
Neural network verification as
piecewise linear optimization

Joey Huchette
Rice University

Joint work with:
Ross Anderson1, Bochuan Lyu2, Will Ma3, Krunal Patel1, Christian Tjandraatmadja1, and Juan Pablo Vielma1

1Google Research
2Rice University

3Columbia University

Piecewise linear functions

● f is piecewise linear = domain partition + f is linear on each partition piece

● The "simplest" nonlinear functions?

● Capable of articulating complex nonlinear, nonconvex behaviors

● "Universal approximators"

Piecewise linear functions in OR

● Used to model:
○ diminishing returns or economies of scale
○ Physical systems (e.g. process engineering)

● Low-dimensional or separable

● Sophisticated exact methods
○ Special ordered set constraints (Beale and Tomlin 1970, 1976)
○ MIP formulations (e.g. Vielma et al. 2010)

● Complex, constrained problems where optimality matters

● Adversarial Examples: Small change in input → big change in output

● Neural networks are extremely susceptible to adversarial attacks (Szegedy et al. 2014,

Papernot et al. 2015, Carlini et al. 2016)

● Hugely popular area of ML research (~10,000 citations for three papers above)

● Optimization: Find most pathological perturbation around labeled image

● No big changes in small neighborhood → model is (locally) robust

Neural network verification

Image source: https://openai.com/blog/adversarial-example-research/

● Trained neural network = piecewise linear function, built through composition
● Neural network verification = piecewise linear optimization

(Neither is novel to this work)

Goal: Use OR techniques to produce good algorithms for neural network verification

Key insights and approach

Optimization over trained neural
networks

● Strong mixed-integer programming formulations for trained neural networks.
○ Anderson, H., Tjandraatmadja, and Vielma. Proceedings of IPCO 2019.

○ Anderson, H., Ma, Tjandraatmadja, and Vielma. Mathematical Programming, 2020.

● The convex barrier, revisited: Tightened single-neuron relaxations for neural network verification.
○ Tjandraatmadja, Anderson, H., Ma, Patel, and Vielma. Proceedings of NeurIPS 2020.

An aside: Optimization over
trained neural networks

Optimization over a trained neural network

End goal is optimization: Make the best possible decision

Complex?
Combinatorial?

Nonconvex

Fixed and
known

End goal is optimization: Make the best possible decision

Unknown

Optimization over an unknown function

Data
Learning

End goal is generalization: Given “reasonable” unseen point , want

 y

Supervised learning: Learn a function using historical input/output data

x2
2

x2
1

x2
3

x1

x2

Fitting unknown functions to make predictions

End goal is optimization: Make the best possible decision

Unknown

Fitting unknown functions to make predictions

End goal is optimization: Make the best possible decision

Fitting unknown functions to make predictions

Application: Deep reinforcement learning
Prediction: future cost of action a in state x:

Optimization: pick the lowest cost action:

In a combinatorial or continuous action space,
optimization can be hard! (e.g. Ryu 2019)

 Teach a cheetah to run (without falling over)

Application: Designing DNA for protein binding

Prediction: probability/strength of DNA sequence binding to a given protein

Optimization: find the best/many binding sequences (potentially with side

constraints)

Good neural network architectures for prediction problem (Alipanahi et

al. 2015, Zeng et al. 2016)

x (n, 4) h1 (n, 6)

conv1d reduce
max

h2 (1,6) h3 (1,32)

ReLU linear

prediction

How to solve these problems?

Primal (Heuristic)

● Gradient Descent

(Projected/Conditional)

● Local Search

● Cross Entropy Method

● Genetic Algorithms

● (Quasi-)Second Order Methods

Dual (Bounds)

● Interval Arithmetic

● Abstract Domains

● Lagrangian Relaxation

● Linear Programming
● Semidefinite Programming

Exact Methods

● Mixed-Integer Programming
● SAT/SMT

An algorithmic zoo

Neural networks (in one slide)

● At i’th neuron in k’th layer:

○ xk
i
 = σ(wk,i · xk-1 + bk,i)

○ xk-1 is vector of variables from previous layer

○ σ is a nonlinear activation function

○ Typically use ReLU: σ(v) = max{0, v}

● If σ is piecewise linear, then NN is piecewise linear (built through composition)

MIP formulations (in one slide)

● A MIP formulation for some set S⊆Rn is:
○ A polyhedra Q⊆Rn+r, where

Proj
x
({ (x,z) ∈ Q | z ∈ Zr }) = S

● What makes a MIP formulation good?
○ Size: r is small, Q is “simple”
○ Sharp: Proj

x
(Q) = Conv(S)

○ Hereditarily sharp: Sharp after any fixings of binary variables z
○ Ideal (perfect): ext(Q) ⊆ Rn ⨉ Zr

● Ideal ⇒ sharp, so…

Ideal formulations = Best possible = Our goal

● Idea: Formulate each neuron in network separately, using MIP

● Result: MIP formulations for convex piecewise linear function with d pieces

n = Number of neurons per layer, L = number of layers

Most important theoretical result

MIP formulations for a single ReLU neuron

● Single neuron: y = σ(w · x + b), where σ(v) = max{0,v}

● Input x, output y, learned parameters w and b

● Bounds on inputs L ≤ x ≤ U from, e.g., interval arithmetic

● Set containing all feasible input/output pairs:

{(x,y) : y = σ(w · x + b), L ≤ x ≤ U}

● Big-M formulation for single ReLU neuron (e.g. Fischetti and Jo

2018, Serra et al. 2018, Tjeng et al. 2019, etc.)
x2

2

x2
1

x2
3

x1
2

x1
1

x3

● How strong is it?

MIP formulation strength

● How strong is it? Not very!

Can be arbitrarily bad, even in fixed input dimension

big-M formulation tightest possible formulation

● How to close the gap?

● Big-M formulation = (1a), (1c), and two constraints from (1b)

● Idea: Start with big-M formulation, use cut callbacks to separate (1b) as-needed

An ideal formulation for ReLU neuronsTheorem (Anderson, H., Tjandraatmadja, Vielma 2019)

● An ideal formulation for {(x,y) : y = max{0, w · x + b}, L ≤ x ≤ U} is

● Each inequality in (1b) is facet-defining (under very mild conditions).
● Moreover, we can identify the most violated constraint in (1b) in O(n) time.

Ideal formulation for a single ReLU neuron

Proposition (Anderson, H., Ma, Tjandraatmadja, Vielma 2020)

● A hereditarily sharp MIP formulation for {(x,y) : y = max{wk · x + bk}d
k=1

, L ≤ x ≤ U} is

● The most violated inequality can be identified in O(dn) time.

Formulations for convex PWL functions

● Max-of-d affine functions ≣

○ Max pooling (small d)

○ Reduce max (large d)

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

Step 1: Write down ideal “multiple choice” formulation (i.e. the “Balas” formulation):

Modeling the maximum of d affine functions over shared input domain D:

Step 2: Re-write constraints in “set” form:

where

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

Step 3: Rewrite all logic as bounds on output y (a primal characterization):

where

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

Step 4: Apply Lagrangian relaxation to aggregation constraints (a dual characterization)

End of analysis: in general, is complicated.

Can separate over via subgradient method, or...

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

Step 1: Write down ideal “multiple choice” formulation (i.e. the “Balas” formulation):

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

Step 2: Re-write constraints in “set” form:

where

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

Step 3: Rewrite all logic as bounds on output y (a primal characterization):

where

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

Step 4: Relax domain constraints inside bounding functions

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

Step 5: Replace lower bounds for a hereditarily sharp formulation:

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

Step 6: Apply Lagrangian relaxation to aggregation constraints:

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

Step 7: Analyze further:

● Proposition If d=2, then the hereditarily sharp formulation is ideal.

● Proposition If the domain is a product of simplices, separation over hereditarily sharp

formulation reduces to a transportation problem.

● Proposition If d=2 and the domain is a product of simplices, the transportation problem has

a closed form solution and efficient separation.

How do we get here?

Computational Results

Network 1: Small network, standard training

Network is (almost) completely dense

Network 2: Small network + L1 regularization (Xiao et al. 2019)

Weight sparsity makes cuts much
more effective

What if we want to go bigger?

● Problem: MIP does not scale to large networks

● Approach: Linear programming (LP) is

○ Much more scalable than MIP

○ Still offers an incomplete verifier (no false positives, potentially false negatives)

● OptC2V: Project out binary variable to get LP relaxation, then use LP solver

Tightened convex relaxations

An ideal formulation for ReLU neuronsTheorem (Tjandraatmadja, Anderson, H., Ma, Patel, Vielma 2020)

● An inequality description for Conv({(x,y) : y = max{0, w · x + b}, L ≤ x ≤ U}) is

where .
● Moreover, we can identify the most violated constraint in in O(n) time.

What if we want to go even bigger?

Propagation algorithms

● Problem: Even LP won't scale to very large networks!

● Approach:
○ Relax LP even more so that it can be solved via propagation (e.g. Weng et al. 2018,

Wong and Kolter 2018, Zang et al. 2018, Singh et al. 2019)

○ Use only two inequalities to bound output based on values of inputs:

Lk(x
1

, …,x
k-1

) ≤ x
k

≤ Uk(x
1

,...,x
k-1

) for each neuron k

○ Propagation ≣ Fourier-Motzkin elimination (efficient in this case!)

● Result: Incomplete verifier that runs in O((# layers) x (# neurons per layer)2) time

● But wait--How do we choose each Lk and Uk?

● FastC2V:
1. Run once with "typical" choices

2. Propagate forward, computing values x
k

 at each neuron k

3. Compute most violated inequality for each neuron k, swap in for Uk

4. Repeat as desired

Computational results

Take-aways:

● OptC2V can verify the most instances

● FastC2V is nearly as good on larger networks, and an order of magnitude faster.

● Modern neural networks are big...and might not fit on small devices

● Using floating point numbers for each weight/activation value is potentially "wasteful"

● Binarized neural networks = replace floats with binary values! (e.g. Courbariaux 2016, Hubara 2016, Rastegari 2016)

● (Quantized neural networks = replace floats with "a few bits") (e.g. Hubara 2017, Jacob 2018, Zhou 2016)

New wrinkles for verification:

● How to handle discontinuity?

● Are convex relaxations good?

● Are cuts useful at the root, or in the tree?

(Ongoing work with Bochuan Lyu)

Extensions: Binarized and quantized networks

Thank you for your attention!

Questions?

