cache) BaB-DQN 100 100 <1 100 99 2 100 52 20
y TLDS-DQN 100 100 <1 100 100 2 100 53 39
RBS-PPO 100 100 <1 100 80 12 100 0 t.o.
. . BaB-DQN* 100 100 <1 100 100 <1 100 91 15
Hybrid (with cache) TLDS-DQN* 100 100 <1 100 100 1 100 90 15
RBS-PPO* 100 100 <1 100 99 2 100 11 32
Observation: Average time to make a decision
* PPO dominates DQN in end-to-end ML * BaB-DQN-34ms
* Reverse is observed when used inside CP * Bab-DQQ: caching—0.16ms

* CP-nearest—-0.004 ms

4-Moments Portfolio Optimization

Given a set of n investments, each with a specific cost (a;), an expected
return (Y;), a standard deviation (o), a skewness (y;), and a kurtosis (k_i).

Each investors attributes an importance (A¢;_4}) to each moment and
must decide (x; € {0,1}) whether he makes each investment or not,
subject to a budget B. The objective is to select large positive expected
return and skewness, with large negative variance and kurtosis.

Math. Programming model Dynamic Programming model

maximize)\1 Z,ula;z — Xy 2 Za T+ A3 2 zn:'yf:cz — M\ zn:m;lxi> S1 = 0
\ i=1 i—1 \ i=1

Sq+1} = S; + x;a; Vi € {1..n}
subject to ;aa: <B Vie{l.n} Viis; +x;a; < B. Vi€ {l..n}

ze{0,1} Vie {l.n}

Discrete Non-Convex Programming Problem

PORT: Results

Approaches Continuous coefficients Discrete coefficients

20 items 50 items 100 items 20 items 50 items 100 items
Type Name Sol. Opt. Sol. Opt. Sol. Opt. Sol. Opt. Sol. Opt. Sol. Opt.
Non.li 1 KNITRO 343.79 0 1128.92 0 2683.55 0 211.60 0 1039.25 0 2635.15 0
on-ineat sotvet APOPT 34262 0 112771 0 267848 0 - - - - - -
Constraint programming CP-model 356.49 98 1028.82 0 2562.59 0 35981 100 1040.30 0 2575.64 0
Reinforcement learnin DQN 306.71 0 879.68 0 2568.31 0 309.17 0 882.17 0 2570.81 0
€ PPQ Beam6a 344.95 0 1123.18 0 2662.88 0 347.85 0 1126.06 0 2665.68 0
BaB-DQN* 356.49 100 1047.13 0 2634.33 0 35981 100 1067.37 0 2641.22 0
Hybrid (with cache) ILDS-DQN* 356.49 1 1067.20 0 2639.18 0 359.81 100 1084.21 0 2652.53 0
RBS-PPO* 356.35 0 1126.09 0 2674.96 0 359.69 0 1129.53 0 2679.57 0

Observations:

* Discrete coefficients break the continuity of the objective function
making the problem harder of NL solver, but not for hybrid.

* CP/Hybrid can prove optimality on smaller problems

Conclusion and perspectives

Reinforcement Constraint
v Iwwant] Dnmadd Dhnsnst] Do Programming

Learning

Dynamic Programming

Contributions and results:

1. A generic approach based on RL and CP for solving COP (modelled as DPs)
2. Promising results on challenging problems (TSPTW, and portfolio optimization)

3. Open-source release of our code (A Julia version, SeaPearl (CPRL) is coming soon...)

Perspectives and future work:

1. Testing on more combinatorial optimization problems

2. Speeding-up the prediction time

20

Combining Reinforcement Learning and Constraint

Programming for Combinatorial Optimization

8 louis-martin.rousseau@polymtl.ca

—| arxiv.org/abs/2006.01610 (this talk)
—J arxiv.org/abs/2102.09193 (SeaPearl.jl)

0 github.com/qcappart/hybrid-cp-rl-solver

£ ST, POLYTECHNIQUE % I
0 \0) -

i”: :“} MONTREAL UNIVERSITY OF A
) @ 88 &8

NS vy TORONTO

3 SCARBOROUGH

21

