
Decision-focused learning:
integrating downstream combinatorics in ML

Bistra Dilkina
Associate Professor of Computer Science

Co-Director of USC Center on AI in Society
University of Southern California

February 25th, 2021

IPAM-UCLA
Workshop on Deep Learning and Combinatorial Optimization

Problem Type

ML Paradigm

Integer ProgrammingGraph Optimization

Supervised
Learning

Reinforcement
Learning

Self-Supervised
Learning

Greedy Heuristic

General IP Heuristic

Branching Heuristic Selection
Exact Solving

Infusing ML with Constrained
Decision Making

Infusing Discrete Optimization
with Machine Learning

MIPaaL: MIP as a layer in
Neural Networks

ClusterNET: Differentiable kmeans for
a class graph optimization problems

GCN node
embedding
s

K-means
clustering Locate 1 facility in

each community

Loss: quality of
facility
assignment

Differentiate
through K-means

Update GCN
params

Decision-focused learning for
submodular optimization and LP

Data Decisionsargmax
&∈(

) *, ,

Training: maximize decision quality

Augment discrete optimization
algorithms with learning components

Learning methods that incorporate the
combinatorial decisions they inform

ML Combinatorial Optimization
‣ Exciting and growing research area

Elias Khalil Bryan Wilder

The data-decisions pipeline

Many real-world applications of AI involve a
common template:

[Horvitz and Mitchell 2010; Horvitz 2010]

Observe data Predictions Decisions

[Wilder et al., AAAI 2019]

Typical two-stage approach

Neural network

Gaussian process

Random forest

Logistic regression

Machine learning models

Goal: maximize accuracy

Greedy

Mixed-integer program

LP relaxation

Local search

Optimization algorithms

Goal: maximize decision quality

[Wilder et al., AAAI 2019]

Google maps

Data

Predictive model

Predicted travel times

Routing algorithm

Shortest path

[Wilder et al., AAAI 2019]

Two-stage training

Data Predictive model Predicted delays Actual delays

vs

Update model to make predictions
closer to actual delays

[Wilder et al., AAAI 2019]

Challenge
• Maximizing accuracy ≠ maximizing decision quality
• “All models are wrong, some are useful”
• Two-stage training doesn’t align with end goal

Key idea:

Data Predictive model Predicted delays

Update model to improve chosen
path (w.r.t. actual delays)

Optimization
algorithm

Shortest path

Automatically shape the ML model’s loss by incorporating the
combinatorial optimization problem into the training loop

Decision-focused learning

Ferber et al (2020), Wilder et al. (2019), Donti, Amos, and Kolter (2017), …., Bengio (1997)

Wilder, Dilkina, Tambe. Melding the Data-Decisions Pipeline:
Decision-Focused Learning for Combinatorial Optimization. AAAI 2019.

Decision-focused learning

Data Predictive model Predicted delays Optimization
algorithm

Shortest path

𝜕obj(decision)
𝜕weights

=
𝜕prediction
𝜕weights

𝜕decision
𝜕prediction

𝜕obj(decision)
𝜕decision

Objective function 𝒇 𝑥, 𝜃
𝒙 ∈ {0, 1}4 are the **discrete** decision variables
𝜽 are unknown parameters (i.e. the coefficients in the objective e.g., true
travel times)

Idea: Take derivative of decision objective w.r.t. ML model weights, train
model via gradient descent (e.g. similar approach for convex opt. [Donti et al ’17])

[Wilder et al., AAAI 2019]

•Challenge: the optimization problem is discrete!
• Solution: relax to continuous problem, differentiate, round

ContinuousDiscrete

𝑥 = binary decision 𝑥 = fractional decision
F = continuous objective

max
!∈#

𝑓 𝑥, 𝜃 max
!∈$%&'(#)

𝐹 𝑥, 𝜃

Approach

• How to compute !"
∗

!#
?

• Idea: (locally) optimal continuous solution must satisfy KKT conditions (which are sufficient
for convex problems)

• The KKT conditions define a system of linear equations based on the gradients of the
objective and constraints around the optimal point.
• Differentiate those equations at optimum (e.g. convex opt. [Donti, Amos, and Kolter 2017])

[Wilder, Dilkina, Tambe, AAAI 2019]

[Wilder et al., AAAI 2019]

Linear programs

Model exactly combinatorial problems like
bipartite matching, shortest path, mincut, etc.
Or correspond to a relaxation of other combinatorial problems
Standard form:

max
"
𝜃$𝑥

𝐴𝑥 ≤ 𝑏

• =>
∗

=?
doesn’t exist!

• Solution: add a regularizer to smooth things out

max
"
𝜃$𝑥 − 𝛾 𝑥 %

%

𝐴𝑥 ≤ 𝑏
• Now, Hessian is ∇"% 𝑓 𝑥, 𝜃 = −2𝛾𝐼 ≺ 0
• Provably (a) differentiable and (b) close to original LP

10

𝜃

𝑥∗

𝜃

𝑥∗

[Wilder et al., AAAI 2019]

Results

•Combinatorial problems: encoded as LP, e.g. bipartite maximum matching
•Combinatorial problems: submodular maximization, e.g. influence

maximization, budget allocation, diverse recommendation

• Decision-focused has consistently better solution quality
• 15-70% improvement in solution over 2-Stage, across three domains

• But typically much less accurate (wrt AUC, MSE etc.) [Wilder et al., AAAI 2019]

Application: Tuberculosis treatment

• Follow-on work improving treatment in Indian TB system
• In collaboration with Everwell (NGO)
• Predict if patients will miss daily dose
•Optimize health worker visits subject to

knapsack constraints (LP)

•More in our paper

[Killian et al, KDD 2019]

Killian, Wilder, Sharma, Choudhary, Dilkina, Tambe. Learning to Prescribe
Interventions for Tuberculosis Patients using Digital Adherence Data. KDD 2019.

Application: Tuberculosis treatment

0

1

AUC

Two-stage
Decision-focused

3

5

Solution quality

Two-stage
Decision-focused

Less “accurate”, but +15% successful interventions!

[Killian et al, KDD 2019]

Decision Focused Learning for
Mixed Integer Programming (MIP) problems

•MIPs capture many combinatorial problems that do not have a nice
relaxation-based algorithm
• ..and we know how to differentiate through LP optimization

• Idea: cutting planes for MIP results in LP with added cuts
• Differentiate through Cutting-plane-generated LP for training

• At test time, obtain predictions and solve MIP with Branch-and-Bound

[Ferber et al, AAAI 2020]

Ferber, Wilder, Dilkina, Tambe. MIPaaL: Mixed Integer Program as a Layer.
AAAI 2020.

Domains
• Portfolio Optimization

• Predict monthly rate of return (% return)
• Optimize monthly return for portfolio
• Limiting risk, sector exposure, transactions...
• Data: SP500 (USA), DAX (Germany)

• Diverse Bipartite Matching
• Predict match success probability
• Optimize total number of successful matches
• Matching constraints: each node matched at most once
• Ensure min % of proposed matches are different/same type
• Data: CORA citation network, nodes = papers, edges = citations

• Energy Production Knapsack
• Predict energy prices
• Optimize total revenue
• Limit on number of time periods we can generate energy
• Data: ICON Energy Scheduling Challenge

[Ferber et al, AAAI 2020]

Results: decision quality at test time
Table 1: Decision quality. Comparison in terms of realized optimization objective: monthly percentage increase for portfolio
optimization (SP500 and DAX), number of pairs successfully matched for Matching, and value of items for Knapsack. MIPaaL
gives 2x monthly returns on SP500 and 8x on DAX, and improves the objective by 40.3% and 1.2% for Matching and Knapsack
respectively. MIPaaL outperforms all other variants considered.

SP500 DAX Matching Knapsack

MIPaaL 2.79 ± 0.17 5.70 ± 0.68 4.80 ± 0.71 507.70 ± 0.471
MIPaaL-Warm 1.09 ± 0.18 0.68 ± 1.01 2.14 ± 0.51 499.60 ± 0.566

MIPaaL-Hybrid 1.08 ± 0.15 0.74 ± 1.10 3.21 ± 0.73 503.36 ± 0.578
MIPaaL-1000 2.60 ± 0.16 4.39 ± 0.66 3.45 ± 0.71 506.34 ± 0.662
MIPaaL-100 1.25 ± 0.14 0.35 ± 0.63 2.57 ± 0.54 505.99 ± 0.621

RootLP (Wilder et al. 2019) 1.97 ± 0.17 -1.97 ± 0.69 3.17 ± 0.60 501.58 ± 0.662
TwoStage 1.19 ± 0.15 0.70 ± 1.46 3.42 ± 0.78 501.49 ± 0.523

Table 2: ML performance on test set. TwoStage wins on ML metrics used for training (MSE, CE), whereas MIPaaL has inferior
ML metrics while improving decision quality. In all benchmarks, the predictive problem is hard as evidenced by the ML metrics
of all methods. Bolded entries have 95% confidence intervals overlapping with the best entry.

SP500 DAX Matching Knapsack
MSE Corr MSE Corr CE AUC MSE Corr

MIPaaL 0.22 ± 0.043 0.15 ± 0.015 0.13 ± 0.017 0.25 ± 0.032 0.66 ± 0.009 0.535 ± 0.004 2774 ± 97.664 0.567 ± 0.002
MIPaaL-Warm 0.11 ± 0.010 -0.01 ± 0.010 0.09 ± 0.067 0.07 ± 0.030 0.52 ± 0.003 0.509 ± 0.003 4660 ± 72.008 0.593 ± 0.003

MIPaaL-Hybrid 0.09 ± 0.030 0.13 ± 0.013 0.13 ± 0.099 0.26 ± 0.026 0.55 ± 0.002 0.502 ± 0.004 3824 ± 82.828 0.608 ± 0.006
MIPaaL-1000 0.12 ± 0.020 0.13 ± 0.013 0.35 ± 0.010 0.27 ± 0.035 0.61 ± 0.010 0.506 ± 0.007 5821 ± 154.793 0.590 ± 0.005
MIPaaL-100 0.98 ± 0.089 0.12 ± 0.013 0.99 ± 0.060 0.26 ± 0.037 0.54 ± 0.013 0.503 ± 0.004 5801 ± 145.331 0.553 ± 0.007

RootLP (Wilder et al. 2019) 0.71 ± 0.178 0.15 ± 0.013 1.06 ± 0.137 0.28 ± 0.032 0.49 ± 0.007 0.513 ± 0.001 6267 ± 212.063 0.574 ± 0.002
TwoStage 0.09 ± 0.017 0.06 ± 0.011 0.02 ± 0.066 0.13 ± 0.032 0.39 ± 0.004 0.514 ± 0.005 684 ± 15.568 0.649 ± 0.002

Table 3: Problem statistics and timing results. Timing results are average time per epoch, and the average percent of time taken in
one epoch to compute to Forward and Backward pass through the MIP Layer.

Num Instances Problem Sizes Solve Statistics
Train Val Test Bin Vars Cont Vars Cons Avg Cuts Epoch (s) Forward Backward

SP500 72 35 36 1000 3011 5026 2690 486 3.88% 25.46%
DAX 72 35 36 60 185 314 1387 47 15.63% 3.34%

Matching 16 11 11 2500 0 102 4984 604 2.13% 32.90%
Knapsack 56 19 19 48 0 1 1261 208 4.31% 0.36%

generated during training, the average time per epoch, and
the percentage of that time dedicated to the forward and back-
ward pass through the MIP layer in particular. The number of
added cuts in the forward pass is on the order of a few thou-
sands for all four problem types. SP500 and Matching take
longer per epoch than DAX and Knapsack. The table shows
that for both of these a big percentage of the train time is
dedicated to the backward pass through the MIP layer. This is
explained by the large size of the corresponding cutting plane
LPs for which the backward pass needs to solve through
the KKT conditions. On average, the forward pass through
MIPaaL takes 0.26, 0.10, 0.80, and 0.16 seconds for SP500,
DAX, Matching, and Knapsack instances respectively, and
1.72, 0.02, 12.42, and 0.14 seconds for the backward passes
respectively. Further timing information is provided in the
supplementary information.

Transfer learning: To test generalization performance,
we evaluate MIPaaL, RootLP, and TwoStage on transfer learn-
ing tasks for portfolio optimization. In this transfer learning

setting, models are trained on 30 assets randomly drawn from
SP500 (SP-30a), with data from Jan 2005 - Dec 2010. These
learned model are then evaluated on data from Dec 2013
- Nov 2016 to test various generalization aspects. To test
generalization across the data distribution we evaluate on 1)
SP-30b, a set of 30 randomly drawn assets from the SP500,
disjoint from SP-30a, and 2) the DAX, a separate index com-
prising 30 companies from a different country. Similarly, we
evaluate on instances with varying number of assets in SP-50,
SP-100, SP-200 and SP-500 which contain 50, 100, and 200
each with unique assets disjoint from SP-30a and SP-30b, as
well as on all 505 assets in SP-500.

Data distribution: The transfer learning results in Table 4
demonstrate that MIPaaL not only performs well across time
periods, but generalizes to unseen assets as well as unseen
countries. On SP-30b MIPaaL gives more than double the
improvement in the average rate of return over the standard
TwoStage approach, and a 59% improvement over RootLP,
indicating MIPaaL’s good generalization performance. Fur-

Objective: monthly % increase for portfolio optimization (SP500 and DAX),
number of pairs successfully matched for Matching (CORA), and value of items
for Knapsack (Energy).

• MIPaaL gives 2x monthly returns on SP500 and 8x on DAX
• MIPaaL improves the objective by 40.3% and 1.2% for Matching

and Knapsack respectively.
• MIPaaL outperforms all other variants considered. [Ferber et al, AAAI 2020]

Transfer Learning
• Learn on one distribution of assets (30a SP assets) and test on another (30b other

SP assets and 30 DAX assets), keeping the MIP size the same
• Learn on one size of MIPs (number of assets available, 30 SP) and

test on larger MIPs (with more assets to choose from 50-500 SP)

Decision-Focused Learning
‣ No need to silo out ML vs Optimization tasks
‣ When data is scarce, we want predictions to be

accurate where it matters most for decision
making

‣ Marrying predictive and prescriptive tasks in a
unified end-to-end system

Related Frameworks:
• Empirical decision model learning (M Lombardi, M Milano, A Bartolini, Artificial Intelligence 2017)
• “Predict-and-optimize” framework and its variants

(Elmachtoub & Grigas, 2017; Demirovic et al., 2019; Mandi et al., AAAI 2020)
• Blackbox differentiation of combinatorial solvers

(Vlastelica et al, ICLR 2020; Rolínek et al, ECCV 2020; Paulus et al NeurIPS 2020 LMCA Workshop)

Relax + differentiate

Forward pass: run a solver

Backward pass: sensitivity analysis via KKT conditions

Convex QPs [Amos and Kolter 2017, Donti et al 2017]
Linear and submodular programs [Wilder, Dilkina, Tambe 2019]
MAXSAT (via SDP relaxation) [Wang, Donti, Wilder, Kolter 2019]
MIPs [Ferber, Wilder, Dilkina, Tambe 2020]

Some problems don’t have good relaxations
Slow to solve continuous optimization problem
Slow to backprop through – 𝑂(𝑛+)

[Wilder et al, NeurIPS 2019]

An Alternative Approach

• Learn a representation that maps the original problem to a simpler
(efficiently differentiable) proxy problem.

• Instantiation for a class of graph problems: k-means clustering in
embedding space.

Wilder, Ewing, Dilkina, Tambe. End to End Learning and Optimization on Graphs.
NeurIPS 2019.

[Wilder et al, NeurIPS 2019]

Graph learning + graph optimization

[Wilder et al, NeurIPS 2019]

Problem classes

• Partition the nodes into K disjoint groups
• Community detection, maxcut, …

• Select a subset of K nodes
• Facility location, influence maximization, …

• Methods of choice are often combinatorial/discrete

Approach
• Observation: clustering nodes is a good proxy
• Partitioning: correspond to well-connected subgroups
• Facility location: put one facility in each community

• Observation: graph learning approaches already embed into 𝑅!

[Wilder et al, NeurIPS 2019]

ClusterNet

GCN node
embeddings

K-means
clustering Locate 1 facility in

each community

Loss: quality of
facility
assignment

Differentiate
through K-means

Update GCN
params

Embed nodes with GCN
(Goal: train GCN to produce
task-specific embeddings)

Run soft K-means on
embeddings

Interpret clustering
as optimization
solution

Backpropagate
optimization
objective value

1 2 3 4

One architecture and training process for all problems in these classes, which automatically
learns a differentiable solver for a given problem

[Wilder et al, NeurIPS 2019]

Differentiable K-means

Update cluster centers

Softmax update to
node assignments

Forward
pass

[Wilder et al, NeurIPS 2019]

Differentiable K-means

Backward
pass

• Option 1: differentiate through the fixed-point condition
𝜇! = 𝜇!"#

• Prohibitively slow, memory-intensive
• Option 2: unroll the entire series of updates
• Cost scales with # iterations
• Have to stick to differentiable operations

• Option 3: get the solution, then unroll one update
• Do anything to solve the forward pass
• Linear time/memory, implemented in vanilla pytorch

Theorem [informal]: provided the clusters are sufficiently balanced and well-separated,
the Option 3 approximate gradients converge exponentially quickly to the true ones.

[Wilder et al, NeurIPS 2019]

Example: community detection

31

Observe partial
graph

Predict unseen
edges

Find
communities

max
C

1
2𝑚

'
D,E∈G

'
HIJ

K

𝐴D,E −
𝑑D𝑑E
2𝑚

𝑟DH𝑟EH

𝑟DH ∈ 0,1 ∀𝑢 ∈ 𝑉, 𝑘 = 1…𝐾

'
HIJ

K

𝑟DH = 1 ∀𝑢 ∈ 𝑉

max modularity

• Useful in scientific discovery (social groups, functional modules
in biological networks)
• In applications, two-stage approach is common:

[Yan & Gegory ’12, Burgess et al ‘16, Berlusconi et al ‘16, Tan et al
‘16, Bahulker et al ’18…]

[Wilder et al, NeurIPS 2019]

Experiments

•Learning problem: link prediction
•Optimization:
• community detection
• facility location problems

•Train GCNs as predictive component

•Comparison
•Two stage: GCN + expert-designed algorithm (2Stage)
•Pure end to end: Deep GCN to predict optimal solution (e2e)
•ClusterNet:
• Community detection (use clusters as-is, measure modularity)
• Facility location (one location in each cluster, measure max distance)

[Wilder et al, NeurIPS 2019]

Results: single-graph link prediction

Representative example from cora, citeseer, protein interaction, facebook, adolescent health networks

Community algos: CNM, Newman, SpectralClustering
Facility Locations algos: greedy, gonzalez2approx

0

0.2

0.4

0.6

M
od

ul
ar

ity
Community detection

(higher is better)

ClusterNet 2stage e2e
5

7

9

11

M
ax

 d
ist

an
ce

Facility location
(lower is better)

ClusterNet 2stage e2e

[Wilder et al, NeurIPS 2019]

Results: generalization across graphs

ClusterNet learns generalizable strategies for optimization!

0

0.2

0.4

0.6

M
od

ul
ar

ity
Community detection

(higher is better)

ClusterNet 2stage e2e
5

7

9

M
ax

 d
ist

an
ce

Facility location
(lower is better)

ClusterNet 2stage e2e

[Wilder et al, NeurIPS 2019]

Takeaways
‣ Decoupled approaches (2-stage) and pure end-to-end

methods miss out on useful structure

‣ Good decisions require integrating learning and optimization
as in decision-focused learning

‣ Even simple optimization primitives (e.g. clustering) provide
good inductive bias

