USC

Decision-focused learning:
iIntegrating downstream combinatorics in ML

Bistra Dilkina

Associate Professor of Computer Science
Co-Director of USC Center on Al in Society
University of Southern California

February 25, 2021

IPAM-UCLA
Workshop on Deep Learning and Combinatorial Optimization

ML <= Combinatorial Optimization USC

Exciting and growing research area

Infusing Discrete Optimization Infusing ML with Constrained
with Machine Learning Decision Making
. ClusterNET: Differentiable kmeans for
ML Paradigm a class graph optimization problems
. N Spehls _— OQ
Self-Supervised - TN : SRR N / N
Learning 'y P Loss(@ \ WL N e
- ST S LR

N X
. G ree d H eu rl st | c | Iterate if round (i) is fractional
Reinforcement i
. [| —2s .3 | :
Learning AN 3 Exact Solving
! - Heuristic Selection Decision-focused learning for
& |

Supervised - argmax PY s PN submodular optimization and LP
Learning 2D I\ e &) e
X O O Feanble 1chtion!
| i
Graph Optimization Integer Programming
Elias Khalil Problem Type
Augment discrete optimization Learning methods that incorporate the

algorithms with learning components combinatorial decisions they inform

The data-decisions pipeline

USC

Many real-world applications of Al involve a

common template:

[Horvitz and Mitchell 2010; Horvitz 2010]

Observe data

= | Predictions | ™

Decisions

[Wilder et al., AAAI 2019]

Typical two-stage approach

Machine learning models

Goal: maximize accuracy

Optimization algorithms

USC

Greedy

Local search

Mixed-integer
Program

Goal: maximize decision quality

[Wilder et al., AAAI 2019]

USC
Google maps

aaaaaaaaaaaaaaa
aaaaaaaa
MMMMMMMMM

Predicted travel times Shortest path

' A 4

Predictive model Routing algorithm

[Wilder et al., AAAI 2019]

. USC
Two-stage training

-

VS

Data Predictive model Predicted delays Actual delays

Update model to make predictions
closer to actual delays

Challenge

« Maximizing accuracy # maximizing decision quality
« “All models are wrong, some are useful”

« Two-stage training doesn’t align with end goal

[Wilder et al., AAAI 2019]

USC
Key idea:

Decision-focused learning

Predictive model

\ algorithrn/

Update model to improve chosen -5 ¢
path (w.r.t. actual delays)

Ferber et al (2020), Wilder et al. (2019), Donti, Amos, and Kolter (2017),, Bengio (1997)

Wilder, Dilkina, Tambe. Melding the Data-Decisions Pipeline:
Decision-Focused Learning for Combinatorial Optimization. AAAI 2019.

USC
Decision-focused learning

Objective function f(x, 8)
x € {0,1}" are the **discrete** decision variables
0 are unknown parameters (i.e. the coefficients in the objective e.g., true
travel times)

|dea: Take derivative of decision objective w.r.t. ML model weights, train
model via gradient descent (e.qg. similar approach for convex opt. [Donti et al °17])

dobj(decision) dprediction ddecision dobj(decision)

dweights dweights Jdprediction ddecision
e @ : oy i \
o e S TSPt N
‘ @ [J\,__:/\ =, “7‘/-1: st %
//
Predictive model Predicted delays Optimization Shortest path

algorithm [Wilder et al., AAAI 2019]

USC

Approach [Wilder, Dilkina, Tambe, AAAI 2019]

 Challenge: the optimization problem is discrete!
« Solution: relax to continuous problem, differentiate, round

Discrete Continuous
TS0 -, T O
x = binary decision x = fractional decision

F = continuous objective

*

d
« How to compute dxg ?

* |[dea: (locally) optimal continuous solution must satisfy KKT conditions (which are sufficient
for convex problems)

» The KKT conditions define a system of linear equations based on the gradients of the
objective and constraints around the optimal point.

» Differentiate those equations at optimum (e.g. convex opt. [Donti, Amos, and Kolter 2017])
[Wilder et al., AAAI 2019]

Linear programs

Model exactly combinatorial problems like
bipartite matching, shortest path, mincut, etc.

Or correspond to a relaxation of other combinatorial problems

Standard form:
max 67 x

X
Ax < b

doesn’t exist!

db

 Solution: add a regularizer to smooth things out

max0Tx — y||x||3
X

Ax < b
» Now, Hessian is V2 f(x,0) = =2yl < 0
* Provably (a) differentiable and (b) close to original LP

USC

[Wilder et al., AAAI 2019]

Results UuSC

« Combinatorial problems: encoded as LP, e.g. bipartite maximum matching

« Combinatorial problems: submodular maximization, e.g. influence
maximization, budget allocation, diverse recommendation

 Decision-focused has consistently better solution quality
* 15-70% improvement in solution over 2-Stage, across three domains

Table I: Solution quality of each method for the full data-decisions pipeline.

| Budget allocation Matching Diverse recommendation
k= | 5 10 20 - 5 10 20
NNI1-Decision | 49.18 & 0.24 72.62 + 0.33 98.95 £+ 0.46 2.50 £ 0.56 15.81 = 0.50 29.81 +0.85 52.43 +£1.23
NN2-Decision | 44.35 £0.56 67.64 +£0.62 93.59 +0.77 6.15 + 0.38 13.34 £0.77 2632+ 1.38 47.79 £1.96
NNI-2Stage | 32.13 =247 4563 £3.76 61.88+4.10 2.99 +0.76 4.08 £0.16 842 +0.29 19.16 £0.57
NN2-2Stage | 9.69 £0.05 1893+ 0.10 36.16 =0.18 3.49 +0.32 11.634+£043 22794+0.66 4237 +£1.02

 But typically much less accurate (wrt AUC, MSE etc.) [Wilder et al., AAAI 2019]

.. . USC
Application: Tuberculosis treatment

* Follow-on work improving treatment in Indian TB system
* In collaboration with Everwell (NGO)

* Predict if patients will miss daily dose

» Optimize health worker visits subject to

knapsack constraints (LP) =
S
[¢]
. 2__8_
* More in our paper v O

Killian, Wilder, Sharma, Choudhary, Dilkina, Tambe. Learning to Prescribe
Interventions for Tuberculosis Patients using Digital Adherence Data. KDD 2019.

[Killian et al, KDD 2019]

L . USC
Application: Tuberculosis treatment

Solution quality AUC

AE— . .

B Two-stage

B Two-stage
M Decision-focused M Decision-focused

Less “accurate”, but +15% successful interventions!

[Killian et al, KDD 2019]

. . : USC
Decision Focused Learning for

Mixed Integer Programming (MIP) problems

* MIPs capture many combinatorial problems that do not have a nice
relaxation-based algorithm

- ..and we know how to differentiate through LP optimization

* |dea: cutting planes for MIP results in LP with added cuts
« Differentiate through Cutting-plane-generated LP for training

* At test time, obtain predictions and solve MIP with Branch-and-Bound

Ferber, Wilder, Dilkina, Tambe. MIPaaL: Mixed Integer Program as a Layer.
AAAI 2020.

[Ferber et al, AAAI 2020

Domains UuSC

. Portfolio Optimization
. Predict monthly rate of return (% return)
. Optimize monthly return for portfolio
- Limiting risk, sector exposure, transactions...
. Data: SP500 (USA), DAX (Germany)

. Diverse Bipartite Matching

- Predict match success probability

. Optimize total number of successful matches

.- Matching constraints: each node matched at most once

. Ensure min % of proposed matches are different/same type

. Data: CORA citation network, nodes = papers, edges = citations
. Energy Production Knapsack

- Predict energy prices

. Optimize total revenue

- Limit on number of time periods we can generate energy

. Data: ICON Energy Scheduling Challenge
[Ferber et al, AAAI 2020

.. : : USC
Results: decision quality at test time

Objective: monthly % increase for portfolio optimization (SP500 and DAX),
number of pairs successfully matched for Matching (CORA), and value of items

for Knapsack (Energy).

SP500 DAX Matching Knapsack
MIPaal. 279 £0.17 5.70 £0.68 4.80+0.71 507.70 &+ 0.471
MIPaal.-Warm 1.09 £0.18 0.68 £ 1.01 2.14 +0.51 499.60 £ 0.566
MIPaal-Hybrid 1.08 +£0.15 0.74 +1.10 3.21 £0.73 503.36 £+ 0.578
MIPaal.-1000 2.60 £0.16 439 +0.66 3.45+0.71 506.34 &+ 0.662
MIPaal-100 1.25+0.14 035+£0.63 2.57+£0.54 505.99 + 0.621
RootLP (Wilder et al. 2019) 1.97 +0.17 -19740.69 3.17+0.60 501.58 + 0.662
TwoStage 1.19+0.15 070146 3.42+0.78 501.49 +0.523

« MiIPaal gives 2x monthly returns on SP500 and 8x on DAX

- MIPaaL improves the objective by 40.3% and 1.2% for Matching
and Knapsack respectively.

« MIPaal outperforms all other variants considered.

[Ferber et al, AAAI 2020

Transfer Learning

USC

* Learn on one distribution of assets (302 SP assets) and test on another (30° other

SP assets and 30 DAX assets), keeping the MIP size the same
e Learn on one size of MIPs (number of assets available, 30 SP) and

test on larger MIPs (with more assets to choose from 50-500 SP)

SP-30"

DAX

SP-50

SP-100

SP-200

SP500

MIPaalL
RootLLP
TwoStage

Decision Quality

2.02 +0.48
1.81 £0.44
0.71 £0.04

2.77 £ 0.40
1.74 £ 0.43
0.82 £ 0.54

1.93 +0.13
1.50 £ 0.09
1.58 = 0.13

2.27 £ 0.11
1.58 £ 0.08
1.22 + 0.09

2.17 + 048
1.82 +0.41
1.50 £ 0.58

2.26 £+ 0.37
1.90 = 0.29
1.11 £ 0.35

MIPaaLL
RootLP
TwoStage

ML Loss

4.81 +8.59
5.14 £1.02
0.08 + 0.05

4.59 £+ 8.80
5.39 £ 1.04
0.07 + 0.03

542 +3.16
473 £ 3.17
0.08 + 0.02

542 £ 2.37
4.88 + 2.58
0.07 + 0.01

525+ 1.83
481 £ 191
0.08 + 0.01

543 £+ 1.67
4.83 £ 1.56
0.08 + 0.01

USC

Decision-Focused Learning

No need to silo out ML vs Optimization tasks
When data is scarce, we want predictions to be
accurate where it matters most for decision
making

Marrying predictive and prescriptive tasks in a
unified end-to-end system

Related Frameworks:
e Empirical decision model learning (M Lombardi, M Milano, A Bartolini, Artificial Intelligence 2017)
* “Predict-and-optimize” framework and its variants
(Elmachtoub & Grigas, 2017; Demirovic et al., 2019; Mandi et al., AAAI 2020)
* Blackbox differentiation of combinatorial solvers
(Vlastelica et al, ICLR 2020; Rolinek et al, ECCV 2020; Paulus et al NeurIPS 2020 LMCA Workshop)

Relax + differentiate USC

Forward pass: run a solver

—> —>

Backward pass: sensitivity analysis via KKT conditions

Convex QPs [Amos and Kolter 2017, Donti et al 2017]

Linear and submodular programs [Wilder, Dilkina, Tambe 2019]
MAXSAT (via SDP relaxation) [Wang, Donti, Wilder, Kolter 2019]
MIPs [Ferber, Wilder, Dilkina, Tambe 2020]

Some problems don’t have good relaxations
Slow to solve continuous optimization problem

Slow to backprop through — 0(n3)
[Wilder et al, NeurlIPS 2019]

. USC
An Alternative Approach

 Learn a representation that maps the original problem to a simpler
(efficiently differentiable) proxy problem.

* Instantiation for a class of graph problems: k-means clustering in
embedding space.

Wilder, Ewing, Dilkina, Tambe. End to End Learning and Optimization on Graphs.
NeurlPS 2019.

[Wilder et al, NeurlIPS 2019]

Graph learning + graph optimization

USC

Learning (e.g. link prediction)

Optimization

Partitioning Facility locati

on

[Wilder et al, NeurlIPS 2019]

UuSC
Problem classes

 Partition the nodes into K disjoint groups
« Community detection, maxcut, ...

» Select a subset of K nodes
 Facility location, influence maximization, ...

* Methods of choice are often combinatorial/discrete

Approach

» Observation: clustering nodes is a good proxy
« Partitioning: correspond to well-connected subgroups
* Facility location: put one facility in each community

» Observation: graph learning approaches already embed into R"

[Wilder et al, NeurlIPS 2019]

ClusterNet USC

One architecture and training process for all problems in these classes, which automatically
learns a differentiable solver for a given problem

1" Embed nodes with GCN 2 Run soft K-means on 3 Interpret clustering 4 Backpropagate
(Goal: train GCN to produce embeddings as optimization opfumllzatlon
task-specific embeddings) solution objective value

NV S8 K-means
== . GCN node (Locate 1 facility in

AN v . clusterin
A \mbeddmgs g/ \each community
\ . . o ® o / \ . | E‘)
°® i Hn o g=

Update GCN 2 . - |
arams o * - ‘
P o* Differentiate Loss: quality of * =« =
through K-means facility
assignment

[Wilder et al, NeurlIPS 2019]

. . usc
Differentiable K-means

T
[= 2 AT (e Jpdate cluster centers
Zj Tjk

Forward

pass exp(—p||z; — pxll) Softmax update to

5 exp(—B|z; — pel]) ' node assignments

[Wilder et al, NeurlIPS 2019]

. . usc
Differentiable K-means

* Option 1: differentiate through the fixed-point condition

ut = pttl
Backward Prohibitively slow, memory-intensive
pass * Option 2: unroll the entire series of updates

« Cost scales with # iterations
« Have to stick to differentiable operations

« Option 3: get the solution, then unroll one update
» Do anything to solve the forward pass
« Linear time/memory, implemented in vanilla pytorch

Theorem [informal]: provided the clusters are sufficiently balanced and well-separated,
the Option 3 approximate gradients converge exponentially quickly to the true ones.

[Wilder et al, NeurlIPS 2019]

: . USC
Example: community detection

max modularity

) R 3 K
) N N
2, A N z z [0 dudv] L
278 | /\ - 2m u,v m uk'vk
N & N\ & w,veV k=1
Observe partial Predict unseen Find Tuk € {0,1} Vu € V, k — 1 K
graph edges communities
K
z g =1 Vuevlv
k=1

« Useful in scientific discovery (social groups, functional modules
in biological networks)

* In applications, two-stage approach is common:
[Yan & Gegory '12, Burgess et al ‘16, Berlusconi et al ‘16, Tan et al
‘16, Bahulker et al ’18...]
[Wilder et al, NeurlPS 2019]

. USC
Experiments

* Learning problem: link prediction

* Optimization:
e community detection
« facility location problems

* Train GCNs as predictive component

« Comparison
« Two stage: GCN + expert-designed algorithm (2Stage)
* Pure end to end: Deep GCN to predict optimal solution (e2e)
* ClusterNet:
« Community detection (use clusters as-is, measure modularity)
* Facility location (one location in each cluster, measure max distance)

[Wilder et al, NeurlIPS 2019]

USC
Results: single-graph link prediction

Community detection Facility location
(higher is better) (lower is better)
0.6
>. O 11
< 04 =
= D 9
O O
= HB s .
B ClusterNet B 2stage M e2e B ClusterNet B 2stage M e2e

Representative example from cora, citeseer, protein interaction, facebook, adolescent health networks

Community algos: CNM, Newman, SpectralClustering

Facility Locations algos: greedy, gonzalez2approx
Y 605: 8 V& PP [Wilder et al, NeurlPS 2019]

. USC
Results: generalization across graphs

Community detection Facility location
(higher is better) (lower is better)
Q
> S
o 04 3
> D
2" Il B I
2 q0)
= 5
B ClusterNet B 2stage M e2e B ClusterNet B 2stage M e2e

ClusterNet learns generalizable strategies for optimization!

[Wilder et al, NeurlIPS 2019]

Takeaways

Decoupled approaches (2-stage) and pure end-to-end
methods miss out on useful structure

Good decisions require integrating learning and optimization
as In decision-focused learning

Even simple optimization primitives (e.g. clustering) provide
good inductive bias

