Neural network verification as
plecewise linear optimization

Joey Huchette

Rice University

Joint work with:
Ross Anderson?, Bochuan Lyu?, Will Ma3, Krunal Patel!, Christian Tjandraatmadja®, and Juan Pablo Vielma*

!Google Research
%Rice University
3Columbia University

Piecewise linear functions

fis piecewise linear = domain partition + f is linear on each partition piece
The "simplest" nonlinear functions?

Capable of articulating complex nonlinear, nonconvex behaviors
"Universal approximators"

gr(f)

> Lo

Piecewise linear functions in OR

e Usedtomodel:
o diminishing returns or economies of scale
o Physical systems (e.g. process engineering)

e Low-dimensional or separable

e Sophisticated exact methods
o Special ordered set constraints (Beale and Tomlin 1970, 1976)
o MIPformulations (e.g. Vielma et al. 2010)

»o Complex, constrained problems where optimality matters ;

gr(f)

Neural network verification

max P[z is a gibbon| — P[z is a panda]

s.t. ||z — (reference panda)||, < €

“panda” “gibbon”
57.7% confidence 09.3% confidence

e Adversarial Examples: Small change in input — big change in output

e Neural networks are extremely susceptible to adversarial attacks (Szegedy et al. 2014,
Papernot et al. 2015, Carlini et al. 2016)

e Hugely popular area of ML research (~10,000 citations for three papers above)
e Optimization: Find most pathological perturbation around labeled image
e No bigchanges in small neighborhood — model is (locally) robust

Image source: https://openai.com/blog/adversarial-example-research/

Key insights and approach

e Trained neural network = piecewise linear function, built through composition
e Neural network verification = piecewise linear optimization

(Neither is novel to this work)

Goal: Use OR techniques to produce good algorithms for neural network verification

Optimization over trained neural
hetworks

e Strong mixed-integer programming formulations for trained neural networks.
o Anderson, H., Tjandraatmadja, and Vielma. Proceedings of IPCO 2019.
o Anderson, H., Ma, Tjandraatmadja, and Vielma. Mathematical Programming, 2020.
e The convex barrier, revisited: Tightened single-neuron relaxations for neural network verification.
o Tjandraatmadja, Anderson, H., Ma, Patel, and Vielma. Proceedings of NeurIPS 2020.

An aside: Optimization over
trained neural networks

Optimization over a trained neural network

Fixed and
known

maximize NN(x)
such that « € ()

Complex?
Combinatorial”

End goal is optimization: Make the best possible decision £* € 2

Optimization over an unknown function

maximize f(x) %

such that x € ()

End goal is optimization: Make the best possible decision £* € 2

Fitting unknown functions to make predictions

Supervised learning: Learn a function using historical input/output data

Learning

End goal is generalization: Given “reasonable” unseen point (z*,y*),want y* ~ NN(z™)

Fitting unknown functions to make predictions

maximize f(x)
such that «x € ()

End goal is optimization: Make the best possible decision z* € (2

Fitting unknown functions to make predictions

maximize NN(x)
such that « € ()

End goal is optimization: Make the best possible decision z* € (2

Application: Deep reinforcement learning

Prediction: future cost of action a in state x:

Q(z,a) ~ NN(z,a)

Optimization: pick the lowest cost action:

min c(x,a) + a - NN(x, a)

In a combinatorial or continuous action space,
optimization can be hard! (e.g. Ryu 2019)

Teach a cheetah to run (without falling over)

Application: Designing DNA for protein bindin

Prediction: probability/strength of DNA sequence binding to a given protein

Optimization: find the best/many binding sequences (potentially with side

constraints)

Good neural network architectures for prediction problem (Alipanahi et
al. 2015, Zeng et al. 2016)

X (n, 4)

convid

A

h1(n, 6)

reduce H RelLU

max

h2 (1,6)

>

h3 (1,32) prediction

How to solve these problems?

An algorithmic zoo

/ Primal (Heuristic)\ - Bl Eoumds) I

e Gradient Descent
(Projected/Conditional)

e Local Search

e Cross Entropy Method

o

o

Interval Arithmetic
Abstract Domains
Lagrangian Relaxation
Linear Programming
Semidefinite Programming/

Genetic Algorithms

\ (Quasi-)Second Order Methods/ \

f Exact Methods A

e Mixed-Integer Programming
e SAT/SMT

- /

Neural networks (in one slide)

L (fully-connected) layers

x = (x1,x2, x3)

n nodes
per layer

e Atithneuronink’thlayer:
5 in = o(whi « X<+ i)
o x*'isvector of variables from previous layer
o oisanonlinear activation function
o Typically use ReLU: o(v) = max{O, v}
e Ifoispiecewise linear, then NN is piecewise linear (built through composition)

MIP formulations (in one slide)

X3

e A MIP formulation for someset SER"is:
o Apolyhedra QS R, where

X2 g0

Proj ({ (x2) € Q|z € Z)) =S

e What makes a MIP formulation good?
Size: ris small, Qis “simple”
Sharp: Proj (Q) = Conv(S)

Hereditarily sharp: Sharp after any fixings of binary variables z

Ideal (perfect): ext(Q) S R"x Z"

O O O O

e |deal = sharp, so...

Ideal formulations = Best possible = Our goal

Most important theoretical result

e Idea: Formulate each neuron in network separately, using MIP
e Result: MIP formulations for convex piecewise linear function with d pieces

Big-M Our Formulation Disjunctive (“Balas")

Sharpness of sharp,
LP-relaxation for | not sharp ideal when ideal
Single Neuron =2

of Continuous

2
Variables O(Ln) O(Ln) ©(Ln=d)

n = Number of neurons per layer, L = number of layers

MIP formulations for a single ReLU neuron

Single neuron:y = a(w - x + b), where a(v) = max{O,v}

Input x, output y, learned parameterswand b

Bounds oninputsL < x < U from, e.g., interval arithmetic

Set containing all feasible input/output pairs:
{(xy):y=0o(w-x+b),L<x=<U}

e Big-M formulation for single ReLU neuron (e.g. Fischetti and Jo

2018, Serraet al. 2018, Tjeng et al. 2019, etc.)

y<w-z+b—M (1-—2)
(z,y,2) € [L,U] xR x {0,1}

e Howstrongisit?

MIP formulation strength

e Howstrongisit? Not very!

Can be arbitrarily bad, even in fixed input dimension

O XS
R E RS

- > T

- > T

big-M formulation tightest possible formulation

e Howtoclosethe gap?

Ideal formulation for a single ReLU neuron

Theorem (Anderson, H., Tjandraatmadja, Vielma 2019)
e Anideal formulation for {(x,y) : y = max{O, w-x+ b}, L < x < U}is

y>w-z+b (1a)
y<Y wi(wi—Li(l—2)+ [b+Y wli|z VIC[n] (1b)

el €1
(xaya Z) S [L7 U] X RZO X {0,]-} (10)

e Eachinequality in (1b) is facet-defining (under very mild conditions).
e Moreover, we can identify the most violated constraint in (1b) in O(n) time.

e Big-M formulation = (1a), (1c), and two constraints from (1b)
e Idea: Start with big-M formulation, use cut callbacks to separate (1b) as-needed

Formulations for convex PWL functions

12 {20 [30 | O

e Max-of-d affine functions = 8 12| 2 | o
o Max pooling (small d)
o Reduce max (large d)

2><2Ma,x—Pool\ 20 | 30
34 | 70 | 37 | 4 SN 37

1121100 | 25 | 12

Proposition (Anderson, H., Ma, Tjandraatmadja, Vielma 2020)

e A hereditarily sharp MIP formulation for {(xy) : y = max{wX - x + bX}¢ L <x< U}is

k=1’

y<2< et Zmax{)L, (wf —w! O, ”’“) Zb’% VL n] = 1d]

y > wk - x4+ bk Vke[d]
(z,2) € D x A?
z € {0,1}4

e The most violated inequality can be identified in O(dn) time.

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

{(x,y)EDxR:ylexiaicwk-x—kbk}

Step 1: Write down ideal “multiple choice” formulation (i.e. the “Balas” formulation):

d
(z,y) = > (&, w" - &* + bF2)
k=1
wP - F 4 bz > wh - 2P+ bz Vi, £cld): k#¢
i* ez, - D Vk € [d]

z € A4,

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

{(x,y)EDxR:y:I}iaicwk-x—kbk}

Step 2: Re-write constraints in “set” form:
d
(z,y) = Y (@, wk - 2* + b 2)
k=1
i* € 21, - D Vk € [d]
z e A
where
Dp={zeD:k axw’ -+ b
k=qreD: Eargr?_afcw A

={zeD:w z+b">uw' -z +b" VI£Ek}

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

{(x,y)EDxR:y:I}iaicwk-x—kbk}

Step 3: Rewrite all logic as bounds on output y (a primal characterization):

d ~k
<7 _ k.ozk o pky . T=) 4%
y<g@z) = max) ot B Hbac g Sy
P | =1 |
d x_z i’k
S — kozk o pky, = 2k
y=g(z,2) = min) wi-T bz op vk
P AR k::1 |
(z,2) € D x A4,

where

Dy, = {xED : kEargr?iafcwe-x—Fbe}

={zeD:w z+b">uw' -z +b" VI£Ek}

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

{(x,y)EDxR:ylexiaicwk-x—kbk}

Step 4: Apply Lagrangian relaxation to aggregation constraints (a dual characterization)

d
yS@-x—FZ(max {(wk—a)-xk}+bk) 2z VaeR"

d
y2g-x+z< min {(wk—g)-azk}—i—bk>zk Vo € R”
(z,2) € D x A%

End of analysis: in general, D|,c is complicated.
Can separate over via subgradient method, or...

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

{(x,y)EDxR:ylexiaicwk-x—kbk}

Step 1: Write down ideal “multiple choice” formulation (i.e. the “Balas” formulation):

d
(z,y) = > (&, w" - &* + bF2)
k=1
wP - F 4 bz > wh - 2P+ bz Vi, £cld): k#¢
i* ez, - D Vk € [d]

z € A4,

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

{(x,y)EDxR:y:I}iaicwk-x—kbk}

Step 2: Re-write constraints in “set” form:
d
(z,y) = Y (@, wk - 2* + b 2)
k=1
i* € 21, - D Vk € [d]
z e A
where
Dp={zeD:k axw’ -+ b
k=qreD: Eargr?_afcw A

={zeD:w z+b">uw' -z +b" VI£Ek}

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

{(x,y)EDxR:y:I}iaicwk-x—kbk}

Step 3: Rewrite all logic as bounds on output y (a primal characterization):

d ~k
<7 _ k.ozk o pky . T=) 4%
y<g@z) = max) ot B Hbac g Sy
P | =1 |
d x_z i’k
S — kozk o pky, = 2k
y=g(z,2) = min) wi-T bz op vk
P AR k::1 |
(z,2) € D x A4,

where

Dy, = {xED : kEargr?iafcwe-x—Fbe}

={zeD:w z+b">uw' -z +b" VI£Ek}

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

{(x,y)EDXRiy:Iil%i(’wk'x‘f‘bk}

Step 4: Relax domain constraints inside bounding functions

" 4 =Y, 7"
y < h(z,z) = max {Zwk-:ik+bkzk: -k }

L ik ez -D Vk
d ~k
: . x=>,T
> h(xz,z) = min wh - FF bk s k
y 2 h(@,2) acl,...,azd{k_l TUR ghea D VR

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

{(x,y)EDxR:ylexiaicwk-x—kbk}

Step 5: Replace lower bounds for a hereditarily sharp formulation:
o 4 r=>Y, 2"
y < h(z,z) = i{naéd {; w® - ZF 4+ bF 2, ik_e zk.k- D Vi }
y>wh-x+b* VEkel[d
(z,2) € D x A%

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

{(:c y) €D xR: y—x}clcéxw -x+bk}

Step 6: Apply Lagrangian relaxation to aggregation constraints:

y<a- +Z<££1g>l_<){ a) -z} +)zk
y > w4+ b* Yk e [d]
(z,2) € D x A%,

Va € R"

How do we get here?

Modeling the maximum of d affine functions over shared input domain D:

{(x,y)EDxR:y:%iaicwk-x%—bk}

Step 7: Analyze further:
e Proposition If d=2, then the hereditarily sharp formulation is ideal.

e Proposition If the domain is a product of simplices, separation over hereditarily sharp
formulation reduces to a transportation problem.

e Proposition If d=2 and the domain is a product of simplices, the transportation problem has
a closed form solution and efficient separation.

Computational Results

Number of instances solved

Network 1: Small network, standard training

100

80 [

60 |

40 |

20 |

T T

L

NIRRT

T

big-M default

— big-M -+ only our cuts

extended

0
10°

101

10
Time (s)

Network is (almost) completely dense

Number of instances solved

Network 2: Small network + L1 regularization woetat 2010

].OO T
— big- M
30 — big-M -+ only our cuts
e extended

60

40

Weight sparsity makes cuts much
more effective

10° 10! 102 103
Time (s)

What if we want to go bigger?

Tightened convex relaxations

e Problem: MIP does not scale to large networks
e Approach: Linear programming (LP) is

o Much more scalable than MIP

o Still offers an incomplete verifier (no false positives, potentially false negatives)
e OptC2V: Project out binary variable to get LP relaxation, then use LP solver

Theorem (Tjandraatmadja, Anderson, H., Ma, Patel, Vielma 2020)
e Aninequality description for Conv({(x,y) : y = max{O,w-x+b},L<x < U})is

y>w-x+b
el

(ZB,y) S [La U] X RZO-

e Moreover, we can identify the most violated constraint in in O(n) time.

What if we want to go even bigger?

Propagation algorithms

e Problem: Even LP won't scale to very large networks!
e Approach:

o Relax LP even more so that it can be solved via propagation (e.g. Weng et al. 2018,

Wong and Kolter 2018, Zang et al. 2018, Singh et al. 2019)
o Useonly two inequalities to bound output based on values of inputs:
L*(X, ...Xy ;) < X, < UX(X,,.X,) for each neuronk

o Propagation = Fourier-Motzkin elimination (efficient in this case!)
e Result: Incomplete verifier that runs in O((# layers) x (# neurons per layer)?) time
e Butwait--How do we choose each LXand U*?
e FastCav:

1. Runonce with "typical" choices

2. Propagate forward, computing values x, at each neuron k

3. Compute most violated inequality for each neuron k, swap in for UX
4. Repeat asdesired

Computational results

MNIST CIFAR-10
Method 6x100 9x100 6x200 9x200 ConvS ConvB ConvS
DeenPol #verified 160 182 292 259 162 652 359

SCPYOLY Time (s) 0.7 1.4 2.4 5.6 0.9 7.4 2.8
FastCoy #verified 279 269 477 392 274 691 390

Time (s) 87 193 252 572 53 16.3 15.3
Ip #verified 201 223 344 307 242 743 373

Time (s) 505 385.6 2182 28247 23.1 24.9 38.1
S #verified 429 384 601 528 436 771 398
P Time (s) 136.7 759.4 402.8 34507 554 102.0 104.8
RefineZono #verified 312 304 341 316 179 648 347
kPoly #verified 441 369 574 506 347 736 399

Take-aways:

e OptC2Vcan verify the most instances
e FastC2Visnearly as good on larger networks, and an order of magnitude faster.

Extensions: Binarized and quantized networks

Modern neural networks are big...and might not fit on small devices

Using floating point numbers for each weight/activation value is potentially "wasteful"

Binarized neural networks = replace floats with binary values! (e.g. Courbariaux 2016, Hubara 2016, Rastegari 2016)
(Quantized neural networks = replace floats with "a few bits") (e.g. Hubara 2017, Jacob 2018, Zhou 2016)

New wrinkles for verification:

e How to handle discontinuity? v y

e Areconvex relaxations good? \ P \
2 T2
X1 1

e Are cuts useful at the root, or in the tree?

(Ongoing work with Bochuan Lyu)

=

Thank you for your attention!

Questions?

